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Abstract—--

This research develops two variance reduction methods for estimating the
parameters of the experimental simulation model having multiple design points based
on an approach focusing on reduction of the variances of the mean responses across
multiple design points. The first method extends a combined approach of antithetic
variates and control variates for a single design point to the multipopulation context
with independent streams across the design points. The second method extends the
same strategy in conjunction with the Schruben-Margolin method for improving the
first method. We illustrate an example for implementing the second method. We
expect these two approaches may improve the estimation of the parameters of interest
compared with the control variates method.

1. Introduction

Consider the simulation experiment for investi-
gating the effects of the factor variables on rhe
univariate response of interest, To  explore  the
response surface over a factor region of interest,
typically we assume that there exists some linear

functional relationship between the response and the

experimental variables! factor variable and concom-

itant variable (control variate). Factor variables are

under the control of an experimenter, in that we
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assume  thar the experimenter can select and  set
levels of a factor variable withour error. In contrast,
the levels of the concomitanr variables are not set
by the experimenter but mercly observed in the
course of conducting the experiment, That is, a
concomitant variable s observed randomly at cach
of the levels of the factor variables during the
experiment and assumed 10 be correlated with the
corresponding response.

For a designed simulation  experiment having

mutltiple  design  points and univariate response
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(Nozari, Pegden and Arno]d[8] referred to it as a
multipopulation simulation model ), scveral authors
have devcloped procedures that  improve the
reliability of the estimators for the model parame-
ters. Schruben and Margolin[11] developed a
method for combining the use of common random
numbers and antithetic variates in one simulation
experiment designed to estimate the parameters for
the first-order multipopulation  model  where 2
design matrix admits orthogonal blocking into two
Arnold and Pedgen[8] added

control variates to the lincar model of factor

blocks, Nozari,

variables and evaluated the simulation efficiency of

control variates in estimating the parameters of the
lincar model., Tew and Wilson [14] proposed a
combined approach using the Schruben-Margolin
correlation induction strategv in conjunction with
control variates to improve the estimation of rhe
parameters in the first-order linear model.

These studies exploit the correlations between (a)
the responses at different design points, and (b)
the response and control variates within a design
point. Different from these approaches, this paper
tocuses on reduction in variance of the mecan
response of Interest at a single design point and
additionally tries to utilize the correlation between
the responses across the design points. We consider
that the responses with reduced variances at the
design points of the experimental model may ensure
improvement in the estumaton of the paramerers of
the multipopulation model.

For a simulation experiment of a single popula-
tion model, usually antithetic variates and control
variates are applied to reduce the crror of the
estimator for the mean response  of interest
Antithetic variates utilize the negative correlation
between the responses from different replicarions.
In contrast to the approach of antitheric variates,
the method of control variates attempts to exploit
response  and  sclected

correlations  between  the

control variates within a single run. (sce the
discussions of these two merthods in Kleijnen.[5])
Suppose that through correlated  replications  of
simulation runs at a single design point, we reduce
the variance of the estimator for the mean responsc
and vet maintain the same correlation berween the
response and control variates as those obtained
under independent replications. Then we may take
advantage of both antithetic variates and control
variates together in one simulation run, and reducce
the variance of the estimator for the mean responsc
further than by onlv applving conrrol variates,
Based on this conjecture, we proposc a method
which focuses on reducing the variances of the
mean across  rthe  design

FeSPONSes points  for

estimaring  the  parameters of interest  in rthe
multipopulation context. We also consider a strategy
incorporating the correlations between the responscs
at different design points for further improving the

precision of the parameter estimation,
2. Notation and Background

Consider an experimental design thar specitics the
combination of m factor settings in rhe muliipo-
pulation simulation model. Suppose we estimate the
mean response at a single design point ¢ by rthe
sample mean, ¥y, of 24 replicates simulation runs.

Let v=(¥, W,

Vm)' be the mean response
vector across the m design points, Suppose that the
relationship between the responses and the function
of factor settings across all m design points can be

wrirten as the following linear model:
v=X/+¢, (1)
where §==(¥,, ¥5,'*, ¥m) 15 the {(mX1) vector of
responses, B={(f, B -, Bp) is the ((/7+1)
X 1) vector of unknown model coctficients, X is

a (mX(p+1)) design matrix whose first column
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is the (mXx1) vector of I's (1m) and whose ith
column consists of levels of the factor variables
across . design points, and € is a (mX1) vector
which represents the inability of the postulated
model to determine ¥,

During  the simulation experiment, often  we
observe control variates that are highlv correlated
with the response of interest, Let ¢; be the vecror
of control wvariates corresponding to ¥ at design
point 7. When the length of simulation run is

sufficiently large, it is assumed that

(ync') ~ 1D Ns+1((.uh' oy, ),
i=1,2,..,m,

where yy and ¢ are the response and the (sX1)
veeror of control variates, respectively, ar the ith
design point, #y; is the mean response of the 7th

design point,

1s the covartance matrix of the response and control
variates, gyc is the covariance between yy and ¢, and
e is the covartance matrix of ¢; (see the discussions
in lLavenbery, Mocller and Weleh,[6] Cheng and
Feast [3] and Nozari, Pegden and Arnold{8].
Under this assamption, by adding the control
variates to (1), the responses of intcrest at the m
design points can be represented as the following

lincar model:

y = Xflg + Ca 4 &, (4)

where ¥, X and B¢ are given in (1), C is a (m
Xs) matrix whose 7th row consists of ¢/, €==(g,
&, "t €&m) s the (mX1) vector of error rerms,

The least squares estimators of B¢ and @ in the

linear model in (4) are given by, respectively,

&= (CPC) and flg= (XX)7'X'(5 - Ca)

—
(2}
—

with P = |m_x(x;x)-1x, m'

Nozari, Arnold and Pegden[8] considered the
effect of the control variates method by comparing
the varlance of the least squares estimator S in (1)
with that of Bg in (5) under the assumption in
(2), and showed that the effect of control variates

is

” '7/\ 2 m‘——p-h2 2
var(f) - Var(fg) = oy(1 ~ ————— s R
xXx)" it omoe pAs42, (6)

where K= 6/ye3¢ "0ye is the square of the multiple
correlation coefficient between vy and ¢;. This result
implies  that the loss factor of coatrol variates
method s (m—p—2)/(m—p—s—2) due to the
estimation of @ and the minimum variance ratio is

RE,
3. Combined Methods

This section  presents two  variance  reduction
methods tor estimaring the parameters of interest
in the multipopulation model. These two methods
are based on combined method utilizing antithetic
variates and control variates  simuitancously  to
reduce the variance of the mean response at a single
design point,

Onc  of the characteristics  of  the  computer
simultion is the cxpcrimuucx"s control over the
random number streams that drive a simulation
model. These streams  completely  determine  the
simulation response output, Let Ryy be the set of ¢
random number streams for the jrh replication of

simulation run at the ith design point:
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R// = (rl/'.v Fijan - i,

j=1, 2

s r,/g) for i=1, 2, ...,
.., 2h,

where r(k==1, 2, -+, g) denotes the sequence of
random numbers used for driving the &th stochastic
component of the simulation model at the ith design
point and jth replication,

We first consider the random number assignment
strategy of jointlv urilizing antithetic variates and
which

drive

control variates for a simulation model

requires g such random number streams to
all of its stochastic components across replications
at a single design point. To this end, we separate
Ry into towo mutually exclusive and exhaustive
subsets of random number streams, (Ryy, Ry,). We
use the first subset of (g—s*) streams, Ry, for
driving the non-control variate stochastic compo-
nents, the second subset of s* streams, Ryp, for
driving the control variate stochastic components.
The correlated replication strategy at a single design
point uses antithetic variates for all stochastic
components except the control variates through 24
replications. That is, within the jth paired replica-
tions, we use {Ryyyy, Rpyoae) and (Rpggg, Rige),

where Rigy,1, Rigjysn, a0d Rigy, 4, are sets of randomly

selected random number streams, and Ry, 18
antithetic to Riygyy,;. Across pairs of replications, we
use independent streams. The complelte assignment
of random number streams across 2h replications is
given in Table 1.

Then, the jth pair of responscs at the ith design
point, viyp and yi (7==1, 2, ,+--, /), are ncgatively
correlated by antithetic streams through the non-
control stochastic components., However, through

the 24 replications, the control variates ¢; (i=1, 2,

., 2h) are independently generated by the
assignment of Independent streams through the
control variate stochastic components at each

replication. We hypothesize that the response vy

(vis) is independent of control variates cppy(cig-,)

Table 1. Random Number Assignment Rule for a single

Design point
? Replication Control Variates Response
1 ¢ Ryy) }1<R11~ Ry)
2 el Ry vo( Ry, Ry)
: o5 Ry val Ra, Ry
| ¢(Ry) Vil Ry Ry)
“ Zh1 Can 1(Rop 1,2) Vet Rty Roneyy)
: Zh Con(Rop 1 o) ¥an( Ry, Ron, o)
within a paired simulation output due to indepen-

dent streams for the control variates.

Next we consider two random number assign-
ment strategics across m design points. The firse
method extends the above mentioned approach for
a single population experiment to the multipopu-
lation context with independent random number
streams {Combined Method 1), The second method
uses the same policy as the first method for the
experiment at cach design point, and additionally
uses Schruben Margolin's assignment rule [11] for
the experiment across the design points {Combined
Method [} ).

3.1. Combined Method |

Let vy and ¢y be the response of interest and a
vector of control variates, respectively, at the Jth
replication  and rthe ith design point under the
replication rule of this method. Based on the carlier
duscussions and statistical modeling assumptions, we
establish the assumptions for the response and
control variates obtained across the m design points

and 2/ replications as follows:

1. \jar()/”):o-zy’ for 1:1, 2, o, ]:1, 2, SR

2k (homogeneity of response variances across
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design points and replicates ),
2. Cov(wy, »\”{k):—_-l{)y("ZY(p‘V\)()) for 1==]1, 2,
mof k=7+1(j=1, 3, -+, 2h—1)

ot induced negative correlations across design

( h()mogcncm

points and replicates pairs). Otherwise, Cov(vy,
) ==0),

3. Covlvy cu)==0a’ye if i=k and j=[ (homo-
geneity of control variates-response covariance
across design points and replicates ). Otherwise,
Cov(vy a)=0,

4. Covlcy)=2Z¢, for i==1, 2, ---, m and j=1,

-, 2k, (homogeneity of control variates co-

')

variance structure across  design  points  and
replicates), and

Cov(cy, ca)=0sxs for iFk and j¥/(indepen-

w

dence of control variates across design points

and replicates),

Under these assumptions, we identify the joint

distribution of ¥ and C: ¥=(§,, Vs -+, ¥m) and

(Z:(a, €, ‘', cm)’. At the ith design point, from
Corollary 5.2.1 in Mood, Graybill and Boes [4],

the variance of Vi, is given by

2h 2h
h n
Var(y)) = Var( >_Jy‘,/2h) = [ZVar(yU)
A= j=1
+ 2}_JCOV(y',, yu)l/an’
[k
2h h
[> Var(y,) + 2 }_JCOV(Y/,/— 1 }’/?/)]/4/1
J=1 Je=1
[2/7() 2h;)yoy]/‘,h 2/2,‘1

since Cov(vy, yi)=0 if either k%] or k%41 by

Assumption 2. Similarly, we get

2h 2h
Cov(e) = Var( L ,//du = [Zvar(cu)
=1 J=1
+ 2ZJCov ¢ €] /Ah =X, /2h (8}

J< K

by Assumptions 4 and 5 Also the covariance

between vy oand ¢ is given by

oh 2n
2r 2h,
Cov(v, c) = Cov yu/gh >_J‘3m/2h)
- T
2h
> Covly Yo )
}»1

A ) .
+ L’,\_Jcov(yl‘/- c/k)]/d‘h‘ :6’)/(‘, / 2h
a (9)

by Assumptions 3. Thus, from (7)-(9), under the
normality assumpuon of the response and control
vartates, the joint distribution of ¥ and € is given

by

o

2 2
A el e | o

2h o

ye [+

where 7 is the ith row of X, and x/f is the mean
response at the ith design poine,

The application of independent streams across the
m o design points allows that the (s41)-variates
simulation output, (vy, ¢y), at the ith design point
is independent of (v, ¢) obtained ar the different
design point (1)), Therefore, under the joint
normally assumption of the responses and control
variates, we find the joint distribution ()f; and C

as follows:

(1)

y Xp-
Vec(C) | ~ Nos+ 1

where Vee(C)  denotes the operation  that  rhe

columns of C are stacked into a single ms-

dimensional vector;

. , -
1 (Iylm a yc®|m

= . , (12)
2h n"’yr_’®l/n L.®1, B
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where @ denotes a Kronecker operation of rwo
marrices, From Theorem 2.5.1 in Anderson,[1] the
conditional variance of v given C is as follows!

Var(y | €) = [o,1, — (6", @I )(Z®1,) "

(03 ®V)1/ 20 = [0,y — (0", ®L)EL ' @1,)

(33 ®1n)l/ 20 = 0,1, — (', 22 @1,,)/ 2h

(0, @)1 = [o0,, ~ (07, 2. 0, @1,)1/2h
= [oyln=0"y Ll a,ln] /20

= o /2h (1= py—R:)m (13)

where Ryc is the multiple correlation coefficient
berween vip and ¢ Bquations (12) and (13) imply
that the mean responsc vector v can he written as
the linear model in (4) with an appropriate
replacement of simulation output c. Thus, the least
wquares estimator of Be in (4) is given by

f 1T = (XX X1, = CEPC) TPl (14)

(see (5)). Taking the operation of vartance on

(14) gives

Var(fig | ©) = (X'X)"'X'[1,, — C(C'PC) 'T'P]

Var(y | C)[1,, ~ PC(C'PC)"C IX(X'X)"

which 15 developed into, by substituting for Var

(vIC) with (13),

\/ar(ﬂG I E) = 03/2/7 (1 — by = Ric)(xzx)—-‘lxl

(I, — CC'PT)'CPI(I, — PC(C'PT) ']
X(X'X)™" = 62/ 20 (1—p,— REN(XX) +

xX'x)7'x e Pe) XX X)) (15)

since X'P=PNX==(). Since the least squares estimator
B¢ is an unbiased estimator conditionally on C, the

unconditional variance of Bg is given by

Var(fig) = E[Var(fg | )] = o2 / 2h (1= p, — R%)

(mep—2/m—p—s—2)XX" (16)

{sce the proof in Appendix), This equation

indicates that this method reduces the variance of
s p) by (ov

Reyc)a®yi2h and its loss factor is (m—p—2]j(m—p

the estimator for Ay(i=o0, I,

—s—2) due to the estumation of a in (4),
respectively, compared with the results obtained by
independent streams across the 2k replications and

m o design points,
3.2. Combined Method |

[a Section 3.1, we developed a combined method
for the multupopulation experiments  with  the
general hincar model. Here, we consider a way of
combined approach for a single population model
to the multipopulation model in (4) where a design
matrix - N admirs  orthogonal  blocking into two
blocks. Basically, this extension to the muhlipopu-
lation model involves combining in an addinive
manner the Schruben-Margolin correlation induc-
tion strategy and Combined Mcethod 1. Instead of
dircetly applving Schruben-Margolin method across
m design points, we first partidon a set of the
stochastic components i the model into two subsets
of the non-control variate components and control
variatc  components,  Then we  use correlation
merhods of common random numbers and antithetic
variates partialll through the non-control variate
stochastic components in the model. Even though
this correlation induction strategy may weaken the
desired correlation of the responses at two design

points, it allows the control variates to be observed
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ndependently atr cach design point. This last point
15 critical in order to achicve an additive effect from
the two methods,

For the design marrix X admitring  orthogonal
blocking into two blocks, Schruben and Margolin
[11] exploited the random number assignment rule
random

which uses a combination of common

numbers and  antithetic streams across w2 design

points, Their assignmenr rule uses the same set of
random number streams K for all py design points
in the first nlock, and uses the same ser of antithetic
random number streams R for all iy, design points

in  the sccond block  {mr=wm,+my} within a
replication,

Parallel 1o the work of Schruben and Margolin,
11 we

arthogonal blocks consisting of n, and my, design

partition s design points o two

points respectively, For the rrh design point in cach
block, the first set of streams Ry, is  selecred
Schruben-Margoiin

according 1o the asstgnment

rule, and rhe sccond set of  streams, Ry, are

randomly sclected through the 24 veplicarions in the
experiment J==1, 2, <--, 2], On the other hand,
for the 24 replications at the ith design poing, the
same assignement rule as 1 Sccton 3.1 s emploved,
For instance, within the firsr pair of replications,
twa different design points 7 & i the same block
(Rilh ha) and (Rjn, Rknz }

the first replication: and (b) (Ry,;, Rye) and (R,

use {a) respectively for
Ry ), respectively, for the second replication? where
Rig. Ry and Ry (/4

but Ry 15 antithetic to Ry, Table

=1, 2} arc randomiv sclected,
2 presents the
complete asstignment of random number streams for
the 2A replications at m design poines? the first
design points are in the first block, and the second
my design points are in the second blockt Ry,
consists of (g~s*) random number streams uscd
for the non-control stochastic components in rhe
model (j==1, 2, «=, m, j=1, 2, <-, }i Ry consists

of s* random number strcams used for the conrtrol

variates in the model (i==1, 2,

j=1 2, -
AY. Ry s a ser of randomly se]ccted random
number streams for the (27—~1)th replication {(j==
1, 2, -, k)t
Ry (=1, 2,

selected

Ry 15 a ser of streams antithetic to
i37 and Ry is a set of randomly
number

random streams  for the jth

replication at the ith design poinr (i=1, 2,

], 2, e, 20

As before, ler yy and ¢y be the response of

interest and a vector of control variates, respec-

tively, at the jrh replication and the ith design
point, We first specify the covariance matrix of the
variates  obtained by the

To this fend,

responses  and  control
assignment procedure described above
we establish the following assumptions,
1. \':Ar()'u):"d’zy, tor =1, 2, -, m, j=1, 2, +,
2h (homogeneity of response variances across
design points and rephicates),

o) for =1, 2,

3, o Z2h—1 ) (homogeneity of

2. Covilvy, Hk);;, — Oy
modf k=g (=,
response variances across design points and repli-
cates pairs). Otherwise, Cov{vy, vg)==0.

3. Covilyvy, vy )= 0% it two design points ¢ and
koare i the same block, and £=47 Cov{yy, ya)==
design points ¢ and A are in the

and €=4+1(y==1, 3, -, 2h~1);

correlations across design

oty i two

same block,

{(homogeneity of induced
puints I adopred from Schruben and J\'iarg()lin)[lli).

Otherwise, Coviyy, via)=0.

4. Covivy, _\"ki,) =0_c'y it two design point 1 and

Table 2. Randon Number Assignment Rule of Combined
Method I

Rep st
I >
Y Rne Ry Fathon R Foge R N Franihony R,
} R A yarRee A fran R, Rz 1) ot Rzl
- o Ronpiz! rraatR 111 Nmpa) Yar - TRy Ry 12t ymqaatRaar. Rzl
[T PR TITIE P (SRSt TIN M) Terermn il Rmgaetr o (20my  tniRine Rt 2ag)

FmaiRit: Mgyl vt R an Rugn 2 PoaniRint Rmpn]

1

|

|

| J :

[ m rectqy By
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k are in two different blocks, and (=1 Cov(yy,
,Vki):/)_(fzy if two design points ¢ and %k are in
two different blocks, and [=j41(j=1, 3, ---, 2h4
—1): (homogeneity of induced correlations across
design points: adopted from Schruben and Mar-

golin).[11] Otherwise, Cov(yij, via)=0.

5 p. and p. p.=—p.20

{standard statistical assumption and empirical simu-

are constant and

lation results: adopted from Schruben and Margolin
[11]).

6. Covi{vy, Cu)=0"ve if i=k and j=! (homo-
geneity of control variates-response covariance
across design points and replicates), Otherwise, Cov
(v, Cia)=0.

7. Covicy)=2¢, for i=1, 2, «--, m and j=1, 2,
-++, 2k (homogeneity of control variates covariance
structure across design points and replicates),

8. Covlcy, cq)=O0sxs for ik and j=/ (indepen-
dence of control variates across design points and
replicates),

Assumptions 3, 4 and 5 are adopted from
Schruben and Margolin,[11] and the other as-
sumptions are the same as those in Section 3.1,
Under these assumptions, we identity the condi-
tional distribution of y given C, where y=(y}, ya,
, ym) and C=(c, ¢ **, cm)".
Since this extension uses the same random
number strategy as that considered in Section 3.1
at the ith design point, the variance of Yy, the
covariance of cj, and the covariance between v; and
¢y are, respectively, equivalent to those given in
(7), (8), and (9). Thus, under the joint normality
assumption of the responses and control variates,
the joint distribution of ?1 and ¢; is same as that
in (10).

Next we specify the covariance of the mean
responses between two different design points,
When y; and yy are the mean responses observed

at two design points in the same block, we find

{see Theorem 5.2 in Mood, Gravbill and Boes [7]),

COV()Z' yk)
2h 2h
= Cov( Zyu/Zh, Zyk,/2h )
f=1 {=1
2_’7_‘ 2h
20 2n ,
= [2_1 Z‘COV(YW Yi)l [ 4n
J= =1
h 2h
LN )
= Z Z[COV(Y:,Q/— v i)/ 4h"4 Covly,op Vi)l
= ;1/ = 4
Y
= { }_J[,COV(YLZJ— 1 Yigj—1) H Cov(y o _ 1 Yi2)
j=a
A
+ Z Cov(y; o -1, ¥ii)]
1#2-1, 3

h
+[ Z Cov(y;z Yua)

j=1

2
+ Cov(y, g Vigj— 1) + E Coviyia Yidl)/ 4h
1#2=1, 2

2n n
—\
= [ZCOV()’/]‘v Yig) + Z{COV(Y:,2/—1- Vi)

j=1 i=1
+ Covly,pp Yuo) - 1)}]/4/72

2
= [2hp 0y +2hp_ay) [ an? =(p, + p_)a% [ 2h

(17)

by Assumption 3. Also, for the mean response v

and vk in two different blocks, we have

Cov(y 7i) = (p, + p Yoo/ 2h (18)

Next, the covariance between y; and Cy for 1=y is
given by

2h

2n
— - N
Cov(y, c,) = COV(Ly/j/Qh , ch,/.?h )

j=1 /=1
2h 2n

=) ) Couly, c)1/an*=o. (19)

f=1=1
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by Assumption 6. Finally, we have

2n 2h

Al )
COV(E, &) = Cov( ) c,/2n, ) cu/2h)

j=1 f=1
20 2n

= [ZZCOV(CU' Ck/)]/4h2:: Osxs (20)

ERTES

by Assumption 8.

Under the joint normality assumption of the
response and control variates, from equations (7)-
(9) in Section 3.1, and (17)-(20), we find the

joint distribution of y and C as follows:

¥ xp
[Vec(E)] - Nm(s+1)[[0ms:|' E]: &

where Vee(C)

columns of C are stacked into a single ms-

denotes  the operation  that  the

dimensional vectort:

r, d,®l
- c=im | /2h (22)
2 I:oyc®|m Ec®|m ] /

where & denotes a Kronecker operation of two

matrices; and

1T—p, py4po pyrp. pubplpy b Pyt
O R R T o O e o A S
- PO Ty ppbpopybp Pyt
L Cc=a0 ] ep . 1 Vo o b
¥ o AR L i e [ A N LP U AP
PPl Pk os LD pydpl pytp. Vep LD pyhpl
[ L [N R (N o (O O] T py
- _ o _ . ; ' 2
= [(1 Ay~ Py /)_)lm'1L (/)4 + /)-»)Iml m] (Jy/Qh
(23)
From Theorem 251 in Anderson [1], the

conditional variance of y given C is as follows:

Var(y | C) =[E, — (¢’ ,c® JE®1,) (0, ®1,,)]/2h

=[E, ~ (0’ @l )NED @) 0, ®1,,)1/ 2h
=[L, = (¢', X0 ®l,) (0, B1,)] /2h

= [EY - (dlyczz1ﬂyc®lnw)] /2h

= [E,~ 0", 200, ]/ 2h

== py=pp = p i+ (py + NN

B 2
—ag,a yc}.c a),cl,n] gy / 2h

=[(1=py~py—p_~ R,
+(py +p MUY o)/ 2k

= Yl + 511, (24)

where Rye is the muldple correlation coefficient
between vy and ¢y A sufficient condition for the
cquivalence of OLS and WIS estimators is that the

dispersion matrix in (24) is representable as

Var(y | C) = X[ 11X +262+6%In, (

oo
o
~

where z is an {mX1) vector such that z’X=(),
and [ 1], 8. and ¢® are arbitrary (see equation (63)
in Rao [10], and cquation (3.6) in Schruben and
Margolin (11]). Clearly, the covariance matrix in
(24) 1s of the form in (25) since

Vary 1 €)= (1= py — p, — p_ — Rl Am/ 2h

+(py 4 p)0IXG, X'/ 2B (26)
where Gpyy 18 a ((p+1)><(p+l)) matrix whose
first row and first column entry is | with all other
entries (. The OLS estimator of B¢ in (4) is given
by

B i€ = XX X1, ~ CEPE) TP, (27)

Taking the operation of variance on (27) gives
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Var(fig | C) = (X'X)'x'[1,, — C(C'PC)'E'P)

Var(y | C)t,, — PC(C'PC) T IX(X'X)",

which is developed into, by substituting for Var

(yIC) with (24),

Var(fs | ©) = y(X'X)'X'[1,, — C(EPT) T P]

{1, — PC(C'PC) T Ix(X'X)" T+ 8(X' X)X’

(I = C(C'PTY TP 1" [ 1, — PC(C'PT)™
CIX(XX) (28)

The first term in this equation reduces to

yX' X)X, — C(C'PC)'C'P[I,, — PC(C’

PC) T IX(X'X) ™ = y(X'X) 7 + y(x'X)7'X'C

(CPCyTx(xx)”" (29)
since X’P=PX=(. After some computations, the

sccond term is equivalent to

s(X'X)7'x'[1,, — C(C'PC) TP, I (1, —
PC(C'PC) T IX(X'X) ™" = 56, | (30)

{see the proof in Appendix). Substituting (29) and
(30) into (28), we find the conditional variance

of Bg, given C, as follows:

Var(fg | ©) =y[(X'X)™" + (X'X) "X’ C(E'PC)™"
CXX'X)"'14 66, , (31)

Since the least squares estimator B¢ is an unbiased
estimator conditionally on C, the unconditional

variance of /}G is given by

var(fig) = E[Var(fig | C)]
=ym—p—2)/(m—p—s—2)XX)"

+6G,,, (32)

(see the proof in Appendix A).

4. Example

We applied Combined Method I developed in
Section 3.2 to a hospital resource allocation model
[11] for an illustration of implementation. We
present  the

experimental  performance of this

variance reduction technique.
4.1. Description of System and Model

Figurc 1 shows the operation of the hospital unit
in rerms of patdent paths and types of resource (see
Figure A in Schruben and Margolin [11]). The
hospital unit consists of three tvpes of resources
that are devoted to specialized care! intensive care,
coronary care and intermediate care. Patients arrive
at the hospital unit according to a poisson process
with an arrival rate of 3.3 per day. Upon entering
the hospital, 75% of the patients need intensive
care, and 25% nced coronary care, The service time
distribution at intensive care is lognormal with mean
3.8 days and standard deviation 3.5 davs, that of
coronary carc is lognormal with mean 3.8 davs and
standard deviation 1.6 davs. After intensive care,
27% of the patients leave the hospital and 73% go
to the intermediate care unit, Also, completing the
coronary care, 20% of the patients leave the system
and 80% go to the intermediate care unit.
Intermediate care stay for intensive care patients is
distributed lognormally with mean 15.0 davs and
standard deviation 7.0 days. Finally, the length of
intermediate care for coronary patients is distribured
lognormally with mean 17.0 days and standard
deviation 3.0 days. When the patients request
admission to special care units which arc unavail-
able, they can not be accommodated and balk from
the system,

The hospital administration now considers con-
struction of a new facility to provide better service

to the patients. The administration’s decision is



CHEE CHE AIS0[M 230 CHEH Zarauety 1

Table 3. Experimental Design Points in 2° Factorial Design

Experimental Number bf Beds Nru(ﬁt‘)é’r Bf Eieds 7 NumberorB'eds
Destgn Pomt (Imensrve) (Coronary) {Intermediate)
| 1 1301 {0 150-1) 7
! 2 3¢-1) h(-1) i
! Boch 1 , 13\ 1 H-1 1701 \
3 150 1) 41 1wl
4 15010 H1) 15010
| 3 130-1) 401 17D
| f 1301 G S5i-1)
! Block 2 N 1 1 (1( Lol
7 1501 {1 150-1)
3 Il g 17D i
\ o ‘l interacrions. Their simulation results showed that
! 01 ’ two factor interaction eficets are negligible, Based
{

application of Combined

Intensive g U . 1 .
e }WN on these results, in o the
(175/ . o .

| Paven 0 e Method I ro this model, we consider a linear

L oEe Inermedate P S -

| — . oa Care ; model consisting only of the overall mean response
\ . "’ ¢ T | . o

!‘ 02 \{Ccumm 1 and all main cffects.

i Care . . . H

! ——~—~'I \\ In simulating  this model, we used the single

- cait

N

standardized control varmate of interarrival time of

the patients ©osysTem s
Flgure1 Hospital Resource Allocation Model patients o the system

a, (l)
complicated by conflicting interest of several groups ey = {a,(0) (5‘/ 1)/ on (33)
because no one knows how the numbers of cach /-J

rype of bed will affect the frequency wirth which

To help where g4 and oy are the known mean and standard

the patients can not be accommodated.,
resolve rhis contlict, a statistucally designed simula- deviation of the service time at station &1 si(j==

«o (1)) are the random observations of the

tion experiment s conducted.
:
Margoln (11]

problem to investigate the simulation efficicncy of

Schruben  and illustrated rthis interarrival times of the patents at the 7th design

point and jth replication? and ay(t) 1s the number
their correlation mduction strategy. For estimating of observarions of sy during the simulation the

the effect of the number of beds of cach type to simulation time ((, t) (see Wilson and Pritsker

the failure rate of the patients, they implemented a [167). The interarrival times of the patients to the
2% factorial design: three tactor variables (three svstem would be independently observed at each
types of beds) having two levels for cach facror, level of the factor variables (service rimes at the

The experimental conditions for the eight design
points in the 2° factorial design are given in Table
3. They also proposed a lincar model which includes

an overall mean and all main effects and pairwise

three hospital unirs) since we use different number
streams  for driving the arrival process ot the
patients to the system, Thus, we can assume that

this control variate is independent of the three
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factor variables. Including this control variate to

the linear model of the factor variables, we have

-3 . - .

(34)

where v is the average failure rate (the response
of interest) at the ith design point: By is the
overall mean; By is the main cffect of the jth factor
variable (number of the specialized care beds)] xy
is 1 (-1) if the jih factor is at the high (low)
level for a design point 1 (b_v a reparemeterization
of the factor variables): ¢ is the mean control
variate at the zth design point: and &% is the crror
for the ith observation, Clearly, the (8X4) design
matrix X={xy;) given in (34) admirs orthogonal
blocking into two blocks, We partitioned the cight
design points of the design marrix X into two
blocks: the first block includes the design points
1-4, and the second block includes the design points
5-8 (see Table 3).

A single replication at each design point uscd
eight separate random number streams for driving
eight stochastic model components 1o the assign-
ment rule in Table 2 {note that we use one control
vatiate of interarrival time). Within a paired
replications at each design point, (a) the first
replicate randomly selected eight random number
streams, but (b) the second replicate randomly
selected random number stream 1 (used for driving
the interarrival process), and used the other streams
antithetic to those used in the first replication for
driving the non-control stochastic variates, Across
the design points, this method used independent
random number streams for generating the interar-
rival time process (control variate), but employed
the Schruben-Margolin random number assignment
rule for driving the non-control variates stochastic

mode]l components.

Jeh replication, Also let o= ¢y, ¢y, -

We coded this model in SLAM [| and conducted
200 replications at cach design point. One replica-
tion conststs of simulating the svstem for 1500 days.
To reduce the initial bias, we collected the necessary
statistics after a warm-up period of length 300 time

units,

4.2, Experimental Results

We computed the performance statistics ot the
D-value (determinant) of the estimated covariance
matrix of the parameters, and the variances of the
cstimators  for the parameters obrained by rhis
method., Let 24 be the number of replications at
o, vg)” be the

response vector of the eight design points for the

cach design point and vi=(vy,

-, cgy)’ be the
vector of control variates corresponding to vy The
adjusted mmean responses for the cight design points
are given by

y(6) =y~ ac (35)

- 2h

where v=3", vi/2h is the mean response vector at
the cight design points, ¢=(c,, ¢, =+, Cg)’ is the
mean vector of control variates at the cight design
points, and « is the least squares estimator of the

linear model in (34), given by
& = (€'Pe) e’ PY. (36)

covariance matrix of the

Thus, the

responses at the eight design points is estimated by

adjusted

-~ 2h
S = ), & = FENy,R)
— @) /(zh 1) (87)

where vyj{a@)=y;—ac;. Given the control variates,

the sample covariance matrix of Sg is given by
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Coviay = (X'x)"‘)(’sy(;”X(X’X')"1 (38)

Using the computational procedures mentioned
above, we obrained appropriate  statistics,  We
summarize the simulation results: (a) Table 4 gives
the sample correlation matrix of the responses at
the cight design points, (b) Table 5 provides the
estimators for the parameters 3, and (c) Table 6
presents the covariance matrix of the estimators for
rhe paramcters, and its D-values,

4.3. Inferences
The correlation coefficients between two adjusted
ditferent

0.74.

comparing to the induced correlation matrix of the

cither in the same block

from (.5&%

responses Or

blocks are in the range to In

Schruben-Margolin - method  (sce  the simulation
results in Tew and Wilson [14] and Tew [13]),
difficulr

correlation matrix structure (cqua} correlation be-

It seems  more to  obtain  the assumed

tween the rwo responses) in applving this method.
This resuJt indicates that the assumptions on the

cqual correlations between the rwo responses in

cither the same block or different blocks (As-
sumptions 3 and 4 in Sccion 3.2) need the

analytical and empirical validation although similar

assumptions of Schruben and Margolin [11] are

Table 4. Correlation Matrix of Adjusted Responses

generally accepred. We conjecture thar this is due
ro the use of independent random number streams
for driving the control variare across design points
wheih reduces the synchronization effect of random
aumber streams in applying rhis method, However,
this method vields positive correlations berween any
two controlled responses with values not much less
than those induced the

by Schruben-Margolin

mcthod for the responses in the same block.

5. Conclusions

In reducing the wartances of the estimarors for
the paramceters, Combined Methods | and 11 focus
on reduction of the vartnces of the mean responses
at each design point by applving antithetic variates
control  variates Combinced

and simultaneously,

Method 1 addinonally tries ro take advanrtage of
the Schruben - Margolin method by inducing corre -
lations between anv two responses in the design
after the control variate effect has been accounted
tor. In applyving the Schruben-Margolin method, the
magnitude of the correlation  coefficient between
two responses in the same block is critical ro the
efficieney of this method in reducing the variances
of the estimators tor the mam (interaction) effects
of the factor variables, When synchronization of the
rendom number the

streams 18 casily  achieved,

Schruben-Margolin method may show good per-

Y1 ) Y Y3

o 1.000 0.634 0584
‘ v 0.634 1000 0.709
oy 0.584 0.709 1.000
I 0.624 0.657 0.680
s 0.617 0.637 0567

0642 0741 0672

Y 0611 0.706 0.699

(1601 0.730 0.667

Ya

624

0.607
(1680
1.006
0.617
0.619
(1547

(1644

Ys - Ys ;Aj
0617 0,647 (1611 0601 |
0,637 (1,741 0.706 0.730
0.567 (1672 0.699 0.667
0.617 0619 (0,597 0644 |
LO00 0718 (1.664 0729
0713 1000 0.734 0.699
{1664 0.734 1060 0.698
0.7

0.698 1.000
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Table 5. Estimators for Model Parameters

Parameter Combmed Method H j
B, 45.588 i
B, -0.309 !
B, -0.384
A 1.809

Table 6. Covariance Matrix of Estimators for Model

Parameters
Combined Method [l @ D-Value = 1.922% 10"
- 5, A 8 g |
‘ A, 0.3255563 0 080371 0.0063543  0.003804% ‘
B 0.0080371 10210071 0.0017162  0.0030887
1 M, 0.0063543 0.))1/162 0.0170880  0.0040829
[ 5, 0.0038048  0.0030887  0.0040829  (.0181698 i

formance in estimating the model parameters, For
the case that an effective set of control variates can
be identified and synchronization of the random
number streams is difficult to achicve in the model,

Combined Methods may yield good results.
Appendix
Proof of Equation/16;:

Theorem 2.4.3 in

marginal distribution of ¢ in (10) is given by

From Anderson  [1], the

€ ~ N0, T /2h). (A1)

Since ¢ (i=1, 2,

Assumption 5 in Section 3.1, we have

-+, m) arc independent bv

C ~ N, (0, L /2h, 1) (A2)
and

C'PC ~ W(m~-p~1, T /2n). (A3)

Since C(LJ2h)™ ~ N, (0, 1,, 1) from (A,),
we have
E[C(Z/2n) T = s, (Ad)

{see Theorem 17.6a in Arnold [2]).
Theorem 17.15d in Arnold [2],

Also from

E[(C'PC) " )=[2n/(m —p—s—2)]L]

fm>p—-—s5—-2 {A5)

Since the matrix P indicates that P is a symmetric
and idempotent matrix with rank (nl—j‘)—l), P is
a positive semi-definite matrix(see Theorem 71.7.1
in Gravbill [4]).

independent  since

Graybill [4]).

In such a case, CX and CPC are
PX=0(sec

Therefore, by {A5),

Theorem 4.5.1 in

E[X'C(C'PC) 'C'X] = E[X'CE[{C'PC) " }C'X)
=[1/(m~p—s-2)] E[XTE J2h)'TX),(AB)

which further reduces to

E[X'E(E'PE)"E'X] ={1/(m—p—s—2)]X

(stp)X =[s/(m —p—~s—2)]XX (A7)

by (A4). Therefore,

pectation on (5) finally vields

taking the operation of ex-

Var(Be) = E[Var(Be | ©)] = o2 /25 (1 ~ p, — R%)

XX)7 (14 s/(m=—p—5—2}XX)XX)"]
= ’75/2’5 (1 *‘py“’qyzc)

[(m-p-2/(m—p—s=2)]{xx",

(A8)

which is equivalent to(16)
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Proof of Equation (30):

{.

since PX=XP=(), Developing

Note that 1y is the first column of X and PX=

Theretore, we have

(A9)

the second term in

(38) gives

)‘\'

0,

where Gpyy is as defined in (26).

SXX) X! [|,n ~ CICPC)C R (L,
PC(C'PCY c XXX = an'X)"x‘m

—cieee)'eP, 1, PCCPC) !

t (’((‘ P(’,) C p1m1 ran<C PC) C‘)X(X'X)N

= SOUX) X1 X (XX (A10)
{A9). Since X is orthogonal, X'1m= =(mi, (),
which 1implies

X1 1%, = MG, ¢, (A11)

Thus we have

XX) X XXX = m T mPG,  om T
=Gy (A12)
Substitution (A12) into (AL0) finally vields (30).

Proof of Lguation (32)°

distribution ot € in

Theretore,

(21)

(21) is same as given in (AZ).

From equations and (22}, the marginal

using the same procedures in (A3)

(A7), we find

Thus,

E[X'CICPT) 'C'X] = s/0m~p—s—2)]XX.

(A13)

taking the operatdon of expecration on

(31) vields

Var(fg) = E[Var(fig | ©)) = »(X'X)"’

[T+s/{m-~p-—s-

£ \’( m-—-p- 2)/ (,7‘) - ) 8

24X XX XY }eoG

1

= 2)Xx)”

-+ (SG'H,

which is cquivalent ro (32),

1]
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