KYUNGPOOK Math. J. 45(2005), 231-240

Hypersurfaces of the Contact Metric Manifold with a Nullity Condition and φ -constant Sectional Curvature

Calin Agut University of Oradea, Department of Mathematics, Romania, str. Armatei Romane 5 e - $mail$: calinagut@yahoo.com

Abstract. The paper shows that a hypersurface with constant curvature with the condition $hD \subset D$, of a contact metric manifold with a nullity condition and φ -constant sectional curvature, has the curvature equals to k and $\mu = 0$.

1. Introduction

The theory of CR-submanifold has been introduced by A. Bejancu in [1] and was developed in many papers. In [1] is given the first and the most important example of CR-submanifold, which is the hypersurface.

Let $\overline{M}(\varphi, \xi, \eta, \tilde{g})$ be a $(2n+1)$ -dimensional contact metric manifold with the contact structure given by the Riemannian metric \tilde{g} , structure vector field ξ , 1-form η and the (1, 1)-tensor field φ . A submanifold M of M is called a CR-submanifold (semi-invariant, [2]) if there exist two differentiable distributions D and D^{\perp} on M which satisfying

- (a) $TM = D \oplus D^{\perp} \oplus {\xi},$ where $D \oplus D^{\perp}$ and ${\xi}$ are mutually orthogonal to each other
- (b) the distribution D is invariant by φ , that $\varphi(D_x) = D_x$ for each $x \in M$
- (c) the distribution D^{\perp} is anti-invariant by φ , that $\varphi(D_x^{\perp}) = T_x M^{\perp}$ for each $x \in M$.

In this way we obtain in TM^{\perp} a vector subbundle $\nu^{\perp} = \varphi(D^{\perp})$. The complementary orthogonal subbundle to ν^{\perp} in TM^{\perp} well denote by ν , so that we have the decomposition

$$
TM^{\perp}=\nu\oplus\nu^{\perp},
$$

and ν is invariant to φ , i.e., $\varphi \nu \subset \nu$.

The goal of this paper is to study the hypersurfaces of contact metric manifolds $M(c)$ with a nullity condition and having the φ -sectional curvature as a constant number denoted by c.

Received March 3, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 53C25, 53D10, 53D15.

Key words and phrases: contact metric manifolds, hypersurfaces, submanifolds.

Let \widetilde{M} be a Riemannian manifold. It is known that the tangent sphere bundle $T_1\widetilde{M}$ admits a contact Riemannian structure (φ, ξ, η, g) . $T_1\widetilde{M}$ together with this structure is a contact Riemannian manifold. If \widetilde{M} is of constant sectional curvature $c = 1$, then T_1M is a Sasakian manifold, i.e., its curvature tensor \widetilde{R} satisfies $\widetilde{R}(X, Y)\xi = \eta(Y)X - \eta(X)Y$ for all vector fields X, Y . If $c = 0$, then the curvature tensor of T_1M satisfies the condition $\widetilde{R}(X, Y)\xi = 0$. Applying a Dhomothetic deformation on a contact Riemannian manifold satisfying $R(X, Y)\xi = 0$, we get a contact Riemannian manifold such that $\widetilde{R}(X, Y)\xi = k[\eta(Y)X - \eta(X)Y] +$ $\mu[n(Y)hX - n(X)hY]$, where k, μ are real constants and 2h is the Lie differentiation of φ in the direction of ξ . We call (see [3]) this kind of manifold, (k, μ) –contact Riemannian manifold, or contact metric manifold with nullity condition.

The tensor field $K(X, \varphi X) = g(R(X, \varphi X)\varphi X, X)$ is called the φ -sectional curvature of M. In $[6]$ the author gave an expression of the curvature tensor when the ambient manifold M has a constant φ -sectional curvature c, denoted by $M(c)$.

Theorem 4 will give as the form of the φ -sectional curvature and also some information about the Weigarten operator A on hypersurfaces.

2. Contact metric manifolds with nullity condition

A differential 1-form η on a differentiable $(2n + 1)$ -dimensional manifold M is called a *contact form* if it satisfies $\eta \wedge (d\eta)^n \neq 0$ everywhere on \widetilde{M} . By a *contact* manifold (M, η) we mean a manifold M together with a contact form η . Since d η is of rank $2n$, there exists a global vector field ξ , called the *structure vector field*, such that

- (i) $\eta(\xi) = 1$ and $L_{\xi} \eta = 0$, where L_{ξ} denotes the Lie differentiation by ξ . Moreover it is well known that there exist a Riemannian metric \tilde{g} and a (1, 1)-tensor field φ satisfying
- (ii) $\varphi^2 = -I + \eta \oplus \xi$
- (iii) $\widetilde{g}(\varphi X, \varphi Y) = \widetilde{g}(X, Y) \eta(X)\eta(Y)$
- (iv) $\varphi \xi = 0$
- (v) $\eta \circ \varphi = 0$, for all vector fields X, Y on \widetilde{M} .

The structure $(\varphi, \xi, \eta, \tilde{g})$ is called a *contact Riemannian structure* and the manifold \overline{M} carrying such structure is said to be a *contact metric manifold*, and we denote it by $M(\varphi, \xi, \eta, \tilde{g})$.

Following $[3]$ we define and we define the $(1, 1)$ -type field h by:

$$
2hX = (L_{\xi}\varphi)X, \ \forall X \in \Gamma(T\widetilde{M})
$$

which satisfies the relations:

(vi) (a) $h\varphi = -\varphi h$ and

(vi) (b) $h\xi = 0$

Using (vi)(a), if X is an eigen vector field for h with respect the eigen value λ , then φX is also an eigen vector of h, but with respect the eigen value- λ .

The sectional curvature $K(X, \varphi X)$ of a plane section spanned by a vector X orthogonal to ξ is called a φ -sectional *curvature*.

It is known that the tangent sphere bundle $T_1\widetilde{M}$ of a Riemannian manifold \widetilde{M} admits a contact Riemannian structure (φ, ξ, η, g) , known as the *standard contact* metric structure.

For real constants k, μ , the (k, μ) -nullity distribution of a contact metric manifold $M(\varphi, \xi, \eta, \tilde{g})$ is a distribution

$$
N(k,\mu): P \to \qquad N_P(k,\mu)
$$

=
$$
\{ Z \in T_P \widetilde{M} \mid \widetilde{R}(X,Y)Z = k[g(Y,Z)X - g(X,Z)Y] + \mu[g(Y,Z)hX - g(X,Z)hY] \}.
$$

So, if the structure vector field ξ belongs to the (k, μ) -distribution we have

(1)
$$
\widetilde{R}(X,Y)\xi = k\big[\eta(Y)X - \eta(X)Y\big] + \mu\big[\eta(Y)hX - \eta(X)hY\big].
$$

We'll call \widetilde{M} to be a $(k, \mu)-contact$ manifold, or contact metric manifold with nullity condition (1), where k and μ are real contents, and 2h is the Lie differentiantion of φ in direction of ξ (conf. [3]).

The above construction is given in [5] and it study the (k, μ) –contact manifold introduced by the authors in [3].

It's important to observe that if $h = 0$, then the contact metric manifold with nullity condition (1) is a Sasakian manifold.

The following are true ([3]);

- (vii) $\widetilde{\nabla}_X \xi = -\varphi X \varphi h X$
- (viii) $\widetilde{\nabla}_{\xi}\varphi=0.$

For any vector fields $X, Y \in \Gamma(TM)$ orthogonal to the structure vector filed ξ , $K(X, Y) = g(R(X, Y)Y, X)$ is called *sectional curvature* of the manifold M. We remind the following results:

Lemma 1 ([3]). Let $\widetilde{M}^{2n+1}(\varphi, \xi, \eta, \widetilde{g})$ be a contact metric manifold with ξ belonging to the (k, μ) -nullity distribution. Then

- (ix) $(\tilde{\nabla}_X \varphi)Y = \tilde{g}(X + hX, Y)\xi \eta(Y)(X + hX)$
- (x) $\widetilde{R}(\xi, X)Y = k[\widetilde{g}(X, Y)\xi \eta(Y)X] + \mu[\widetilde{g}(hX, Y)\xi \eta(Y)hX]$
- (xi) $h^2 = (k-1)\varphi^2$, for any $X, Y \in \Gamma(T\widetilde{M})$.

We recall that for any vector fields X , Y mutual orthogonal and orthogonal to the structure vector field ξ , the tensor field $K(X, Y) = g(R(X, Y)Y, X)$ is called the sectional curvature of \tilde{M} given by the sectional plane $\{X, Y\}$. The tensor field $\widetilde{K}(X, \varphi X) = g(\widetilde{R}(X, \varphi X)\varphi X, X)$ is called the φ -sectional curvature of M. If the manifold \widetilde{M} has a constant φ -sectional curvature c for any sectional plane $\{X, \varphi X\}$, we denote it by $\widetilde{M}(c)$. The sectional curvature $\widetilde{K}(X,\xi)$ of a sectional plane spanned by ξ and another vector field X orthogonal to ξ is called the ξ -sectional curvature.

Theorem 1 ([3]). Let $\widetilde{M}^{2n+1}(\varphi, \xi, \eta, \widetilde{g})$ be a contact metric manifold, with the nullity condition (1). Then $k \leq 1$. If $k = 1$, then $h = 0$ and \widetilde{M} is a Sasakian manifold. $k < 1$, then \widetilde{M} determined by the eigenspaces of h, where $\lambda = \sqrt{1-k}$.

Theorem 2 ([3]). Let $\widetilde{M}^{2n+1}(\varphi, \xi, \eta, \widetilde{g})$ be a contact metric manifold, with the nullity condition (1). If $k < 1$, then for any X orthogonal to ξ :

(a) the ξ -sectional curvature $\widetilde{K}(X,\xi)$ is given by:

(2)
$$
\widetilde{K}(X,\xi) = k + \mu \widetilde{g}(hX,X) = \begin{cases} k + \lambda \mu, & \text{if } X \in D(\lambda) \\ k - \lambda \mu, & \text{if } X \in D(-\lambda) \end{cases}
$$

(b) the sectional curvature of a sectional plane $\{X, Y\}$ normal to ξ is given by:

(3)
$$
\widetilde{K}(X,Y) = \begin{cases} 2(1+\lambda) - \mu, & X,Y \in D(\lambda) \\ -(k+\mu)(g(X,\varphi Y))^2, & X \in D(\lambda) \text{ and } Y \in D(-\lambda) \\ 2(1-\lambda) - \mu, & X,Y \in D(-\lambda) \end{cases}
$$

(c) \tilde{M} has constant scalar curvature, given by

(4)
$$
S = 2n[2(n-1) + k - n\mu].
$$

In [6] the author obtained the form for the curvature tensor field of the manifold $M(c)$ with the nullity condition (1) and constant φ -sectional curvature c.

Theorem 3 ([6]). Let $\widetilde{M}^{2n+1}(\varphi, \xi, \eta, \widetilde{g})$ be a contact metric manifold $(n > 1)$ with ξ belonging to the (k, μ) −nullity distribution. If the φ -sectional curvature of any point of \overline{M} is independent of the choice of φ -section at the point, then it is constant on \overline{M} and the curvature tensor is given by

$$
(5) 4\widetilde{R}(X,Y)Z = (c+3)\{\widetilde{g}(Y,Z)X - \widetilde{g}(X,Z)Y\} + (c+3-4k)\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + \widetilde{g}(X,Z)\eta(Y)\xi -\widetilde{g}(Y,Z)\eta(X)\xi\} + (c-1)\{2\widetilde{g}(X,\varphi Y)\varphi Z + \widetilde{g}(X,\varphi Z)\varphi Y - \widetilde{g}(Y,\varphi Z)\varphi X\} -2\{\widetilde{g}(hX,Z)hY - \widetilde{g}(hY,Z)hX + 2\widetilde{g}(X,Z)hY - 2\widetilde{g}(Y,Z)hX -2\eta(X)\eta(Z)hY + 2\eta(Y)\eta(Z)hX + 2\widetilde{g}(hX,Z)Y - 2\widetilde{g}(hY,Z)X +2\widetilde{g}(hY,Z)\eta(X)\xi - 2\widetilde{g}(hX,Z)\eta(Y)\xi
$$

$$
-\widetilde{g}(\varphi hX, Z)\varphi hY + \widetilde{g}(\varphi hY, Z)\varphi hX
$$

+4\mu{\eta(Y)\eta(Z)hX - \eta(X)\eta(Z)hY + \widetilde{g}(hY, Z)\eta(X)\xi}
-\widetilde{g}(hX, Z)\eta(Y)\xi},

for any $X, Y \in \Gamma(T\widetilde{M})$, where c is the constant φ -sectional curvature. Moreover, if $k \neq 1$, then $\mu = k + 1$ and $c = -2k - 1$.

3. Basic results

Let $\widetilde{M}(\varphi, \xi, \eta, \widetilde{g})$ be a $(2n + 1)$ -dimensional contact metric manifold with the contact structure given by the Riemannian metric \tilde{g} , structure vector field ξ , 1-form η and the (1, 1)-tensor field φ . We denote by $\overrightarrow{\nabla}$ the Levi-Civita connection determined by \tilde{q} and the curvature tensor field \tilde{R} . We consider M be a submanifold of M, with the induced connection denoted by ∇ , curvature tensor field R and induced metric tensor denoted also by g.

A submanifold M of a contact metric manifold \widetilde{M} is called a CR-submanifold (semi-invariant, [1]) if there exist two differentiable distributions D and D^{\perp} on M which satisfying

- (a) $TM = D \oplus D^{\perp} \oplus {\{\}\}$, where $D \oplus D^{\perp}$ and ${\{\xi\}}$ are mutually orthogonal to each other
- (b) the distribution D is invariant by φ , that $\varphi(D_x) = D_x$ for each $x \in M$
- (c) the distribution D^{\perp} is anti-invariant by φ , that $\varphi(D_x^{\perp}) \subseteq T_xM^{\perp}$ for each $x \in M$.

We denote by 2p and q the real dimensions of D and D^{\perp} respectively, $x \in M$. If $p \cdot q \neq 0$ then M is called a proper CR-submanifold.

Any hypersurface is a CR-submanifold of M .

This paper's purpose is to study the hypersurfaces into contact metric manifolds with nullity condition (1) .

We recall some properties of hypersurfaces here.

Let $M \subset M$ be an orientable hypersurface. We denote by V the normal vector field to M, into M. Then $TM = TM \oplus TM^{\perp}$, where $TM^{\perp} = span\{V\}$.

We suppose that the structure vector field ξ is tangent to M, so that we have $\tilde{g}(V,\xi) = 0$. Let denote $U = \varphi V$. We have $\tilde{g}(U,V) = 0$, so that the unit vector field U is tangent to M. Let $D^{\perp} = span{U}$, so that $\dim D_x^{\perp} = 1$, for any point $x \in M$ and also $\varphi(D^{\perp}) = TM^{\perp}$. The distribution generated by ξ will be denoted by $\{\xi\}$, and the complementary orthogonal distribution on TM of the distribution $D^{\perp} \oplus {\xi}$ will be denoted by D. So, we get the following decomposition

(6)
$$
TM = D \oplus D^{\perp} \oplus \{\xi\}.
$$

From the last above relation, for any $X \in \Gamma(TM)$ we can write the decomposition

(7)
$$
X = PX + \omega(X)U + \eta(X)\xi,
$$

where P is the projection operator of TM on D, and ω is a 1-form defined by

(8)
$$
\omega(X) = g(X, U), \forall X \in \Gamma(TM).
$$

From (8), applying φ , we get

(9)
$$
\varphi X = \varphi P X - \omega(X) V.
$$

If we denote $f = \varphi P$, then f is a tensor filed of type (1,1) over M and we have

(10)
$$
\varphi X = fX - \omega(X)V.
$$

If we apply the operator φ to the relation (10) and taking account on (9), we have

(11)
$$
f^2 = -I + \eta \otimes \xi + \omega \otimes U.
$$

Also,

(12)
$$
\omega \circ f = 0
$$
, $\omega(\xi) = 0$, $f\xi = 0$, $fU = 0$, $\eta \circ f = 0$, $\eta(\xi) = 1$, and $\omega(U) = 1$.

From (iii) and (10) we have

Proposition 1. Let M be a hypersurface of \widetilde{M} . Then

(13)
$$
g(fX, fY) = g(X, Y) - \eta(X)\eta(Y) - \omega(X)\omega(Y),
$$

for any $X, Y \in \Gamma(TM)$.

Corollary 1. The tensor field f is skew-symmetric, i.e., $g(fX, Y) = -g(X, fY)$.

We recall the Gauss' and Weingarten's equations for a hypersurface

(14)
$$
\widetilde{\nabla}_X Y = \nabla_X Y + g(AX, Y)V,
$$

$$
\widetilde{\nabla}_X V = -AX,
$$

for any $X, Y \in \Gamma(TM)$, where A is the Weingarten's operator. The Gauss equation for hypersurfaces is

(16)
$$
g(\widetilde{R}(X,Y)Z,W) = g(R(X,Y)Z,W) + g(AY,W)g(AX,Z) - g(AX,W)g(AY,Z),
$$

for any $X, Y, Z, W \in \Gamma(TM)$.

In the above situations, we can write

$$
(17) \t\t\t\t hX = TX + \delta(X)V,
$$

for any vector field $X \in \Gamma(TM)$, where δ is a 1-form defined by

(18)
$$
\delta(X) = g(hX, V).
$$

4. Main results

In this paragraph we'll suppose that M is a hypersurface of the $(2n + 1)$ dimensional contact metric manifold \widetilde{M} , with the nullity condition (1).

Lemma 2. We have

(19)
$$
\nabla_X \xi = -fX - fTX - \delta(X)U,
$$

(20)
$$
g(AX, \xi) = \omega(X) + \omega(TX),
$$

for any $X \in \Gamma(TM)$.

Proof. Let be $X \in \Gamma(TM)$. From (vii), using the Gauss formula, we have

(21)
$$
\widetilde{\nabla}_X \xi = -\varphi X - \varphi h X
$$

i.e.,

(22)
$$
\nabla_X \xi + g(AX, \xi)V = -fX + \omega(X)V - \varphi(TX) - \delta(X)U
$$

$$
= -fX + \omega(X)V - fTX + \omega(TX)V - \delta(X)U.
$$

Comparing by tangent and normal components, we get the results. \Box

From (2), (5) and Gauss equation we obtain the following:

Proposition 2. Let M be a hypersurface of $\widetilde{M}^{2n+1}(c)$. Then the sectional curvatures of M are given by:

(23) $K(U, \xi) = k + \mu g(U, hU) - [1 + g(U, hU)]^2$

(24)
$$
K(X, \xi) = k + \mu g(X, hX) - g(hX, U)^2,
$$

(25)
$$
K(X, U) = \frac{1}{4}(c+3) - 2\{g(hX, U)g(hU, X) - g(hU, U)g(hX, X) - 2g(hX, X) - 2g(hU, U) + g(hX, \varphi U)g(\varphi hU, X) - g(hU, \varphi U)g(\varphi hX, X)\} - g(AX, U)^2 + g(AX, X)g(AU, U),
$$

for any unitary vector field $X \in \Gamma(D)$.

Corollary 2. If M is a hypersurface in \widetilde{M}^{2n+1} so that $g(hU, U) = 0$, then $K(U, \xi) = k - 1.$

Corollary 3. If M is a hypersurface in \widetilde{M}^{2n+1} so that

(a) $q(hX, X) = 0$, and

(b)
$$
g(hX, U) = 0
$$
, for any $X \in \Gamma(D)$,

then $K(X, \xi) = \widetilde{K}(X, \xi)$, for any $X \in \Gamma(D)$.

Theorem 4. Let M be a hypersurface, with $hD \subset D$ and constant curvature C, of M^{2n+1} . We have $C = k$, $\mu = 0$ and $A/D = 0$.

Proof. If M is a hypersurface with constant curvature C . We have:

(26)
$$
R(X,\xi)Y = C[\eta(Y)X - g(X,Y)\xi],
$$

for any vector fields $X, Y \in \Gamma(TM)$.

On the other hand, using the Gauss equation and (20), from (x) we have:

$$
R(X,\xi)Y = k[\eta(Y)X - g(X,Y)\xi] + \mu[\eta(Y)hX - g(hX,Y)\xi]
$$

+g(Y + hY,U)AX - g(AX,Y)A\xi,

for any vector fields $X, Y \in \Gamma(TM)$.

From (26) and (27) we get

(27)
$$
(k - C)[\eta(Y)X - g(X, Y)\xi] + \mu[\eta(Y)hX - g(hX, Y)\xi] + g(Y + hY, U)AX - g(AX, Y)A\xi = 0,
$$

for any $X, Y \in \Gamma(TM)$.

Now, we suppose that $Y \in \Gamma(D)$. Taking account on hypothesis that $hD \subset D$, from (28) we derive that:

(28)
$$
(C-k)g(X,Y)\xi - \mu g(hX,Y)\xi - g(AX,Y)A\xi = 0.
$$

We recall (20), where we have that $A\xi$ and ξ are linear independent and, also, $g(AU, \xi) = 1 + g(hU, U)$. So, from (29), we obtain:

(29)
$$
(C - k)g(X, Y) - \mu g(hX, Y) = 0
$$

and

$$
(30) \t\t g(AX,Y) = 0,
$$

for any $X \in \Gamma(TM)$.

From (31) we obtain that $A/D = 0$.

In (30) we chose $X = Y$ to be an unit vector field, and we obtain

$$
(31) \tC - k = \mu g(hY, Y),
$$

for any $Y \in \Gamma(D)$.

(32)
$$
C - k = \mu g(h\varphi Y, \varphi Y) = -\mu g(hY, Y).
$$

From the last two relations, (32) and (33), we have the rest of the proof. \Box

On the final of this paper we'll suppose that $\widetilde{M}(\varphi, \xi, \eta, g)$ is a contact metric manifold with the nullity condition which has the dimension 3, and M be a surface, i.e., dim $M = 2$.

Because dim $M = 2$ and $TM = span{U, \xi}$, we have that $A\xi = \alpha U$ and from (17) we get

(33)
$$
g(\widetilde{R}(U,\xi)\xi,U) = g(R(U,\xi)\xi,U) - g(AU,U)g(A\xi,\xi) +g(A\xi,U)g(AU,\xi),
$$

i.e.,

(34)
$$
\widetilde{K}(U,\xi) = K(U,\xi) + \alpha^2,
$$

where $\widetilde{K}(U,\xi)$ and $K(U,\xi)$ are the sectional curvatures of \widetilde{M} and M, respectively, given by the sectional plane $\{U, \xi\}.$

Proposition 3. If M is a surface of the contact metric manifold \widetilde{M}^{2n+1} with the nullity condition, then the curvature of M is $k - \mu + \alpha(\mu - \alpha)$ and $A\xi =$ $U + g(hU, U)U.$

Proof. From (3) and (36) we have

(35)
$$
K(U, \xi) = k + \mu g(hU, U) - \alpha^2.
$$

On the other hand, from (21) we have

$$
(36) \t\t g(hU, U) = \alpha - 1,
$$

so we get the first relation of the Theorem.

The second relation is deriving from the dimension of M and from (21). \Box

References

- [1] A. Bejancu, CR-submanifolds of Kaehler Manifolds I, Proceedings of A.M.S., 69(1)(1978), 135-148.
- [2] A. Bejancu, Geometry of CR-submanifolds, D Reindel, Dorecht, 1986.
- [3] D. E. Blair, Th. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. of Math., $91(1995)$, 189-214.

- [4] B.-Y. Chen, Geometry of Submanifolds, Marcel Dekker Inc., New York, 1973.
- [5] H. Endo, On the curvature tensor fields of a type of contact metric manifolds and its certain submanifolds, submitted.
- [6] Th. Koufogiorgos, Contact Riemannian manifolds with constant ϕ-sectional curvature, Tokyo J. Math., 20(1997), 13-22.
- [7] K. Yano and M. Kon, Structures on manifolds, World Scientific, Singapore, 1984.