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Control Variate (CV) is very useful technique for variance reduction in a wide class of queueing
network simulations. However, the loss in variance reduction caused by the estimation of the
optimum control coefficients is an increasing function of the number of control variables. Therefore,
in some situations, it is required to select an optimal set of control variables to maximize the
variance reduction. In this paper, we develop the Adaptive Control Variates {ACV) method which
selects an optimal set of control variates during the simulation adatively. ACV is useful to maximize
the simulation efficiency when we need iterated simulations to find an optimal solution. One such
an example is the Simulated Annealing (SA) because, in SA algorithm, we have to repeat in
calculating the objective function values at each temperature. The ACV can also be applied to the
queueing network optimization problems to find an optimal input parameters (such as service rates)
to maximize the throughput rate with a certain cost constraint.
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1. Introduction

Even though simulation is the most widely used technique
of operations research in building and running detailed
models of complex, real-world systems, it is in general
computationally intensive. Therefore, numerous variance
reduction techniques (VRTs) have been developed to improve
the efficiency of simulation experiments. A comprehensive
survey of VRTs is given in Wilson (1984) and Nelson (1987).

We are particularly interested in one VRT, called control
variates (CVs). The basic idea for the method of CV is to
take advantage of correlation between specified CVs and

responses of a stochastic simulation. Suppose we can identify
a I X g vector of concomitant random variables € = (C,,*--,C q)
that are generated by the simulation and that have a known,
finite expectation ¢ = E[C] as well as a strong correlation
with the response variable ¥ whose mean 6 = y, = E[Y]
is to be estimated. When using the method of CV, the
unknown deviation Y- E[Y}=Y-6 is predicted as a linear
combination of the known deviation C - #, . Thus we have
the controlled response

YCV = Y‘ ,B(C‘ #C),’ (l)
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Where £ is a I Xq vector of control coefficients and the
notation A’ means the transpose of a row vector A. Since
B is constant, Yy is an unbiased estimator of . Let
0yc = Cov(Y,C) denote the IXgq vector of covariances
[Cov(Y,Cl),-'-,Cov(Y,Cq)] and let 3¢ = Var(C) denote the
q X q variance-covariance matrix of C , where we assume
that X is positive definite. Lavenberg et al. (1982) showed
that the variance of Yy is minimized by the optimal control
coefficient vector

ﬂ = Uchél. (2)

If o yc is not known, we have to use a sample estimator of
B8 as follows :

B =SycSe. ©)

where Syc and S, are sample estimators of ¢y- and X,

respectively. We also denote S at the inverse matrix of S.
The CV estimator of & based on the random sample

WY,C):i=1,+.n} of size n is then defined as

o) =Y-B(C-ue) ', 4

where ¥ and C are the sample means of the {Y;} and { C}},
respectively. If each vector (¥, C;) has a joint multivariate
normal distribution and 7 ) g+2, then & -{n) is an unbiased
estimator of ¢ with variance

2
7y

Var[ 0 ofn)]= —= (1 -Rye) (5

n-2
n-q-2 n’
where Ryc= 0y S¢ 0 ye! 0y is the squared coefficient of
multiple correlation between Y and C(Lavenberg et al. 1982).
The product of the last two factors on the right hand side
of (5) is the minimum variance obtainable if § were known.
The term (1-Ryc) is often called the minimum variance
ratio. The factor (n-2)/(n-gq-2) represents the amount
by which the variance is increased when S is unknown and
is estimated by the method of least squares. This is called
the loss factor. Equation (5) yields the net variance ratio,

which is the ratio of the variances of the controlled and
uncontrolled estimators of the mean response.

Since the loss factor is an increasing function of g, we
have to find an optimal value of ¢ to prevent inflating the
variance. More specifically, the following issues arise in
seeking to minimize the variance of the controlled simulation
response:

(a) What is the optimal size (dimension) g of the vector

of CVs?

(b) Which CVs should be in the best subset of all

candidate CVs?

Currently, there are no general answers of these questions.
However, many authors have contributed to provide some
analytical solutions in simple cases and some rigorous
experimental results in more complex situations. Question (a)
has been addressed by Rubinstein and Marcus (1985) and
Porta Nova and Wilson (1993). Question (b) has been
discussed in the simulation literature by Lavenberg et al.
(1982), Nozari et al. (1984), Afonuevo and Nelson (1988),
and Bauer and Wilson (1992). Their ideas are described in
Section 2.

In this paper we propose a method of adaptive control
variates (ACVs) that selects an optimal set of control variates
adaptively during iterated runs of a simulation model. Using
the procedure of ACV, we develop an algorithm to handle
both questions (a) and (b) simultaneously. The simulated
annealing (SA) algorithm provides an excellent domain for
applying the proposed ACV procedure since SA requires
iterated simulations to seek optimal input parameters to
minimize the expected value of a selected response function.
In this case, effective VRTs are critical to reduce the large
number of simulation replications generally required by the
annealing procedure.

This paper is organized as follows. In Section 2, we discuss
about the control-variate selection problem. In Section 3, as
a building block of the ACV we introduce work variables
(WVs) and explain why we select WVs among other control
variables. In Section 4, the ACV procedure is formulated
and we evaluate the ACV method by doing some
experiments. Finally, in Section 5, our conclusions are
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addressed.

2. The Control-Variate Selection Problem
2.1 Optimal Number of Controls

In generzl, finding the optimal number of control variates
to minimize the net variance ratio 1s difficult to implement
analytically, Rubinstein and Marcus (1985) and Porta Nova
and Wilson (1993) considered the situation in which a p-
dimensional response Y vector and a g-dimensional control
vector C jointly have a covariance matrix of the form

5y | 5

. (6)
Sre | Ze

For the scalar-response case (p=1), Rubinstein and Marcus
derive analytically the optimal size of the vector of control
variates. For the multiresponse case (p)1J, the numerical
results of Rubinstein and Marcus show that substantial
variance reduction is achieved when the number of control
variates is relatively small (approximately of the same order
as the number of unknown parameters).

Porta Nova and Wilson (1993) also discussed the optimal
selection of control variates for simulation experiments in
which the objective is estimation of a multiresponse
metamodel-that is, a regression model of the mean response
expressed n terms of design variables that are relevant to
the system being analyzed. Based on the same assumption
(6) about the form of the covariance matrix, they derived

the net variance ratio as follows:

Ton-m-g-1!

n-m-1 imP } q7 Lo PY m (7
(g-Dy+1 (p-Dy+1l >

where m is the number of design variables and p is the

number of response variables. Recall that n and ¢ are the
number of independent replications of each design point and
the number of control variates, respectively. If both m and
p are set equal to one, then we have

gl ®
This is the case that was treated analytically by Rubinstein
and Marcus (1985). Hence, given the values of n and 7,
we can find the optimal size of ¢ to minimize 7.
However, in general, the covariance malrix does not satisfy
{6) so that we cannot use (8) and have to rely on
experimental results to select the optimal size of the control
variates. Porta Nova and Wilson concluded, based on their
analysis of the repeated-measures random-effects covariance
structure {6) and of an autoregressive covariance structure
that frequently arises in econometric and time series
applications, that as a function of the number of selected
controls, the efficiency of the controlled point estimator is
often relatively insensitive in the neighborhood of the optimal
number of controls.

2.2. Optimal Subset of CVs

When we have ¢ available control variates, the total
number of possible subsets of control variates is 2%
Therefore, an exhaustive search method is not considered in
general because of its complexity and inefficiency. Funival
and Wilson (1974) applied a branch and bound algorithm
to find the best subsets of independent variables in a
regression model without examining ail possible subsets.

The forward stepwise regression procedure and its
variations are also used to select the best subsets of control
variates by Lavenberg et al. (1982), Nozari et al. (1984),
and Afionuevo and Nelson (1988). A limitation of the
forward stepwise regression search approach is that it
presumes there is a single “best” subset of independent
variables and seeks to identify that subset. However there is
often no unique “best” subset. Another limitation of the

forward stepwise regression routine is that it sometimes
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arrives at an unreasonable “best” subset when the indepen-
dent variables are very highly correlated. See pages 454-459
in Neter et al. (1990) for a detailed discussion of the forward
stepwise regression procedure. Furthermore, for multiresponse
simulations, Bauer and Wilson (1992) proposed control-
variate selection criteria that minimize the mean-square
confidence-region volume. However, their selection criteria
have to be calculated for all possible subsets of CVs to
identify the best one.

3. Introduction and Selection of Work Vari-
ables (WVs)

In a queueing network, the typical random variables that are
related to the system sojourn time are service-time variables
and multinomial routing variables. Lavenverg et al. {1982)
defined work variables by combining (that is, taking the
product of) these two types of random variables. They
showed experimentally that the minimum variance ratio,
(1-Ryc), for a control vector composed of work variables
was substantially smaller than the minimum variance ratio
for a comparable control vector composed of service-time
variables alone or routing variables alone (they called these
latter controls “flow variables”): moreover, the minimum
variance ratio for a control vector of work variables was
approximately the same as for the comparable combined
control vector of service-time and routing control variates.
In their experiments, Bauer and Wilson (1993) also showed
that using both standardized service-time and routing
variables is superior to using only standardized service-time
variables. However, no theoretical explanation has been given
for why work variables tend to achieve larger increases in
efficiency when estimating the mean response of a simulation
in comparison to the efficiency increases obtained with other
control variables.

In this section, we compare two candidate control variates,
which are standardized service-time variables (STVs) and
standardized work variables (WVs). Standardized STVs were
introduced by Wilson and Pritsker (1984), and standardized
routing variables (RVs) were proposed by Bauer and Wilson

(1993). The standardized work variables proposed in this
paper are fundamentally different from the (unstandardized)
work variables originally proposed by Lavenberg et al. (1982)
in the following way: for a large class of regenerative
queueing networks, the proposed standardized work variables
asymptotically possess a multivariate normal distribution with
a known, nonsingular covariance matrix. Moreover, the
standardized work variables defined for different service
centers (nodes) of the queueing network are asymptotically
independent. The (unstandardized) work variables of Laven-
berg et al. (1982) do not have such asymptotic behavior. In
this subsection we establish these key properties of our
standardized work variables.

Suppose the service-time process at service center k in a
queueing network with J service centers is the 11D sequence
LUK : 1= 1}, where #, = E[ U/(k) Jand ¢ = Var[U{k) ]
respectively denote the mean and variance of the service
times sampled at service center & for k= 1,---J. Let a(k)
be the number of service times that are completed at center
k in the period [0,t]. A standardized STV is then defined as

Jako (k) - p,
V0= Ltk T L5 for k=1, ©)
=1 k

Given a regenerative queueing system in which the
asymptotic sampling rate at service center k is

a, = lima(k)/t) 0 with probability one for & = [+, J,
fgaded)
Wilson and Pritsker (1984) showed that the vector V(z)

= (VD VD ]

converges to a J-variate normal distribution with mean vector

of standardized service-time variables

0, (the JxI vector of zeros) and covariance matrix I; (the
JXJ identity matrix),

Vi LN, (0, 1) as 1>, (10)

Similarly, a standardized RV at service center k can be
defined for each destination service center m to which a
customer can be routed probabilistically after departing
service center k. In general, at service center k there are
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v (v, = 1) nonzero routing probabilities {p(k,m) : mED;}
corresponding to the destinations of customers departing
center k, where

Y plk,m)= U

meD,

and for each of these destinations there is a standardized
routing control of the form

N dkd [ {km) - plhm)
S k) [ 1 - plem) ] plkm))

foomeD, 1 <k<,

where /(k,m) is an indicator variable such that /{km)= 1 if
the /th customer departing from service center k is routed
to service center m, and I{km)=0 otherwise. Notice that
the routing control variable R, (s) is only well-defined at a
service center for which v, = 2; and in this case we define

D,° = D,-max{m:plk,m) )0}

to be the set of v,-1 service centers in D, obtained by
arbitrarily deleting the largest service-center index in Dy
If at service center k we define the vector of routing controls

R =[R,():meD, |,

then Bauer (1987) proved that R(r) has expected value
0,1 the (v-1)x 1 null vector ; moreover, Ry(t) converges
in distribution to a multivariate normal distribution

Rk(t) "D’N‘,k'l (0v‘_]’ ZR(/()) as t— 0, (11)

with (v,-1) X (v-1) asymptotic nonsingular covariance
matrix 5 gy with (m,s) element

1, if m=s,
plk,mp(k,s)
[1-plk,m) ] 1-p(k,5)]

(2 keIms { }”3, ifmss,

for m,s € D, . By combining the basic ideas of standardized
service-time controls and standardized routing controls, we

can define the v, X | control vector

of standardized work variables at service center k, provided
v, 2 1, where
0 UL (km)- 2 Pk m)
RIS bl el il
[a(k,t)] E.‘ (‘)(k, m) s
0, if alk)=0
for me D and 1<k <J,,and

if alk)0,

ka(f) = (] 2)

6 (k,m)= {Var (U] (km)] )
= E[UWEkm)) - E (UL (k)] }"
= |E [UXK)] El k)] - BLUSOTEYI (km)]}
= {(aie p3) plhom) - pipkm) |
= p k) o3+ w3 [1-plhym)] 1"

The formulation of & (k,m)} follows from the assumption that
the Ith service time, Ufk), and the associated routing
indicator, 1{k,m), are sampled independently of each other
and of all service times and routing indicators for previous
customers,

For a regenerative queueing network with J nodes (service
centers), the following theorem establishes the asymptotic
behavior of the standardized work variables having the form
(12).

Theorem 1. If (i) for each service center k with v, = 1,
the service time Uj{k) has a probability density fy, () for
all u eR'(1 <k <J); and (i) each service center k with
v, 2 | has a nonzero asymptotic throughput rate so that

lim alk,n)/t= a,» 0 with probability 1
t-+0

(1 <k <1/J), then for each service center k with v, = 1,
we have

W(t) 2N 40y, 3 ) as 1> 0,

where the (m,s) element of Sy, is given by
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1, if m=s,
(Swihas= § _ sipthoplhs)
0km 0k,s)’ tm=s

for all m,s€D,. Moreover, if we define

B={k:1<k<Jandvk =1}

and if we take
J
V= v,
k=1

then the work vectors W(r) and W,(s) defined for two
different service centers k and h (hk € B) are asymptoti-
cally independent so that the overall vector of work variables

W =[W(: ke B]
is asymptotically normal
W) N0, Sy) as t— o,
with the biock-diagonal covariance matrix
Sw=diag| Xy k€ B

Proof. See Lee(1995). ©
Using multiple linear regression in matrix terms ati ith
simulation run, we assume that have

Y= gty BV 14 €@ where € U~N(0, 7)) {13

so that the corresponding controlled response is
Y\ = v gV 1) 7 and similarly we can take

Y(i)z Myt /gw(w(i) - M W)/+ & (vgv

. (14)
where ¢\ ~ N (0, 03)

so that the corresponding controlled response is Yx) =Y. 8 W
; , : () .
(w. My, where ¢ (“,) and ew are residual vectors

whose probability distributions are assumed to be normal

with zero means. Let 0%, and ¢% be the variances of 6(",)

and 6;’3 , respectively, for all i=ng n+ 1,0 where
1y » q+2 (g is number of controls used). Since E{Yv] = E[Yw]
= #ty=E[Y], both Yy and Yy are unbiased estimators of
K, where

n

= Ll ) = Iow
Yv— EYV I'n, Yw- ZYW In, Y=2Y"/In,
i=1 i=1

i=1

Since
Var{Yy]= 0}=(1-R},) 0} where Ryy= 04y Sy 0w/ 93,

Var[Yyl= 03 = (1-R}y) 0} where Riw= 0y 2y yw

/o3,
it is well known that Var[Yy] < ¢} and Var[Yy] < 03,

However, Var[Y,] and Var[Yy] are difficult to compare
analytically. We claim that WV is more effective than STV
in terms of variance reduction of the simulation response
estimation. In order to prove this claim, we have to show
either

Var[Yy] = Var(Y ] (15)
Var[Yy]

Relation (16) can also be rewritten as

2 ’
Ryy  Byo'yy

LA A< (17
Ryw Bwd'yw

However, it is not possible to show (17) without knowing
exact values of the control coefficient vectors By, By and
the covariance vectors 0y, ©yy. Therefore, in order to
check experimentally the significance of the difference in
effectiveness of the two control vectors V and W, first we
perform a hypothesis test comparing Ryy and Rjy ; and
then we perform simulation experiments involving both
control to provide some numerical evidence to substantiate
the claim (17).
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3.1 Hypothesis Test for Multiple Correlation Coeffi-
cients

For the hypothesis test and the experiments, we considered
a simulation model of the machine repair system shown in
Figure 1. This queueing network could be used as a building
block for more complex models of production lines, machine
repair systems, multiprogrammed computer sysiems, elc.
Center 1 is the main operating center for the machines, which
are supposed to break down independently with rate A for
each machine. Initially, there are N operating machines and
M spare machines. Whenever a machine breaks down, it is
sent immediately to one of the service centers 2, 3,---.J based
on the type of machine failure, where a failure of type m
2. J. After
completion of the required service at the selected center k

occurs with probability pflm) for m =

with rate 1/ £, the repaired machine will be sent back to
the main operating center where it will either go back into

operation or it will go into the pool of spares. It is obvious
that this type of queueing network has the regenerative
property and that the hypotheses of Theorem 1 are satisfied.

To do the hypothesis test for comparing Ry, and Ry,
we considered two types of control vectors V= (V, V)
and W= (W,vz,---,WI ). From each simulation run, both STV
and WV data sets are sampled using the following formulas:

Vi) = [a(k,t)]'ma(g’) ULU‘)#A

=1 Ty
kT

0'_,\ _____________ or k=2, J,

and

. .1/,2“(k~’)Ul(k)11(k,m)- M kp(k,m)
ka(t) = [a(k,t)] El @(k,m)
1alk)) [(Valk) S UMK (km)- 1 pUem)

Pk 73 2 1plkm)])

0

Center 1

O____*

Center 2

O"’”—’

Center 3

O.___.

Center J

Figure 1 : Closed queueing network of machine repair system
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for2 <m < Jand k= 1.

Let ¢ be the number of control variates used (here, g =
J - 1. Input data used for sampling are J = 9 (g = 8)
service centers, N = 20 machines, M = 5 spares, and the
branching probabilities to centers 2, 3,---,9 are given

run is 1,000 time units, and the data collected for one fourth
of that time (that is, the first 250 time units) is cleared to
remove the initial-condition bias. The time units in this
experiment are hours.

Next, some finite number of simulaton runs, n*, is selected

1.0
0.9 +
1y 0.8
e
e S
=2
OC
@
o 0.7 4
0-6- ‘\‘ cenaw®® -”-’...~~~~........--
0.5 Pt 1 1r « v 111t 1P 17T 1T 1T 1 17 & 7 U 1§ 1
O O O O O O O O O O O O O O O OO O O O o O
— N M < 1D O~ O OO O N O WO OO0 O O OO O O
™Y v~ N AN M < 1N © O i O W o
- ~ N N ™M
REPLICATIONS

Figure 2 : Selection of stabilization point for IAQ’W and R§w

respectively by

p(1,2)=0.27, p(1,3)=0.18, p(1,4)=0.15, p(1,5)=0.12,}
p(1,6)=0.10, p(1,7)=0.07, p(1,8)=0.06, p(1,9)=0.05

The rate A for each machine breakdown is 1.0 so that the
time to failure for each machine is randomly sampled from
an exponential distribution with mean #,=1.0 time units; and
the repair time at service centers 2,---.J are randomly sampled
from an exponential distribution with mean x,=0.2 time
units for m=2,3,---,J. The simulation ending time of each

at the point where a stable esimate of Ry is reached. To
do this, we used the SAS procedure “reg” to compute
estimates R} for different numbers of runs. Figure 2 reveals
that a stable estimate of Ry, is obtained with "= 300
independent runs. This is insured by the p-values because
the p-values of all regression coefficient estimators §,, for
m = 2, -, J, are less than 10™ for both V and W when
n’=300. This means that all control variates significantly
contributed to both regression models when n" = 300. Thus,
10 independent sets of 300 simulation runs are sampled and



Variance Reduction via Adaptive Control Variates (ACV) 99

regressed; and the resulting 10 estimates of Ry, and Ryy
are displayed in Table 1.

Therefore, the total number of simulation runs is 3,000
(= 10X 300). From Table 1, the t-statistic for the average
of the differences B3y, -R}y is 8835 (=i 10 X0.06172/0.02209),
whose p-value is less than 0.0005, which is significant at

Table 1. 10 independent estimates R@v and Ry,

Est. # R, R R Ry
1 0.5879 0.6481 0.0602
2 0.6287 0.6633 0.0346
3 0.6400 0.6815 0.0415
4 0.5601 0.6727 0.1126
5 0.6022 0.6715 0.0693
6 0.5789 0.6347 0.0558
7 0.6239 0.6747 0.0508
8 0.5838 0.6719 0.0881
9 0.6303 0.6772 0.0469
10 0.6156 0.6730 0.0574
Mean 0.60514 0.6686 0.06172
Std.Dev. 0.02519 0.01379 0.02209

the level @ ¢ 0.0005 for 9 degrees of freedom. This shows
that W yields a larger multiple correlation coefficient than
V in the given stochastic system.

3.2 Experimental Results for the Controls V and W

In order to compare the actual efficiency of V and W as

control vectors, we conducted a macroexperiment that
consists of m microexperiments; and each microexperiment
consists of »n independent replications of the simulation. Let
Y;; be a response of interest from the ith replication in the
jth microexperiment (i = /, -+, n and j = /,---,m), and let
C;; denote the correqpondmg vector of control variates such
that Ci,j"[ S ,”

controls used. Let V = [V

], where ¢ is the total number of
i Vigg)
of service-time control variables accumulated over the
simulation time ¢, and let W=[W, W, ] be the
corresponding work control vectors. Then, again, we consider

be sample mean vector

two types of control variates as follows:

ifr

Wi when WV is used.

V. when STV is used,
CiJ: {

The variances of the point estimators were estimated as
follows. On the jth microexperiment (j = [,---,m), we have
the mean responses and estimates of control (regression)

coefficients as follows:

where
Sie=(n-1)' SLY, T )C ), (18)
§¢ =(n-1' 32.(C,-C)(C, ), (19)
and
(SYT=(n-1)" LY, ¥ ) (20)

for j = I,---,m. Then, the jth controlled mean response is
Y{B)=YB{Crue) forj = 1m @

and the variance of the controlled mean response in the jth
microexperiment is estimated by

(SYCISET'ISYer lrf—qf-i

= Var[Y JO-[RYy 12)* 2

n-q-2
[SU)]Z
vy [ (]\ ] )

Then, an internal estimator of the variance of the controlled
mean response is the average of the sample variances of the
form (22) computed across the m microexperimenis as
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follows:

12—
Var,m)[Y(,B )] = EZ Y L8 )]
=
However, without the normality assumption on the response
and the controls, it has been found that the internal variance
estimator tends to underestimate the true variance of the
controlled mean response Yj( I j). In other words,

N —
E{Var(im)[Y(ﬂC)]l < Var[yj( /gj)],

with equality when the response and the controls have a joint
normal distribution. This was also found in Lavenberg et al.
(1982).

Therefore, we also consider an external variance estimator
to compare the efficiency of the two candidates V and W
for the control vector C:

@(ext)[Y( Bc)]= ;;,l_'l_ g[?j( /§])'7( B\)Is
]:I
where
7B -1574)

e

The external variance estmator is based on a macroexperi-
ment consisting of m 11D microexperiments, each with n
simulation runs; and this is unbiased estimator of Var{Y( 8 ol
such that

N —, A —, A
E{Var  [Y( BN} = Var{Y( B ).

Now, we will compare the following two variance estimators
of the controlled responses:

A A
Var[ ] V/a((m)[Y( /9 V)] and
Var[YWV] = Varg, [Y( Bw)].

To do these experiments, the closed queueing network of
Figure 1 is used. One hundred microexperiments are executed
(i.e, m = 100), and the number of runs for each

microexperiment, #, is in the range 15<n<30. The rest of
the input data are the same as in the hypothesis test for
comparing R}y and Ryy in the previous section. Note that
the number of runs in each microexperiment, n, should be
greater than or equal to 11 to prevent the loss factor from
exploding. Table 2 shows the external variance estmators for

Table 2. External variance estimators and % variance reduc-
tion for different n.

n @ﬂ va\r[?stv] Va\r[?WV] VRst\X%) VA, WV(%)
15 | 07235 0.6163 0.5217 15 28
18 | 0.5295 0.3629 0.3183 31 40
20 | 0.5392 04116 0.3093 24 43
23 | 04830 0.3553 0.3028 26 37
25 | 04653 0.2457 0.1919 47 59
28 | 04514 0.2069 0.1652 54 63
30 | 03635 0.2127 0.1417 41 61

different values of n. The second column represents the
variances when no control variates are applied (that is, with
crude simulation). The third and the fourth columns are
external variance estimators based on the macroexperiments
in which the control vectors V and W are respectively
applied. The percentages of variance reduction for both V
and W are also shown in the fifth and the sixth columns
and are denoted by VR, and VR
experimental results clearly show that applying W is more

v Tespectively. These

efficient than using V in the given stochastic system.

Table 3. Externa!l and internal varionce estmators for

different n.
— PN — AN
n Va\r(e)d)[ Yol | Varieal Ywd Va\’(im)[ Yol | VarmlYwl
(%) (%) (%) (%)
15| 0.6163(15) | 0.5217(28) 0.3433(53) 0.2935(59)
18 | 0.3629(31) 0.3183(40 0.2551(52) 0.2265(57)
20 | 04116(24) | 0.3093(43) 0.2329(57) 0.1954(64)
23 1 0.3553(26) | 0.3028(37) 0.1935(60) 0.1628(66)
251 0.2457(47) 0.1919(59) 0.1766(62) 0.1540(67)
28 | 0.2069(54) | 0.1652(63) 0.1585(65) 0.1363(70)
30 | 0.2127(41) | 0.1417(61) 0.1503(39) 0.1282(65)
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In Table 3, both external (second and third columns) and
internal (fourth and fifth columns) variance estimators for V
and W are displayed. As we discussed earlier, internal
variance estimators (IVEs) are smaller than the corresponding
external variance estimators (EVEs) in all cases in this
experiment. The percentages of variance reduction are also
given in the parentheses for all cases. Again, the percentage
of variance reduction for W is larger than that for V in all
cases in Table 3. Note that as n increases, the IVEs decrease
monotonically and more linearly than the EVEs do. One
important observation from this experiment is that W has
more stable variance estimators than V does (see the second
column in Table 3—the EVEs for V are not monotonically
decreasing as n increases). This fact is also shown in Table
1, where the sample squared multiple correlation coefficients,
Ry, and Riy, are compared. In Table 1, the standard
deviation of 10 independent estimates of Ryy is much smaller
than that of R}y (0.01379 ¢ 0.02519). The stability of the
EVEs for W could be another advantage for using W as a
control vector instead of using V.

Based on not only the hypothesis test for the multiple
correlation coefficients but also on the experimental results,
we showed that W is a better control vector than V in terms
of the variance reduction of the controlled simulation
responses. One intuitive reason for this is that the flow
(routing) effects of the network are taken into account in
W, whereas V only takes into account service-time effects.
This flow effect is caused by the difference between the
various branching probabilities from each service center. That
is, the larger the differences that we have among the routing
probabilities from a given service center, the larger the
correlation {(between control variates and responses of the
simulation) that we obtain. In other words, if we have the
same branching probability to each service center, then the
relative effectiveness of using the control vector W will be
reduced. This flow effect of the work variable has been
explained in terms of the routing control variable in the
television-set inspection example of Bauer and Wilson (1993).
In their experimental results, the smaller the probability of
branching to the adjustor, the larger the reduction in

confidence interval length for the average system sojourn
time.

4. Adaptive Control Variates (ACVs)
4.1 Adaptive Selection of Subsets of WVs

Finding an optimal subset of control variates is most
important when a relatively small number of simulation runs
are available, because the loss factor in (5) will tend to unity
as the number of runs gets large. In the application of SA
to stochastic combinatorial optimization problems (SCOPs),
a small number of simulation runs is needed to speed up
the algorithm. That is, the smaller the number of runs we
have at each temperature while satisfying the required
precision for estimation of the mean simulation response, the
faster will be the performance of the SA algorithm. In this
case, variance reduction in estimating the mean response of
the simulation is required to reduce the number of simulation
runs.

Let Y= (YY) be the n-dimensional vector of indepen-
dent observations, where Y,i= 1,---,n, is obtained from the
ith simulation run. Suppose each observation (Y,C) is
normally distributed

where #y is the unconditional expected value of Y; Then,
give the control vectors {C;:i=1,--n}, the conditional
expected value of Y, E [Y|C,:i=1,~-n], can be written as
X0’ where X is the n X (g +I) matrix

L Gy Cy
R Cu
L1oC, Coy
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and 0 =(py, B+, 8,) is the (g+1)-dimensional vector of
unknown control coefficients. Notice that if X, the
covariance matrix of the control vector in (23) is nonsingular,
then it follows from Proposition 1 of Porta Nova and Wilson
(1993) that X has rank g+/ with probability one. Note also
that both #y and u are zero vectors in (13)—(14) because
V and W are standardized control variate vectors. Further-
more, given C,=(C,-,,-",C,-q) fori = 1,2, n, we can write

YIC,:i=l, o n~N[X 8", 03{1-R} ], (24)
where I, denotes the n-dimensional identity matrix.

Now, let oy and X, denote the covariance vector
between Y and C and the covariance matrix of C,
respectively:

a YC = COV(YIC‘) = E[(Yl- ‘UV)(C i )UC)],
EC = COV(C[) = E[(Ci',uc)l(ci‘/lc)].
Then, it follows directly from (24) that
Y; 1 €~ N(py+ BC', T2, for i=1, - n, (25

where

B=0ycZe,
T2 0% 0y Zc0 ye= 0 1Ry,

Since both oy, and X are frequently unknown in
practice, S and 7° have to be estimated. In terms of the
statistics

| ? v =
Sye=(n-1)" 3 (Y YXC-O),

i=1

| n —V —
SC; (’l' 1 )- Z (C,“C)(C,“CL

11

3=(n-1)" %(Y,—Y)Z,

we have estimates of S and 7? as follows:
B=SycS¢ s
2= 03-SycSeS'ye = o {1-Ryo).

Under the assumption that each (Y,C;) has a multivariate
normal distribution, Nozari et al. (1984) showed that given
{C;:

;.i=1,",n}, the conditional covariance matrix of the

estimator 4 of the regression coefficient vector £ is

Var{ Ay | €;i= 1,0 ]

_ n-2 AVYY' i pon.
“rqd T X'X)"if nq-20. (26)

The forward stepwise regression procedure is the most
widely used method to select the best subset of control
variates even though it has some limitations. One obvious
reason that we do not want to consider this method is its
burden of computing. In this section, we develop a heuristic
method using Student r-statistics to select a good subset of
control variates by adding a small computational burden
during the simulation.

Suppose we use g control variates from J service centers
(ie., ¢ < J). From (25), we have the conditional variance
of each estimated control coefficient as follows:

Var[ B, | C;:i=1,+n}= 0 %(B))

-2 o
= m T ~(X X)klﬂ’kﬁ (27)
if n-q-2)0, where (X'X); , is the (k+l)th diagonal
element of the inverse matrix (X'X)"' for k = 0,-+¢. Then,
we have corresponding /-statistics

By

PPN

fork=1,g4. (28)

Let 1y, be the r-statistic with the kth largest absolute value,
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S T T S

and let t, be the sum of all ¢ absolute r-statistics

q
tsumz EI I tk ’

Let R:. De the maximum estimated squared multiple
correlation coefficient that is obtained when all ¢ control
variates are used (see Fact 2 below), and let ¢ be some user-
specified constant such that 0(c- R:_ <1. Note that
c Rmax is the minimum accumulated percentage of ¢, that
must be achizved by adding additional controls to the selected
subset of controls—that is, if Cy, is the control variate
corresponding to the kth largest absolute f-statistic | 1 | so
that

Ly | 2 [yl 22 ]y,

»

begin
[1] Sort absolute t-statistics in decreasing order. Let &
1, ¢pm < 0.
Compute 1,,,,= ¥ |t land ¢« | 1 /1,
forj= I,-:-l-, q.
[2] Cumulate ¢, ¢ < ¢t Y4
[31if (¢, > ¢+ R.,) then
g — k;

=

-~

go to [4]
else
k<—k+ 1,
go to [2]
end if
[4] Take C(q) « [C(,),Cpp+Cip] and compute Ié’yc‘(q).

(5] ifQ1- A;C(q,<%‘f) then go to [6]
else
g<q-1.
go to [4]
end if
(6] Deliver g*«—g and C=Clg*)=[C,,Cp),"*,Cy)-
end

Figure 3. Subset selection procedure of the CVs

then the size q' of the selected contro]l of CVs is the
smallest k such that

p) f—l ! jL)‘ 5y
T - Rmax ;
Laum

and the selected control vector is
Clg) = [Cyy, CopC )

An algorithmic statement of this subset selection procedure
for control variates is in Figure 3.

The basic idea of this algorithm is based on the following
fact:

Fact 2. If (Y, C) has a multivariate normal distribution,
then

Ryc,coc, Z Riic, oy for k= 1,1 (29)

That is, the multivariate correlation coefficient between Y
and C, Ryc, increases as the number of control variates
increases. O

Fact 2 follows immediately from Theorem 2.5.4 of Anderson
(1984) and the definition of the multiple correlation
coefficient given on page 40 of Anderson (1984).

Note that the algorithm in Figure 3 does not guarantee
that C(q') is the best subset which gives the largest variance
reduction in simulation responses. However, if we use the
procedure in Figure 3, the limitations of forward stepwise
regression procedure can be avoided by speeding up the
simulated annealing (SA) algorithm but still having a good
variance reduction in the controlled responses of the
simulation. The SA has performed successfully as a general
heuristic algorithm for the solution of large, complex
combinatorial optimization problems. For more information
of the SA algorithm, see kirkpatrick et al. (1983).
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Table 4. Internal variance estimators when ACVs are applied.

n Var[ Varl Vi ALL) Valy,Acv VR, (%) VR ol%) ] ‘(,Z:ZV]

1 0.9429 0.5698 0.2398 40 75 1.88

13 0.8068 03435 02317 57 71 125

15 0.7020 0.2935 0.2256 58 68 1.17

18 0.5860 0.2265 0.2047 61 65 1.07
P20 0.5290 0.1954 0.1722 63 67 1.06
23 0.4536 0.1628 0.1502 64 67 1.05

25 0.4165 0.1540 0.1452 63 65 1.03

28 0.3752 0.1363 0.1309 64 65 1.02

4.2 Experimental Results Using the ACV Method

Since it has been shown in the previous section that using
W is more efficient than using V, we applied W only for
the experiments in this section. Table 4 shows the difference
in internal variance estimators (IVEs) of the simulation
responses among three cases. The number of simulation runs
is in the first column. Variance estimators without using any
control variates and using all 8 control variates are shown
in the second and the third columns, respectively. Finally,
the variance estimators computed by using the ACV method
are in the fourth column. The percentages of variance
reduction are given in fifth and sixth columns. All variance
estimators in Table 4 are obtained from a macroexperiment
consisting of 100 microexperiments as discussed in previous
section. The constant value ¢ of the ACV procedure in Figure
3 is a key parameter which is supposed to be prespecified.
In this experiment, we use the value of ¢ such that
¢ X R_=0.9 because we assume that 90 percents of R is
the most efficient cutoff-point to determine the number of
CVs. However, we found that the results of ACV can be
slightly improved by adjusting the ¢ value depending upon
R
mathematical relationship among these parameters should be
developed in the future. Note that as n increases, the

“a and the number of simulation runs. A precise

efficiency of ACV decreases. That is because the loss factor
is vanishing as n increases. In this experiment, if n > 30
the advantage of using the ACV method seems to be

Table 5 : External variance estimators when ACVs are

applied.
n Vary] VarYyAaliCVs)] | ValYyJACV)]
11 0.8817 3.1320 1.8266
13 0.7120 0.7851 0.6590
15 0.7235 0.5217 0.4367
18 0.5295 0.3183 0.3085
20 0.5392 0.3093 0.3032
23 0.4830 0.3028 0.3306
25 0.4653 0.1919 0.1965
28 0.4514 0.1652 0.1872

negligible compared to the case of using all control variates.
See the decreasing trend in the last column (Table 4), which
shows the ratio of the percentage variance reduction for the
ACV method divided by the percentage of variance reduction
for the case in which all CVs were used. Therefore, the.
ACV method is useful particularly when a high precision in
the responses of the simulation is not required.

In Table 5, we also compared the external variance
estimators (EVEs) with the same input data used in Table
4. However, there is a problem in the actual application of
ACV to the SA algorithm. That is, in order to obtain EVE
with the SA algorithm, we need a relatively long simulation
run to provide the batch means and variances to compute
EVEs at each temperature. This long simulation run at each
temperature will prevent the SA algorithm from speeding up.

Moreover, at each temperature, it is not easy to decide how



Variance Reduction via Adaptive Control Variates (ACV) 105

many simolation runs should be performed to meet a
prespecified precision. If we use IVE, however, it is easy to
decide the number of simulation runs required to meet the
precision.

Another problem for using EVE is its instability. In other
words, EVE does not steadily decrease as n increases. For
examples, see the EVEs for 18 < »n <20 in the second
column and the EVEs for 20 < n < 23 in the fourth column
of Table 5. When n = /I, Table 5 shows that controlled
EVEs for ACV (1.8266) and for the case of all CVs (3.1320)
are much greater than for the case of no controls (0.8817).
This never happens in computing IVEs because of step [5]
in Figure 3. Therefore, in the method of ACV proposed in
this paper, we recommend to use IVEs in all experiments
with an actual application of ACV to the SA algorithm in
the optimization of a queueing network simulation.

5. Conclusion

We developed a method of adaptive control variates
(ACVs) to reduce the number of simulation runs required at
each temperature of the SA algorithm. In the ACV procedure,
an optimal subset of CVs is selected automatically. Moreover,
since the SA algorithm requires iterated simulation runs in
its application to most stochastic combinatorial optimization
problems (SCOPs), variance reduction is critical to the true
optimal solution in a given queueing network system.
Therefore, the application of SA to the optimization of
queueing network simulations is an excellent example to
show how a variance reduction techmique (VRT) can
drastically improve the performance of SA in solving
stochastic optimization problems.
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