• 제목/요약/키워드: Construction volume

검색결과 1,471건 처리시간 0.03초

도로포장 유지보수 공사비산정기준 개정에 대한 연구 (A Study on Revising Construction Cost Calculation for Road Paving Maintenance Work)

  • 오재훈;안방율
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.155-156
    • /
    • 2020
  • Unlike new construction projects, road paving maintenance work shows large productivity discrepancies depending on the conditions of the worksite. The current construction cost calculation scheme, however, only provides daily construction volume categorized by work scope and scale: There are no detailed standards that can be implemented on various types of worksites. To develop standards that enable the calculation of appropriate construction costs by taking into account worksite conditions, the current study conducted on-site surveys and interviews. The on-site research and analysis revealed that location, construction width, the day's worksite lot, work scope, and construction objectives were found to cause differences in construction volume. In addition to the existing work scope and work scape variables, the current study added weight constants reflecting the daily work volume based on movement conditions at site and the size of the worksite lot. In this process, the current study found that even one type of construction project can have fifteen different levels of daily construction volume. Such detailed classification was deemed to enable the proper calculation of construction costs based on worksite conditions.

  • PDF

A Study on DEM-based Automatic Calculation of Earthwork Volume for BIM Application

  • Cho, Sun Il;Lim, Jae Hyoung;Lim, Soo Bong;Yun, Hee Cheon
    • 한국측량학회지
    • /
    • 제38권2호
    • /
    • pp.131-140
    • /
    • 2020
  • Recently the importance of BIM (Building Information Modeling) that enables 3D location-based design and construction work is being highlighted around the world. In Korea, the road map has been established to settle the design based on BIM using drone survey results by 2025. As the first step, BIM would be applied to road construction projects worth more than 50 billion Korean Won from 2020. On the other hand, drone survey regulation has been enacted and the data for drone survey cost were also included on Standard of construction estimate in 2020. However, more careful improvement is required to reflect drone survey results in BIM design and construction. Currently, Engineering instructions and Standard of construction estimate specifies that earthwork volume must be calculated by cross section method only. So it is required to add the method of DEM (Digital Elevation Model) based volume calculation on these regulations to realize BIM application. In order for that, this study verified the method of DEM based earthwork volume calculation. To get an accurate DEM for accurate volume computation, drone survey was carried out according to the drone survey regulation and then could get an accurate DEM data which have errors less than 3cm in X, Y and 6.8cm in H. As each DEM cell has 3D coordinate component, the volume of each cell can be calculated by obtaining the height of area of the cell then total volume is calculated by multiplying total number of cells by volume of each cell for the construction area. Verification for the new calculation method compare with existing method was carried out. The difference between DEM based volume by drone survey and cross section based volume by traditional survey was less than 1.33% and it can be seen that new DEM method will be able to be applied to BIM design and construction instead of cross section method.

보도용 블록포장 유지보수 공사 원가산정기준 개정 연구 (A Study on the Revision of the Cost accountingfor Sidewalk Block Pavement Maintenance and Repair Work)

  • 오재훈;안방율
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.271-272
    • /
    • 2021
  • The maintenance and repair work of sidewalk block pavement is a construction that requires a large amount of budget to be invested every year. It is important to establish an appropriate standards for estimating construction cost to ensure proper budgeting and quality. In this study, the standards for estimating the cost of maintenance and construction work for sidewalk blocks that can be applied to the construction volume classified according to the site conditions, construction type, and equipment use differentiated from new construction was established. As a result, the daily construction volume was presented by reflecting excavator and truck as equipment in the combination of paver and common worker. The re-installation was applied by separating the construction volume of sections with general blocks and induction/raised blocks based on the installation of sidewalk blocks after demolition. Generally if block cutting is necessary, the precision construction conditions using a cutting machine were taken into consideration to secure the construction quality. In addition, it has been revised to apply classified construction volume into A and B-Type depending on the park and site conditions.

  • PDF

시스템 다이내믹스를 활용한 토공량 산정 모형 구축 (A Earth-Volume Estimate Model by System Dynamics)

  • 황영조;원서경;한충희;김선국
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2006년도 정기학술발표대회 논문집
    • /
    • pp.467-470
    • /
    • 2006
  • 모든 건설공사의 기초를 이루는 토공사는 건설기계의 사용으로 오늘날까지 많은 발전을 이루어 왔으나, 공기단축 및 원가절감에 있어 중요한 요소인 토공장비의 적정한 조합시공방안이 체계적으로 정립되어 있지 않고 경험에 의존하여 수행되는 상태로 관련분야에 대한 체계적인 연구가 필요한 실정이다. 합리적인 기계화 토공은 공사에 투입될 장비의 성능 및 특성, 공사의 종류, 규모 및 주위의 여건 등을 사전에 철저히 파악해야 하며, 사용 가능한 몇 가지 규격의 장비를 선정하여 최적조합시공을 계획해야 한다. 이에 본 연구에서는 시스템 다이내믹스 기법을 활용하여 토공작업의 여러 단계 중 기계화 토공장비의 굴착 후 적재 및 운반단계를 대상으로 토공장비의 최적조합시공에 의한 토공량 산정 모형을 구축한다. 이 연구의 결과로 도출되는 토공장비의 최적조합시공모형은 토공계획을 담당하는 관리자가 토공장비의 선정에 있어 최단시간에 합리적인 판단을 하게 해줄 것으로 기대된다.

  • PDF

The Hierarchy of Images according to Construction Factors of the Flared Skirts

  • Lee, Jung-Soon;Han, Gyung-Hee
    • 패션비즈니스
    • /
    • 제13권6호
    • /
    • pp.137-146
    • /
    • 2009
  • This study analyzed hierarchy of image for visual evaluation of flare skirt. This study analyzed expression words about flare skirt with frequency data of image expression words with different length and volume of flare. Stimuli for the study were set to be 4 different volume of flare ($90^{\circ}$, $180^{\circ}$, $270^{\circ}$, $360^{\circ}$) and 3 different length of skirt(48cm, 58cm, 68cm). Stimuli were made by using I-Designer which is Virtual Sewing System. From simulation of flare skirt, the subjects were asked to write down suggested adjective freely and selected 210 adjectives. With this, we chose total 38 adjectives considering frequencies in the pre-study. And we analyzed the combination process of expression words according to construction factor of flare skirt and hierarchy of image from dendrogram which was resulted by hierarchical cluster analysis. 'Feminine' got high score in all 12 flare skirt. When the skirt was short, it was vivid, and as the skirt got longer, ordinary and pure image showed. Also, as the volume of flare got larger, the average of visual effect was higher than visual image. Visual hierarchy construction according to construction factors of flare skirt could be divided into visual image and visual effect, and visual image was shown to be form 'A type - large volume of flare and short skirt length', 'H type-small volume of flare and short skirt length' and 'X type - large volume of flare and long skirt length'.

토공사 계측 방식(Photogrammetry, TLS, MMS)별 토공량 산정 정밀도 분석 (Accuracy Analysis of Earthwork Volume Estimating for Photogrammetry, TLS, MMS)

  • 박재우;염동준;강태경
    • 한국산업융합학회 논문집
    • /
    • 제24권4_2호
    • /
    • pp.453-465
    • /
    • 2021
  • Recently, photogrammetry, TLS(Terrestrial Laser Scanner), MMS(Mobile Mapping System)-based techniques have been applied to estimate earthwork volume for construction management. The primary objective of this study is to analyze the accuracy of earthwork volume estimating between photogrammetry and TLS, MMS that improves the traditional surveying method in convenience, estimating accuracy. For this, the following research works are conducted sequentially; 1) literature review, 2) core algorithm analysis, 3) surveying data acquisition using photogrammetry, TLS, MMS, 4) estimated earthwork volume comparison according to surveying method. As a result of the experiment, it was analyzed that there were earthwork volume errors of 1,207.5m3 (14.03%) of UAV-based digital map, 391.5m3(4.55%) of UAV, TLS integrated digital map, and 294.9m3(3.43%) of UAV, MMS integrated digital map. It is expected that the result of this study will be enormous due to the availability of the analyzed data.

B-Rep Solid 구조의 3차원 모델을 이용한 토공량 자동 산정에 관한 연구 (A Study on Automatic Calculation of Earth-volume Using 3D Model of B-Rep Solid Structure)

  • 김종남;엄대용
    • 한국측량학회지
    • /
    • 제40권5호
    • /
    • pp.403-412
    • /
    • 2022
  • 최근 4차 산업혁명이 본격화되고 차세대 ICT 융합 기술이 개발됨에 따라 건설분야 역시 기술변화에 대응하기 위해 다양한 스마트 건설기술이 건설 단계별로 빠르게 도입되고 있다. 특히, 건설현장의 경우 부지설계를 위한 토공량 산출 공정이 설계비용에 큰 부분을 차지하고 있어 공정의 효율화와 정확한 토공량 산출을 위한 관련 연구가 활발히 진행되고 있다. 본 연구는 건설현장의 지형을 3차원으로 신속하게 구축하고 이를 이용하여 효율적으로 토공량을 산출할 수 있는 방법을 제시하고자 한 것이다. 이를 위해 무인비행체로부터 획득한 대축척의 항공사진을 이용하여 건설현장을 3차원 실사모델로 구축하였다. 이때, 구축한 3차원 실사모델은 체적 산출이 불가한 surface 모델 구조를 가짐에 따라 체적 산출이 가능하도록 3차원의 solid 모델로 구조 변환을 수행하였다. 그리고 변환된 solid 모델을 이용하여 CAD 기반으로 토공량을 산출할 수 있는 방법론을 구상하였다. 정립한 방법론을 적용한 solid 모델로부터 토공량을 자동 산출한 결과, 기존의 현황측량 결과로부터 산출한 토공량과 1.52%의 상대적 편차를 확인할 수 있었다. 추가적으로 방법별 공정 소요시간을 비교분석한 결과 60%의 소요시간 절감을 확인할 수 있었다. 이로부터 본 연구에서 제시한 기법은 토공량 산출을 위한 비용절감은 물론 건설공사 전 공정에서 주기적인 현장의 모니터링 등 스마트 건설관리를 위한 기술로써 활용이 기대된다.

경부고속철도 수송수요의 예측치와 실측치의 비교분석 (Comparative Analysis of Forecasted and Measured Traffic Demand for Gyung-bu High Speed Railway)

  • 오인택
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.889-896
    • /
    • 2005
  • While a year and a half has been passed since the launch of KTX service, traffic volume of Gyung-bu High Speed Railway is still much lower than the forecasted value. This situation has been badly affecting not only Korail's financial status but also KRNA's general railway construction projects as general public responds negatively to such projects as New Ho-nam Line Construction. This paper outlines traffic volume forecasting methodologies applied to construction of Gyung-bu High Speed Railway, identifies major causes of forecasting deviations. and finally extracts problems through comparison between the forecasted results and actual traffic volume.

  • PDF

수치영상을 이용한 토량환산계수 산정 (The Estimation of Soil Conversion Factor using Digital Imagery)

  • 이종출;차성렬;장호식;김진수
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 추계학술발표회 논문집
    • /
    • pp.169-174
    • /
    • 2003
  • Design of a rational earth volume conversion coefficient is required as the earth volume conversion coefficient may give great influence on construction work volume and construction costs in the civil engineering works where large-scaled earth volume is excavated. However, there are a great deal of difficulties in the calculation of the exact spoil surface earth and Insufficient earth volume by adopting the figures presented on the generally used design specifications which are not the results obtained from the selection tests in calculating the earth volume conversion coefficient. In this connection, it would be desirable to calculate the earth volume conversion coefficient by carrying out large-scaled site test adequate for the relevant environment. In consequence, this study aims at calculating the exact earth volume conversion coefficient of cutting and banking areas of weathering rocks in large-scaled construction sites where land is being developed into home lots. For this, we have excavated the respective 20 sites of the cutting and banking areas in the said site and then calculated the volume after the excavation. As a result, the relative exactness degree of the crossing was calculated at 0.5% in average. The relative exactness degree of 0.5% in the volume may be judged as an exact measurement as it corresponds to 0.17% of the relative exactness degree in the length measurement. We have calculated the exact earth volume conversion coefficient by the use of function ratio as per the wet unit weight and the indoor soil quality test as per volume calculated. And then we have found out minor differences as a result of the comparison and analysis with the earth volume conversion coefficient determined by the dry unit weight test as per sand replacement method. This may be judged as a rational design method for the calculation of earth volume conversion coefficient, as well as high reliability of site test as a precision photogrammetry is adopted for volume measurement of the irregular excavating areas.

  • PDF

A Study on the Correlation Analysis between the Daily Earthwork Volume and Fine Dust Concentration

  • Dong-Myeong, CHO;Ju-Yeon, LEE;Tae-Hwan, JEONG;Woo-Taeg, KWON
    • 웰빙융합연구
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 2023
  • Purpose: Fine dust is classified as a group 1 carcinogen and poses a significant environmental problem that urgently requires improvement to protect the environmental rights of citizens. Given the difficulty of implementing measures to reduce overseas sources of fine dust, it is essential to first devise specific measures to address domestic emission sources. As such, this study aims to analyze the correlation between earthwork volume control and fine dust concentration as preliminary management measures to reduce the impact of scattering dust at construction sites. Based on real-time air quality information, field management measures will be presented to mitigate the effects of dust emissions. Research design, data and methodology: As examples, we selected construction sites that had recently undergone small-scale environmental impact assessment consultations. The standard earthwork volume was classified into grades using 20% intervals, and we applied AERMOD to predict the weighted concentration of fine dust based on the earthwork volume class and analyzed its correlation. Results: The results of this study demonstrate a strong correlation between earthwork volume and fine dust concentration. By utilizing the correlation analysis between earthwork volume and fine dust concentration on-site, this finding can be utilized as an effective fine dust management plan. Conclusions: This involves determining the daily earthwork intensity based on real-time air quality information and implementing measures to reduce scattering dust.