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Application of Variance Reduction Techniques
in Designed Simulation Experiments*

% g
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{ Abstract

We develop a variance reduction technique in one simulation experiment whose purpose is to
estimate the parameters of a first-order linear model. This method utilizes the control variates obtained
during the course of simulation run under Schruben and Margolin’s method (S-M method). The
performance of this method is shown to be similar in estimating the main effects, and to be superior
to 5-M method in estimating the overall mean response in the hospital simulation experiment. For
the general case, we consider that a proposed method may yield a better result than S-M method
if selected control variates are highly correlated with the response at each design point.

1. INTRODUCTION

The variance reduction techniques of common random
numbers and antithetic variates have been used successfully
in simulation experiments that are designed to estimate an
hypothesized metamodel of the mean response of interest and
levels of the input factors set by the simulation analyst,
(Discussions of these two variance reduction techniques are
given by Bratley, Fox and Schrage [1] and Taw and Kelron
[5].) Schruben and Margolin showed thar, for first-order
metamodels, the method of common random numbers across

all design points in the experiment vields superior estimates

of the unknown parameters of main effects in the relationship
to the method of conducting all simulation runs with
independent, and randomly sclected randon number streams,
Furthermore, they exploited the random number assignment
rule which uses a combination of common random numbers
and antithetic random number streams across all design points
in a simulation experiment tor first-order relationship whose
design matrix admits orthogonal blocking into two blocks,
Their assignment rule is superior to the use of common
random numbers alone, and that of independent random
number streams when we estimate the parameters for the

main effecfs, However, in estimating the overall mean
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Schruben and Margolin’s method (S-M method) may not be
better than the independent streams for a certain case, The
requisite assumptions as well as performance evaluations for
their assignment tule have been documented by Schruben
[11] and Tew and Wilson [13].

Also in simulation experiments, the method of control
variates has been sucessfully applied to reduce the variability
of the estimator of the mean response [1,4,7,10]. This method
tries to take advantage of correlation between the response
of interest and control wvariates (concomitant variables)
obtained during the course of simulation run and to
counteract the unknown variability of the estimator for the
mean response of system, Thus, we consider the way of using
an useful information of observed contol variates in keeping
with the benifit of blocking of S-M method.

As Schruben and Margolin noted, the efficiency gain of
their method highly depends on the induced correlation
between two responses in the same block. Also the simulation
efficiency of the control variates method is determined by
the correlation between the response and a set of control
variates, Typically the control variates are observed indepen-
dently on each setting of factors in the factor space. Therefore,
in effectively using the control variates under the S$-M
method, the key issuses are how to adjust the responses with
the control variates and whether the adjusted responses show
the similar cotrelation structure as the S-M method yields,

In this research, we propose a new method applying control
variates to S-M rule in order to improve the simulation
efficiency of the S-M method. We investigate conditions
under which this method may vield better results than the
S-M rule with respect to the unconditional variances of the
estimator for the parameters of interest, We also explore the
simulation efficiency of a proposed method through the

simulation experiment on a selected model.
2. BACKGROUND AND NOTATION

In this section we provide the statistical framework
necessary to formlly define a simulation expetiment and its

associated simulation model. Usually the goals of simulation

study inculde either a determination of the settings for the
input factors (experimental design points) that yields an
optimal value of the system response or an understanding of
the relationship between the response and the settings of input
factors over the region of interest in the factor space. We
consider simulation studies consisting of m design points and
we run simulation n times at each design point. We let vy
be the observed response from the jth replication at the ith
design point. Also we let v; be the mean response of the ith
run, For the ith design point, the values of p interesting
factors are specified by the design point %1 = (xp, Xp..,
ip) in the p-dimensional factor space.

In this paper, it is assumed that the relationship of the
mean response to the factor settings is linear in unknown
parameters, If we run a simulation m experimental points,
the mean response at each desin point can be experess as

follows:

Vi = /jo + ﬁlxhy + /J,zsz + .+ ﬂpX[p + EI,i = 1y
2, ., m, (1)

where ) is the model parameter, and & is the error term,
That is, the selection of m such experimental points constitutes
the traditional experimental design. We now define the {mx
(p+1)) design matrix X having a left column of 1's and
clement (ik+1) equal to x. Then the linear response model

in (1) is given by
y = X8 + e, (2)

where V= (yy,Va..,ym)’ is the vector of observed mean
responses, B = (B B, .., Bo) is a vector of unknown
parametets and &= (&,&,...,6n)" is a vector of random errors,
It is assumed that &'s are 11D N(0,6%/n) for all experimental
points, By a reparameterization of the factor level, the design
matrix X may be chosen as an orthogonal matrix in the

experimental design [121.
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3. S-M METHOD

In computer simulation, an experimenter can control over
the random number streams that drive a simulation model,
The selection of streams of random numbers completely
determines the simulation output. We let the random number
streams ry denote the sequence of the random numbers having
the uniform distribution U(0,1). Assume that the simulation
model requires g such random number streams to drive all
of its stochastic components for a single replication at cach
design point. Also let Ry be the set of g random number
streams for the ith replication: Ry={ty,tp,.. tig) (i=12,...,
n).

When two replications are made with independent streams
either at the design points or within each design point, two
responses have zero correlation. If we use the common
random numbers for the ith replication at two design points,
a positive correlation of £y is induced between two
observations of the responses [1,11,12]. On the other hand,
using the antithetic set of streams for the ith replication at
two design points induces a negative correlation of P_
between two observations of the responses [2,5,11,12],

For the first order linear model in (2), Schruben and
Margolin exploited the random number assignment rule which
uses a combination of common random numbers and
antithetic streams in a simulation experiment designed to
estimate the parameters 8 when the design matrix X admits
orthogonal blocking into two blocks. For the ith replication,
S-M rule uses (a) the same set of random Ry across all m,
design points in the first block, and (b) the same set of
antithetic random number streams (1-R;} across all m, design
points in the second block (m=m+m,). Under the
assumptions that (a) induced correlations P, and pP_ are
constant, and (b) o4 = -p_ > (, the covariance matrix of

the mean responses y=(yy,Ys,...ym)’ is given by

1 ey 8o p_p_  p
[)+ 1 p+ P—— ’0' p‘“
RPN 2 I R R
Covly) = avinlyy v o 1 b i op
poop_ e py ] -
R SN S Y SR
:tf;’,/n [P +p )XGX 2+ (o, +p )2z )2+ (1-p.)
Iml (3)

where G is a (p+1hx(p+1) matrix whose first row and
first column entry is [ with all other entries 0, and z is a
{mx]) vector whose first m, elements are 1’s and remaining
m, elements are -1's {see equation (16) on p.245 in [12]).
For the dispersion matrix given as above, it is known that
the ordinary least squares {QOLS) estimators of 2 in (2) and
the weighted least squares (WLS) estimators are identical
{see equation (63) in [9]). Schruben and Margolin [12]
showed that the covariance matrix of estimator for 4 is given

as follows

Cov(B) = d%n (oL +p2_)G2 + (1-p)(XX)].
4)

With respect to the design criterion of D-optimality, Schruben
and Margolin's assignment rule (S-M rule) yields the OLS
estimator of £ with a smaller D-value than the assignment
of (a) one common random numbers to all design potats,
ot (b) a different streams tc each design point for the ith
replication under a certain condition, respectively, However,
comparing the covariance matrix of the estimators indicates
that S-M method may yield the greater variance of estimator
for B, than independent streams for a certain case,

As we see the equation {4), the efficiency gain of $-M
method highly depends on the induced correlation £
between two reponses in the same block. Thus, to be effective
in applying the control variates method in conjuction with
S-M method, we are concetned (a) whether the correlation
between two adjusted responses in the same block is reduced

or not, and (b) how effective the controls are in reducing
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the variance of the mean response of each design point.

4. APPLICATION OF CONTROL VARI-
ATES TO S-M RULE

During the course of simulation run, often we can obtain
the concomitant variables (control variates) which are
strongly correlated with the response of interest at a little
additional cost. Typically, controls are observed independently
at each of the levels of factor variables during the experiment,
and the mean of each control is known, We let ¢y be a vector
of s controls corresponding to yi; and ¢f be the (sx1) mean
vector of cy's (j=1,2,..,n). When the length of the simulation
run is sufficiently large at cach design point, it seems
reasonable to assume that the mean response vy, (i=1, 2, ...,
m) and s mean control vector ¢; (i=1, 2, ..., m) have the
(s+1)-variate normal distribution: (y, )’ ~Nsy ((py,
te), =), where
~ 1[0‘2, a.

nio s | 5)

> Ve zc

oyc is a covariance between y and ¢;; and Z¢ is a covariance
of ¢ [4,7,111.

Under this assumption, we try to counteract an unknown
deviation of (yrﬂy,) by substracting 2 known deviation (¢;-
#te) from v, That is, the adjusted response of the ith design

point is given by
nla) = yi - ayle ), (6)

where @) is a coefficient vector of controls. The value of a;
which minimizes Var(yi(a;)) is known to be a;=3"ayc,
and the resulting variance is Var(vi{ay)) = (1-Ryc’)d?,
whete Rye’ = 070"y Se Tove[4].

Thus the adjusted responses yi(a;) (i=12...,m) across m
design points have the m-variates normal distribution, Also
conditing on the controls, the adjusted mean response at each
design point is an unbiased estimator of the mean response
[3]. Therefore, similarly as we assume the linear response

model of (2), the adjusted mean responses can be written as

th.e linear model given by
v(A) = X8 + &, (7)

where y(A) = (Y1<‘1’1), yg(a’g), rees ym(a'm))’ and €* is a vector
of error terms,

Since the S-M rule uses the commom random numbers to
drive the stochastic components of the simulation model for
the factor setting in the same block, it allows the same
controls for the design points in the same block, That is,
the observation of the mean control variates across the m

design points for the n replications is given by

€1 3}
C2 €
4 = le = (4] ,
4
lewl 27
¢
Com M4y

where the first m; design points are in the first block, and
the second my( =m-m,) design points are in the second block.
The controls of two design points in the different blocks are
negatively correlated. Thus a covariance structure of the
adjusted mean responses is quite different from that of the
mean resposnes obtained by S-M rule directly. To identify
the covariance of y(/\), we first estabilish the relationships
between the response and controls, and between controls

across the design points and replicates as follows:
Property 11 Homogeneity of tesponse across replicates,
Var(yy)= 6% for i=1, 2, ., mand j=1, 2, ., n,

Property 2: Homogenciry of response COVATIances across

replicates in ecither the same block or the different blocks,

pbo'f for design points i and k
in the same block,and |=1
Covly; vyl = p_o’  for design points i and k
in the different block ,and =1,
0, otherwise.
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Property 3! Homogeneity of tesponse-control covariances
across replicates in ecither the same block or the different
blocks, and independence of the response and control variates

observed on different replicates,

o, for design points i and k
in the same block, and j=1
Cov(y; ¢) = §o,.% for design points i and k
in the different block, and j=1
a0, otherwise.

Property 41 Homogeneity of control variates covariances

across design points and replicates,
Coviey)= S fori = 1,2, ., mand k = 1, 2, ..., n,

Property 5 Homogeneity of control-variates covariances
across replicates in cither the same block or the different
blocks, and independence of the control variates observed on

different replicates,

3, for design points i and k
in the same block, and =L
Cov(cy cy)= (2" for design points i and k
in the different block, and j=1
(@) otherwise,

Properties 1 and 2 are adopted from the asssumptions
estabilished by Schruben and Margolin [12]. Similarly to these
relationships, we estabilsh Propertics 3, 4 and 5. Under the
Properties 1-5, we consider the covariance structure of the
adjusted tesponses for the cases that the optimal coefficient
vector of control variates is known and unknown,

When the optimal value of a=3." 0y, is known, the
variance of the mean controlled response at the ith design
point given by

L3 H "
Var(y- cra) = Var{ 2yyn - 2oyefn) = X Var(yy -

j=1 J=1 j=1

cya)/n? (8)

by Property 3. 1f we develop this equation, and replace @
with S¢ 'oyc, then we find, by Property 3,

Var(y; - cra) = 2{Var(yy)- 2Cov{yy, cya) + aCov

1=t

(Cu)ﬂ’}/’“2

= D (A-20v a+aSa)’ =dy(1-Ryd)in,
=
9

where Ry’ =0"%y0ycEc oy i the multiple correlation
coefficient between yy and ¢y, This equation shows that the
response  adjusted by the control variates with known
coefficient @ has a variance reduced by (1-Ryc?) over that
given by in (3). By the Corollary 521 in Mood, Graybill
and Boes [6], the covariance between two controlled
responses of the design points 1 and k in the same block is

also given by

Covlyi-cra, yeoa) = Covlyy, vi) - Covly, cy@)
-Covlyy, c/a) + aCovlcy, clea,

(10)

where each term is develpoed as follows:

" noon

n
COV(_W, Yk) = (:()V(Zyu,"n,;ykl,‘n)z ZzCOv(yu, ,Vkl)/”n2
i=1 =1

j=U=1

= 3.Covlyy, yig)/n*= p.d%/n (by proper-

=t

ties 1 and 2): (11)

non

3 Cov

==l

" 7
Cov{vjera) =Cov{ Lyuin, Lgrain) =
f=1

j=1

(vy, ara)/n’

which reduces to, by Property 3 and replacement of @ into

this equation,

"
Cov(yrena) = LCov{yy, cya)jn® = a'ye ¢ oy [n:

i .
(12)
Similar to this equation, we have

Cov(yera) = o'ye 3 0y fn; (13)

" n

"
a Cov(ae)a=aCov( Leyn, D, cu/n) = a2 Covicy,

agla = aye'S aye/n, e )
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by Properties 4 and 5, and substitution of @ with 3 'oye.
Plugging (11)-(14) into (10) gives that

2 -1 / 2\(
Covlyicra, ve-oa) =(0, a;-av\,gzc G}-c)/"“: (oy -R™)

Uzy/"n. (15)

As we see in this equation, the covariance between two
controlled responses in the same block also decreases by the
same amount as in the variance reduction of the controlled
response in (3). If two controlled responses at design points
i and k are not in the same block, in the similar procedures

given above, we find each term in (10) as follows:

Coviypw) = PAaf,/n {bv Property 2): (16)
n

Cov{yyea) =2 Covlyy, cwa)n? = oy S oy n
j=1

(by Property 3): (17)
n

Cov(vieea) =2 Cov(yy, cyalin® = oy S oy, /n
7=1

(by Property 3): (18)
ﬂ"C()V(C], Ck)a’ = 0Oy Ec_‘Ec*Zcﬁl Oye /n

(by Properties 3, 4 and 5). (19)

Substituion of cach term in (10) with equations (16)-(19)

vields

Covlyrreraye-a/a)=(p.0% - 20y/Sc0%ye + oye'Sct
Ec*zcvlﬂyc)/ﬂ: ay(p_ - Rive)/n,
(20)

where R*yczﬂizy(zﬂyc'zc_lo'*yc - Uyclzc_lzc*zc_ldyc)- The
term 0% R%c can be interpreted as a difference between the
covariance of the two responses and that of the two responses
adjusted by the control variates when there exist the
correlations among v, ¢;, vi, and ¢, For the case of a single

control variate (s=1), the term R’y can be written as

R'e = oyPacH20vc0%ve - ovc(-Pooct) o™ } = 20yc

Pyt BePycts (21)

where Pyc is the correlation coefficient between yy, and cy;
P've is the correltion coefficient between vij, and ¢y which
are in two different blocks; -0 (pc)0) is the correlation
coefficient between ¢y and ¢y in two different blocks. Instead
of identifying the relationship among Py, P'yv¢ and 0
analydcally, we compute this rclationship based on the data
set obtained from the simulation run given the example. The
computational results show that 0'ye=pcPye. When this

relationship holds, we get
Rive = -20cPve + Pebyd = -Pepyc (0, (22)

which implies the negative correlation between the two
controlled responses in the two different blocks is reduced
by approximately Pefyc® for the case of a single control
variate,

We now consider the covariance matrix of the controlled
responses across the m design points, From equations (9),
(15) and (20), if we divide the covariance matrix by the
variance of the controlled response in (9), then we obtain
the covariance matrix of the m controlled responses as

follows:

Cov(y(A))=(1-Ryc®)o%y/n

q Coy
g g g r 1 v (23)
I R R

\q g ¢ v 7 i1
where y(A)=y-Ca, r=(p,-R¥%)/(1-R%c) and q=(p_-
R've)/(1-R%c). This covariance matrix can be written in

another form given by

Cov(y(A))=(1-Ry’)oy’/n [(t+q)XGX'/2 + (r+q)
22 + (1-t)In], (24)

where G and z are defined in (3). For a dispersion matrix

having the above pattern, the weighted least squares estimator
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X' Xy(A).

Taking the variance operation on the estimator of S and

for B is equal to the OLS estimator: A= (X
substituing Cov{v(A)) yields

Cov{f)= X)X Cov(y(A))X(XX)™!
-=ay(1‘Ryc)(x X (r+q)XGX 2 + (r+q)
222 + (1-1)pX(XX)"
=a%(1-Rye)n [(r+q)G2 + (1-0)(XX)"]
since X'z=2zX =(), Substituiton for r and q in (23) into the
above equation finally gives
Cov(B) = o%(l- Red)n [{ler - Re)/(1 - Rec’)
(P_ - Ryc")(1-Ryc?)IG2
(L= (o - Ry - Ree)HXX)™ ]
= a5[ie. + p) - (Red'+Ree'NIGI2 + (1-
P )(XX)7,

+ +

Q

whete R'ye =0y {20y S 0" ye-0ye' 2 2" 2 0ye). Com-
paring this equation with equation (3), we note that the
variances of (8, /3,....0p) are same as those obtained by S-
M rule, but the variance of /3y is less than that in (4) if
Ryc?+ R ) 0. Under the relationship in (22), this condition
holds for the case that s=1 since

Rve’ + R've = Flye = Py’ = (1-Pc)pye* ) 0. (26)

We next consider a more practical situation that the optimal
value of @ is unknown, In this case, we have to estimate it
by its sample analogue, That is, for the ith design point, we

estimate it by

a :ic(i) ;)'C(I) (27)

1

n N n

=% ey o) {ey e)f(n-1) and o ;)= 2 (yy-

7= y 7=1

yi) (e c)f(n-1).

where S o)

Then the adjusted mean response at the ith design point is

given by

vila )= (v-a/e). (28)

It is known that the y,(a) is the unbiased estimator of
mean response for the ith design point and has the normal
distribution [4]. Given the control vatiates ¢, we can obtain
the sample covariance matrix of the adjusted response as
follows:

#n ~ -

SHvli) - yle)y(i) - yla)y

i=1

Conl(y(A)) =

~ N m
whee y(j)= [vl,(m) o (@), yplen ) Jady(e) =X
yi(gt )/n is the mean vector of the adjusted responses 1cro;s1
the m design points,

Different from the known case of @, it is not easy to get
the covariance matrix of the estimator A unconditionally on
the observed control variates by using similar procedutes for
obtaining the equation (25), Thus, instead of deriving the
unconditional covariance of B, given ¢ (i=1, 2, ..n), we

compute the sample covariance of the estimator,
Cov(B)=(XX)™XCor(y(A))X(X'X)™

and compare this result with that obtained by $-M method
without applying control variates. We note that for a single
design point, if we estimate the unknown @), then the variance
of its mean response is increased by the amount of (n-2)/(n-
s-2), where s is the number of control variates (see the
discussions of loss factor in [4]). Therefore, if this factor is
not negligible, the variance of the mean response at each
design point achieved by the control variates should
compensate the vatiance increasement of the estimator due to
the estimation of a; for the preference of this method to S-
M method.

5. EXAMPLE
5.1 Description of System and Model

To compare the performances of the proposed method and

the S-M method, we conduct the simulation experiment on
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the hospital resource allocation model otiginally given by
Schruben and Masrgolin [12]. (Figure 1) shows the
operation of the hospital unit in terms of patient path types
of resource (see Figure A in [12] ). The hospital unit consists
of three types of resources that are devoted to specialized
care! intensive care, coronary care and intermediate care,
Patients arrive at the hospital unit according to a poisson
process with an artival rate of 3.3 per day. Upon entering
the hospital, 75% of the patients need intensive care, and
25% need coronary care. The scrvice time distribution at

intensive care is lognormal with mean 3.4 days and standard

a new facility to provide better service to the patients. The
administration’s decision is complicated by conflicting interest
of several groups since no one knows how the numbers of
each tvpe of bed will affect the frequency with which the
patients can not be accomodated. To help resolve this conflict,
a statistically designed simulation experiment is conducted,
To estimate the effect of the number of beds of three types
to failure rate of the patients, Schruben and Margolin
considered a lincar model including a overall mean, all main
effects and pairwise interations, and implemented 2° factorial

design: three factors (three types of beds) having two levels

Intensive
Care

0.75

Patient

Coronary
Care

Exit
P
. Exit
Intermediate |
Care
Exit

(Figure 1) Hospital Resource Allocation Model

deviation 1.6 days. After intensive care, 27% of the patients
leave the hospital and 73% go to the intermediate care unit,
Intermediate care stay for intensive care is distributed
lognormally with mean 150 davs and standard deviation 7.0
days, Finally, the length of intermediate care for coronary
patients is distributed lognormally with mean 17.0 days and
standard deviation 3.0 days. When the patients admission to
special care units which arc unavailable, they can not be
accommodated and balk from the system,

The hospital administration now considers constuction of

for cach factor, The experimental conditions for the eight
design points are given in (Table 1), Their simulation results
show that two factor interaction effects are negligible,
Based on these results, we also consider the linear model
consisting only of the overall mean (/) and all main main
effects (5,8,8). We used the same simulation output
obtained by S-M method and addtionally collected a single
standardized control of the interarrival time of the patients
to the system (see the definition of the standardized control

variates in [14]), This control variate is independent of three
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(Table 1) Experimental Design Points in 2° Factorial Design

Experimental Number of Beds Number of beds Number of Beds
DesignPoint (Intensive) (Coronary) (Intermediate)
1 13C -1) 4 -1) 15( -1)
) 2 3¢ -1) 6(+1) 17¢+1)
Block 1 3 15(+1) 4 1) 17(+1)
4 15(+1) 6(+1) 15( -1)
3 13( -1) 4( -1) 17(+1)
i 6 13 -1) 6(+1) 15( -1)
Block 2 7 5(+1) 40 -1) 150 1)
8 15(+1) 6(+1) 17 -1)

factor variables since we use different number streams for
driving the arrival process of the patient to the system, The
adjusted response of interst (failure rate of patient) at the
ith design point is given by

y;(a‘-) =V ";ZCI,

where yj is the mean response observed by the S-M method,
a; is the estimator of the coefficient of the control (sce
equation (27)), and ¢ is the mean control variate, We assume
that the adjusted response, yj(a,), can be described by the

linear model as follows:

vila,) = By + By + Bpxyg + Baxg + 6,1 = 1,2,
S, (30)

where B, is the overall mean: B is the main effect of the
jth factor variable (number of the the specialized care beds) ;
xy is 1 (-1) if the jth factor is at the high (low) level for
a design point I (by a reparamerization of the factor
variables) . and the & is the error term. Clearly the (8x4)
design matrix X=(xy) in (Table 1} admits the orthogonal
blocking into two blocks. We partitioned the X into two
blocks: the first block includes the design points 1-4, and
the second block includes the design points 5-8.

We coded this model in SLAM 1l and conducted the 200
replications independently at a given design point according

to the random number assignment rule of $S-M method. We

simulate this system for 1500 days, To reduce the initial bias,
we collected the necessary statistics after a warm period of

length 300 time units,
5.2 Experimental Results and Inferences

The variances of the responses at the cight points are in
the range from 1.88 to 2.19 for the $-M method, and those
of the controlled responses for the proposed method are in
the range from 043 to 0.67. As we expected, the latter
method substantially reduces the variances in estimating the
mean responses across all design points, Tables 2 and 3 show
the sample correlation matrices obtained by two methods.
The S-M method vields the correlation coefficients in the
range from (.98 to 0.99 between responses in the same block,
and from -054 to -051 between responses in different
blocks. From (Table 3), we note that the correlations between
two controlled responses in the same block are in the range
from 0.92 to 0.98, and those from two different blocks are
in the range from -0.24 t -0.20 for the proposed method.
To explore the notion that the induced correlations are
consistent with that developed in equation (23), we estimated
the appropriate statistics: 2, =0985 and R, =-0.867.
Then, from equation (23), the correlation coefﬁcvient between
the two controlled responses in the same block is esmated
by

(PL-REINI-RE) = (0985 - 0.767)/(1 - 0.767) = 0.94,
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(Table 2) Correlation Matrix of Responses: $S-M method

Y Y2 Ys Ya Yo Yo Yz Ys
Y1 1.000 0.986 0.989 0.981 -0.540 -0.528 -0.539 -0.527
y2 (0.986 1.000 0.980 0.989 -0.540 -0.526 -0.540 -0.526
Vs 0.989 0.930 1.000 0.986 -0.525 -0.514 -0.5260 -0.513
Ya 0.981 0.989 0.986 1.000 -0.530 -0.517 -0.531 -0.518
Vs -0.540 -0.540 -0.525 -0.530 1.000 0.990 0.992 0.986
Ve -0.528 -0.526 -0.514 -0.517 0.990 1.000 0.988 0.992
v -0.539 -0.540 -0.526 -0.531 0.992 0.988 1.000 0.990
Vs -0.527 -0.526 -0.513 -0.518 0.986 0.992 0.990 1.000

(Table 3) Correlation Matrix of Responses: Proposed Method

Y1 Yz Ys Ys Ys Yo ¥ Ys
vy 1.000 0.941 0.954 0.920 -0.219 -0.230 -0.229 -0.234
Va 0.941 1.000 0916 0.954 -0.194 -0.201 -0.210 -0.209
V3 0.954 0916 1.000 0.943 -0.208 -0.226 -0.223 -0.226
V4 0.920 0.954 0.943 1.000 -0.214 -0.226 -0.233 -0.231
Vs -0.219 -0.194 -0.208 -0.214 1.000 0.965 0971 0.955
Yo -0.236 -0.201 -0.226 -0.226 0.965 1.000 0.957 0976
V1 -0.229 -0.210 -0.223 -0.233 0971 0.957 1.000 0.969
¥a -0.234 -0.209 -0.226 -0.231 0.955 0.976 0.969 1.000

(Table 4) Estimators for Model Parameters responses in the same block. However, the same sort of

conjecture is difficult to make for cotrelations between two

e S e Proposed Method controlled responses in the two different blocks since Ryc™
B, 45,722 45,670 in (23) is a complex function of the control variates and
B, -0.291 -0.290 ,
B, -0.378 0378 responses.
‘ By | -1.805 -1.805 We now compare the performances of the two methods

with repect to the sample variances of the estimators, and

(Table 5) Variances of Estimators and D-Value of the D-values of the sample covariance matices. {Table 4)

Cov(5) provides the estimators for the model parameters obtained by
two methods, and (Table 5) presents their variances and the
Parameter S-M rule Proposed Method R
D-values of the cstimators’ covariance matrix. From {(Table
B, 0472 0.200 A (a) | imating th | h
B, 0.003 0.003 >, we note {a) in estimating the overall mean response, the
A, 0.005 0.005 proposed method is superior to S-M method, and (b) in
4, 0.001 0.001 estimating the main factor effects, the performances of both
T 4 -9
D-Value 94x10 39x10 methods are similar,

This result indicates that the simulation result in {Table

3> is consistent with that given equation (23) for two
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6. CONCLUSIONS

In applying the S-M method, the magnitude of the
correlation between two responses in the same block is critical
to the efficiency of this method in reducing the variances of
the estimators for the main effects and interaction effects of
the factor variables. The S-M method inflates the vatiance
of estimator of the overall mean response when the differnce
between P4 and @_ is not small. The proposed method
focuses on reducing the variance of the estimator fot the
overall mean response by the use of control variates in the
application of the S-M rule. When the relationships between
the response and controls are known, the combined method
always yields better results than 5-M method. Simulation
results on the selected model indicate a promising evidence
that a combined method may yield better tesults than S-M
method even though we have to estimate the unknown
coefficients of control variates. For the case that an effective
set of controls can be identified and synchronization of the
random number streams is difficult to achieve in the model,
we consider that the combined method utilizing the control
variates with S-M method vields better results than S-M

method.
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