• Title/Summary/Keyword: Constant Curvature

Search Result 395, Processing Time 0.015 seconds

ON FINSLER METRICS OF CONSTANT S-CURVATURE

  • Mo, Xiaohuan;Wang, Xiaoyang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.639-648
    • /
    • 2013
  • In this paper, we study Finsler metrics of constant S-curvature. First we produce infinitely many Randers metrics with non-zero (constant) S-curvature which have vanishing H-curvature. They are counterexamples to Theorem 1.2 in [20]. Then we show that the existence of (${\alpha}$, ${\beta}$)-metrics with arbitrary constant S-curvature in each dimension which is not Randers type by extending Li-Shen' construction.

GRADIENT YAMABE SOLITONS WITH CONFORMAL VECTOR FIELD

  • Fasihi-Ramandi, Ghodratallah;Ghahremani-Gol, Hajar
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.165-171
    • /
    • 2021
  • The purpose of this paper is to investigate the geometry of complete gradient Yamabe soliton (Mn, g, f, λ) with constant scalar curvature admitting a non-homothetic conformal vector field V leaving the potential vector field invariant. We show that in such manifolds the potential function f is constant and the scalar curvature of g is determined by its soliton scalar. Considering the locally conformally flat case and conformal vector field V, without constant scalar curvature assumption, we show that g has constant curvature and determines the potential function f explicitly.

THE CURVATURE OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE

  • Jin, Dae Ho
    • The Pure and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.327-335
    • /
    • 2012
  • We study half lightlike submanifolds M of semi-Riemannian manifolds $\widetilde{M}$ of quasi-constant curvatures. The main result is a characterization theorem for screen homothetic Einstein half lightlike submanifolds of a Lorentzian manifold of quasi-constant curvature subject to the conditions; (1) the curvature vector field of $\widetilde{M}$ is tangent to M, and (2) the co-screen distribution is a conformal Killing one.

A CHARACTERIZATION THEOREM FOR LIGHTLIKE HYPERSURFACES OF SEMI-RIEMANNIAN MANIFOLDS OF QUASI-CONSTANT CURVATURES

  • Jin, Dae Ho
    • East Asian mathematical journal
    • /
    • v.30 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • In this paper, we study lightlike hypersurfaces M of semi-Riemannian manifolds $\bar{M}$ of quasi-constant curvatures. Our main result is a characterization theorem for screen homothetic Einstein lightlike hypersurfaces of a Lorentzian manifold of quasi-constant curvature subject such that its curvature vector field ${\zeta}$ is tangent to M.

FUNDAMENTAL TONE OF COMPLETE WEAKLY STABLE CONSTANT MEAN CURVATURE HYPERSURFACES IN HYPERBOLIC SPACE

  • Min, Sung-Hong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.369-378
    • /
    • 2021
  • In this paper, we give an upper bound for the fundamental tone of stable constant mean curvature hypersurfaces in hyperbolic space. Let M be an n-dimensional complete non-compact constant mean curvature hypersurface with finite L2-norm of the traceless second fundamental form. If M is weakly stable, then λ1(M) is bounded above by n2 + O(n2+s) for arbitrary s > 0.

ON H2-PROPER TIMELIKE HYPERSURFACES IN LORENTZ 4-SPACE FORMS

  • Firooz Pashaie
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.739-756
    • /
    • 2024
  • The ordinary mean curvature vector field 𝗛 on a submanifold M of a space form is said to be proper if it satisfies equality Δ𝗛 = a𝗛 for a constant real number a. It is proven that every hypersurface of an Riemannian space form with proper mean curvature vector field has constant mean curvature. In this manuscript, we study the Lorentzian hypersurfaces with proper second mean curvature vector field of four dimensional Lorentzian space forms. We show that the scalar curvature of such a hypersurface has to be constant. In addition, as a classification result, we show that each Lorentzian hypersurface of a Lorentzian 4-space form with proper second mean curvature vector field is C-biharmonic, C-1-type or C-null-2-type. Also, we prove that every 𝗛2-proper Lorentzian hypersurface with constant ordinary mean curvature in a Lorentz 4-space form is 1-minimal.

A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE ADMITS SOME HALF LIGHTLIKE SUBMANIFOLDS

  • Jin, Dae Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.1041-1048
    • /
    • 2013
  • In this paper, we study the curvature of a semi-Riemannian manifold $\tilde{M}$ of quasi-constant curvature admits some half lightlike submanifolds M. The main result is two characterization theorems for $\tilde{M}$ admits extended screen homothetic and statical half lightlike submanifolds M such that the curvature vector field of $\tilde{M}$ is tangent to M.

LIGHTLIKE HYPERSURFACES OF INDEFINITE KAEHLER MANIFOLDS OF QUASI-CONSTANT CURVATURES

  • Jin, Dae Ho
    • East Asian mathematical journal
    • /
    • v.30 no.5
    • /
    • pp.599-607
    • /
    • 2014
  • We study lightlike hypersurfaces M of an indefinite Kaehler manifold $\bar{M}$ of quasi-constant curvature subject to the condition that the curvature vector field of $\bar{M}$ belongs to the screen distribution S(TM). We provide several new results on such lightlike hypersurfaces M.