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I. Introduction

Through a controlled simulation experiment, often an experimenter is concerned
with estimating the mean response of interest from the outputs of the simulation
model. Frequently large-scale systems analysis through simulation requires
extensive experimentation with a simulation model to obtain acceptable precision
in the estimator of interest. If we can reduce the variance of the estimator of
interest at little additional cost, we can obtain greater precision of the
estimator with the same amount of simulation. In this work we propose a method
of combining variance reduction techniques for improving the estimation on the
mean response of interest,

For a single population model, usually antithetic variates and control
variates are applied to reduce the error of the estimator for the mean response.
Antithetic variates assigns complementary random numbers to pairs of simulation
runs taken at a single design point to induce a negative correlation between the
responses. If the covariance between two responses obtained by antithetic
replicates is negative, then the variance of the estimator for the mean response
is less than that obtained by two independent replicates.

In contrast to the approach of antithetic variates, the method of control
variates attempts to exploit correlations between the response and selected
control variates within a single run. Let yi and ci be the response of interest
and the (sx1) vector of control variates, respectively, obtained from the ith
simulation run with Elci]=0. In the context of performing 2h independent
replications of the simulation, the normality assumption on the response of
interest and control variates allows that the response is represented as the
following linear model:
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random numbers used for driving the Jjth stochastic component of the simulation
model at the ith replication. Also let Ri be the set of g random number streams
for the ith replication:

Ri = ( riy, ri2, ...,rig) for 1 =1, 2, ..., 2h.

We now consider the random number assignment strategy of jointly utilizing
antithetic variates and control variates for a simulation model which requires g
such random number streams to drive all of its stochastic components at a single
replication. To this end, we separate Ri into two mutually exclusive and
exhaustive subsets of random number streams, (Rit, Riz) (i=1, 2, ..., 2h ). The
first subset, Rii, consisting of (g-s) random number streams is used to drive
the non-control stochastic model components. The second subset, Riz, consists
of s random number streams used to drive the control variate stochastic node |
components.

We consider the correlated replication strategy: use antithetic variates for
all stochastic components except the control variates across 2h replicalions,
Through statistical analysis and simulation experimentation, we will explore how
this method may improve the simulation efficiency in reducing the variance of
the estimator, and what conditions are necessary for this method to ensure an
improvement in variance reduction. That is, within the ith paired replications,

this method uses (Rzi-1.1 . Rzi-1,2) and (Rz2i-1,1, Rz2i,2) where Rzi-1.1.
R2i-1.2, and Rzi,2 are sets of randomly selected random number streams, and
Rz2i-1.1 is antithetic to Rzi-1,1. Across pairs of replications, this method

uses independent streams. Thus, the ith pair of responses, yzi-1 and y21 (i=l,
2,...,h), are negatively correlated by antithetic streams through the
non-control stochastic components. However, through the 2h replications, the

control variates c¢i (i=l, 2, ..., 2h) are independently generated by the
assignment of independent streams through the control variate stochastic
components at each replication. Due to independent streams for the control

variates, the response yzi-1 (y2i) is independent of control variates c2i
(c21-1) within a paired simulation output. Based on the above discussions, we
establish the following assumptions:

1. Var(yi) = oy2, for i= 1, 2, ..., 2h (homogeneity of response variances across
replicates),

2. Coviyi, yj) = -p 0y2 (p > 0), if j= i+1 (i=1, 3, ..., 2h-1) (homogeneity of
induced negative correlations across replicates pairs). Otherwise, Cov (yi,
yj) =0,

3. Cov(yi, c¢i) = Oyc’ for i=1, 2, ..., 2h (homogeneity of control variates
response covariance across replicates), and Cov(yi, c¢j) = 0%, for i =],

4. Cov(ci) = %, for i= 1, 2, ..., 2h (homogeneity of control variates
covariance structure across replicates), and

5. Cov(ci, ¢j) = Oaxs, for i = j (independence of control variates between
replicates).
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Yy = dylzn + Ca + ¢ (H

where y= (y1, vy2, ..., yz2n)’, l2n is a (2hxl) vector of 1’s, C is a (2hxs)
control variate matrix whose ith row consists of c¢i, gy is a parameter of the
mean response, a is a (sxl1) coefficient vector of control variates, and € is the
(2hx1) vector of error terms (see Lavenberg, Moeller and Welch 1982). The least
squares estimators of a and py in the linear model in (1) are given by,
respectively,

@ = (C°PC)-'C'Py and fiy =y -5 &,

where ¥ and & are the mean response and mean control variate observations across
2h replications, and P = Ian -~ 12nl1’2n/2h (see Searle 1971 p. 341). Under the
assumption that € ~ 1ID N(O, 02?y|c), the least squares estimator jy is an
unbiased estimator for uy. Lavenberg, Moeller and Welch (1982) showed that the
unconditional variance of uy is given by

Val"([ly) = (2h - 2)/(2h - s - 2) (- R.ycz)()yz/zh, (2)

where Ryc?=0y"20yc 'Zyc~'0yc 1is the square of the multiple correlation
coefficient between yi and ci. They defined the quantity (2h-2)/(2h-s-2) as the
loss factor due to the estimation of the unknown parameter a in (1), and (
1-Ryc?) as the minimum variance ratio which represents the potential for
reducing the variance of the estimator by the control variates. Thus, the
efficiency of control variates is measured by the product of the loss factor and
the minimum variance ratio.

In this research, our main interest is to combine these two correlation
methods that utilize correlations between simulation output either within a
single run or across different replications in one simulation experiment for
improving the estimation of the mean response of interest. Suppose that through
correlated replications of simulation runs, we get a reduced variance of the
estimator for the mean response and yet maintain the same correlation between
the response and control variates as those obtained under independent
replications, Then it is conjectured that we may take advantage of both
antithetic variates and control variates together in one simulation run, and
reduce the variance of the estimator further than by applying either antithetic
variates or control variates separately.

Based on this conjecture, this research focuses on developing a method Ffor
combining antithetic variates and control variates for the estimation of the
mean response of interest. For this purpose, we consider a method of utilizing
induced correlations between: (a) the responses of interest, and (b) the
response and a set of control variates obtained by an appropriate assignment of
random numbers streams through the replications, and try to improve upon the
simulation efficiency of the control variates method.

11. Simulation Efficiency of Combined Method
In computer simulation, random number streams that drive a simulation model

are under the control of the experimenter and completely determine the
simulation output. Let the random number stream rij denote the sequence of
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Under these assumptions, the variances of the mean responses and mean control
variates within the ith replication pair, ¥i1 = (yzi-1 + yzi) /2 and ©i = (coi-1
+ ¢21)/2 are given by, respectively,

Var(yi) = (1-p) o0y2/2, and Cov(Gi) = /2.
Also, the covariance between ¥i and Gi is given by

Cov(¥i, ©i) = Cov(yzi-1 + y2i, C2i-1 + C21)/4 = Oyc /2.

Thus, the joint normality assumption of the response and control variates gives
the joint distribution of ¥i and Ti as follows:

Vi | Hy (1-p)oy?2 0 yc
" Ne+t , 1/2 (3)
[ | 0 Oyc Ze )

Consequently, Vi, given €1, is normally distributed with expcctation E[F:i|®:1] =
Hy + a€i and variance

Var‘(?ilal) = [(l-p)Oyz - ch'zc_l ch]/z = 712/2. (4)
(see Theorem 2.5.1 in Anderson 1984), As with the case of the linear
relationship in (1), the vector of the mean paired responses, vy, can be
represented as the following linear model:

¥ = pyln + Ca + &%, (5)
where C is a (hxs) control variate matrix whose ith row is ¢’i. Regression anal
ysis on this linear model yields the controlled estimator for the mean response
as
fiy = 1'a[¥ - TE*Q)1TQF1/h = 1’6[In - T T'QRO 1T QIF/N,

where Q@ = In - 1n1’n/h. Given C , taking the operation of variance on the above
equation yields

Var(ity|C) = 1/h2 1°n[In - C(C'QC)-1C’QIVar(¥[C) [1In- (T’ Q)-1T’ 11w

Since (¥i, ©i) of the ith pair of simulation output is independent of that of a
different pair of replications, from equation (4), we have

Var(yiC) = [(1 - p)oy2 - Oyc Ze~10yc]In/2 = T121n/2.
Substituting for Var(¥|C) into Var(fy|C) gives
Var(fly|C) = 712[h + 1’sC(C*Q0)-1T’ 1n1/(2h2), (6)

since Qln = 1°h@ = 0. From the result of (3)_and assumption 5, the (hxs) random
matrix C has the matrix normal distribution: C ~ Nn,e(0, Ia, £c/2), where O is a
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(hxs) matrix of zeroes. Thus, by definition of the Wishart distribution (see
Section 17.3 in Arnold 1981), C (2c/2)-1C" ~ Wn(s, In) and, by Theorem 17.7a in
Arnold (1981), the (sxs) random matrix (C’QC) follows the Wishart distribution:
(C°QC) ™ We(h-1, Sc/2) since Q is an idempotent matrix with rank (h-1). We note
that (1°xC) and (C’QC) are independent. Thus, the expectation of the conditional
variance in (6) can be written as

Var(fly)=E[Var(fly|C) 1= 7(2/(2h2)E[h+1’sC E[(T’QC)~1] C'1n]. (7)
Theorens 17.6a and 17.15d in Arnold (1981) give, respectively,
E[C%c/2)-1C’] = sIn, and E[(C’PC)~1] = [(Zc/2)"t/(h-s-2)] if h > (5+2)
Therefore, plugging the second equation of this equation into (7) finally yiclds
Var(fiy)=112/(2h2) [h+hs/(h-s~2)] = oy2/(2h)x(1-p—Ryc2)x(h-2)/(h-s-2), (8)

where Ryc is the multiple correlation coefficient between yi and ci (i=l, 2,
.» 2h). This result indicates that the minimum variance ratio of this method
is (1-p-Ryc2), and the loss factor is (h-2)/(h-s-2).

ITI. Comparison of Combined Method and Control Variates Method

We compare Combined Method developed in the previous section and the nmethed of
control variates with respect to the unconditional variances of the estimators
for the mean response, and summarize these results. A comparison of equatinns
(2) and (8) yields that Combined Method is better than the control variates
method if

(1-p—Rye?) (h-2)/(h-s-2) < (1-Ryc2?)(2h-2)/(2h-s-2)

As shown in this equation, the loss factor of combined method is greater than
that of the control variates method. Hence, for preference of the combined
method to the control variates method, the minimum variance ratio of the
combined method should, at least, compensate for an increase in the associated
loss factor. As we see, the effects of antithetic variates and control variates
to the minimum variance ratio for Combined Method is represented by an additive
form in reducing the variance of the estimator for the mean response.

IV. Examples

We conducted a set of simulation experiments on a system to evaluate the
performance of the variance reduction techniques considered earlier. We offers
brief descriptions of a system and the methods used to simulate it.

Figure 1 shows the port operations model (see p. 197 in Prisker 1986). A port
in Africa is used to load tankers with crude oil for overwater shipment. The
port has facilities for loading as many as three tankers simultanecously. The
tankers, which arrive at the port according to a uniform distribution with range
[4, 18] hours, are of three types The relative frequency of the various types,
their loading time requirements, and their distributions of loading time as

131



follows:
type relative frequency loading time(hours) distribution

1 0.25 [16, 20] uni form
2 0.55 [21, 27] uni form
3 0.20 {32, 40] uni form
Regular
0.25 y Tanker
—ppo{ Tanker 1 Departure
Regular
Tanker .
Arrival 0.55 Oil
| —pp-{ Tanker 2 H-{—P~| Berthing Loading —=-1Deberthing
0.20 1
Tanker 3 Hi{
Contract
Tanker
Contract Tanker J

(a) Tanker Arrival and Port Operation Segment

Storm Departure
Arrival of Storm

Port e S et

(b) Storm Segment

Figure 1. Port Operations Model

There is one tug at the port. Tankers of all types require the services of
this tug to move into a berth, and later to move out of a berth. When the tug
is available, any berthing or deberthing activity takes about one hour. Top
priority is given to the berthing activity. A shipper is considering bidding on
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a contract to transfer oil from the port to the United Kingdom. He has
determined that 5 tankers of a particular type would have to be committed to
this task to meet contract specifications. These tankers would require [18, 24]
hours, uniformly distributed, to load oil at the port, After loading and
deberthing, they would travel to the United Kingdom, offload the oil, and return
to the port for reloading. Their round-trip travel time, including offloading,
is estimated to be [216, 264] hours with a uniform distribution. A complicating
factor is that the port experiences storms. The time between the onset of
storms is exponentially distributed with a mean of 48 hours, and a storm lasts
(2, 6] hours, uniformly distributed. No tug can start an operation until a
storm is over. Before the port authorities can commit themselves to
accommodating the proposed 5 tankers, the effect of the additional port traffic
on the in-port residence time of the current port users must be determined. It
is desired to simulate the operation of the port over a two-year period (19,280
hours) under the proposed new commitment to measure in-port residence time of
the proposed additional tankers, as well as the three types of tankers which
already use the port.

The port operations model includes nine stochastic components to which nine
separate random number streams are assigned. Direct simulation and antithetic
variates, respectively, use the same assignment rules in selecting a set of nine
random number streams through the replications as before. In using the control
variates method, seven possible standardized control variates present themsclves
(see the definition of standardized control variate in Wilson and Pritsker 1984a
and 1984b). That is, inter-arrival times of tankers of three different types
which are already in the system, oil loading times of each tanker (three regular
types tankers and tankers on a contract), round trip travel times of tankers on
a contract, and duration of storm. We collected six control variates except. the
storm duration control variates since we expected that the frequency of storm is
low and its in-port residence time is small. Table 1 shows the correlation
matrix between the four responses of interest and the six collected control
variates obtained by 200 independent replications. Based on this table, we
employed the three control variates of interarrival times of tankers already in
system and oil loading times of tankers of type 1 and 2 for implementing the
three combined methods.

Table 1. Correltion Matrix between the Responses and Control Variates

Ci Cc2 C3 C4q C5 Cé

vyt -0.689 0.133 0.288 -0.049 -0.029 -0.040
y2 -0.675 0.113 0.278 -0.039 -0.015 -0.038
ys  -0.639 0.108 0.252 -0.040 -0.028 -0.033
vy4 0,698 0.114 0.267 -0.059 -0.011 -0.042

Combined Method employs (a) the same assignment rule as direct simulation for
the first replicate within each pair of replication, and (b) a set of nine
streams, those that correspond to the control variates (streanm 1, 2 and 3) are
randomly selected, and the others are set antithetic to their counterparts in
the first replication for the second replication. However, across the pairs of
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replications, each of these methods randomly selects a set of nine random number
streams. We coded this model in SLAM II and conducted a simulation of this
system 200 times for each method. Each method simulated the model for 21090
hours, and collected statistics after clearing data for the first 1000 hours to
reduce the initialization bias.

V. Experimental Results

This section provides a summary of simulation results obtained by employing
antithetic variates, control variates and the combined method to the port
operations model. To provide an assessment of the efficiency gain obtained by
each estimation method, we calculated performance statistics of the percentage
reduction in variance and width of a nominal 90% confidence interval for each
applied method. .

Tables 2 and 3, respectively, summarize the results on percentage reductions
in variance and 90% half-length confidence intervals for each responsc of
interest (control variates used the three most effective ones). In romputing
the efficiency of control variates method, regression analysis on all siv
control variates indicates reduction in variance for each response of interest
in the range from 40% to 50%. When we chose the three most effective control
variates (ci, ¢z, c3) in Table 1, regression analysis showed an incrcment of
reduction in variance for each response by around 3%,

Table 2. Percentage Reduction in Variance

Estimator Antithetic Contol Combined
(Sojourn Time in port) Variates Variates Method
Tanker 1 51.63 53.23 60.06
Tanker 2 51,16 50.37: 56.80
Tanker 3 45.90 44,55 50.10
Tanker on Contract 54.00 53.03 61.15

Table 3. Percentage Reduction in 90% Confidence Interval

Estimator Antithetic Contol Combined
(Sojourn Time in port) Variates Variates Method
Tanker 1 29.70 31.61 36.10
Tanker 2 29.37 29,55 33.55
Tanker 3 25,66 25.54 28.58
Tanker on Contract 29.21 29.31 35.58

Based on the simulation results of this model, we provide inferences in
applying variance reduction techniques as follows: (a) antithetic variates and
control variates reduce the variance of the estimator for each response im the
range from 45% to 55%, and their performances are similar; (b) the efficiency
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gain of Combined Method shows the additive effects of antithetic variates and
control variates, and reduces the variance -of each estimator more than
antithetic variates and control variates in the range from 5% to 8%, and the 90%
confidence interval in the range from 3% to 6%;

VI. Conclusions

From the simulation experiment on the selected model, we note that (a)
Combined Method shows the additive effects of antithetic variates and control
variates in reducing the variance of the estimator, and (b) the performance of
Combined Method was better than those of control variates and antithetic
variates,

In combining antithetic variates and control variates, we used a strategy
using independent streams for driving the control variates, We may use an
antithetic variates for driving the control variates for the case that
synchronization of random number streams is easily achieved in the nndel.
Generally, for a complex model, an effective set of control variates is small,
Also, the marginal effect of including one more control variate is very small
when there is a strong correlation between a set of control variates already
used in the system and the control variates to be added (sec the discussion of
Beja 1967). Thus, the combined method which is based on using the effective
control variates and additionally trying to reduce the variance of the estimator
by the correlated replicates may yield better results than applying either the
control variates or antithetic variates separately for a complexmodel when the
number of replications is not small. We expect this result may be uscful in the
design of a large-scale simulation.
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