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Abstract. The paper shows that a hypersurface with constant curvature with the con-

dition hD ⊂ D, of a contact metric manifold with a nullity condition and ϕ-constant

sectional curvature, has the curvature equals to k and µ = 0.

1. Introduction

The theory of CR-submanifold has been introduced by A. Bejancu in [1] and
was developed in many papers. In [1] is given the first and the most important
example of CR-submanifold, which is the hypersurface.

Let M̃(ϕ, ξ, η, g̃) be a (2n + 1)-dimensional contact metric manifold with the
contact structure given by the Riemannian metric g̃, structure vector field ξ, 1-form
η and the (1, 1)-tensor field ϕ. A submanifold M of M̃ is called a CR-submanifold
(semi-invariant, [2]) if there exist two differentiable distributions D and D⊥ on M
which satisfying

(a) TM = D ⊕ D⊥ ⊕ {ξ}, where D ⊕ D⊥ and {ξ} are mutually orthogonal to
each other

(b) the distribution D is invariant by ϕ, that ϕ(Dx) = Dx for each x ∈ M

(c) the distribution D⊥ is anti-invariant by ϕ, that ϕ(D⊥
x ) = TxM⊥ for each

x ∈ M .

In this way we obtain in TM⊥ a vector subbundle ν⊥ = ϕ(D⊥). The comple-
mentary orthogonal subbundle to ν⊥ in TM⊥ well denote by ν, so that we have
the decomposition

TM⊥ = ν ⊕ ν⊥,

and ν is invariant to ϕ, i.e., ϕν ⊆ ν.
The goal of this paper is to study the hypersurfaces of contact metric manifolds

M̃(c) with a nullity condition and having the ϕ-sectional curvature as a constant
number denoted by c.
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Let M̃ be a Riemannian manifold. It is known that the tangent sphere bundle
T1M̃ admits a contact Riemannian structure (ϕ, ξ, η, g). T1M̃ together with
this structure is a contact Riemannian manifold. If M̃ is of constant sectional
curvature c = 1, then T1M̃ is a Sasakian manifold, i.e., its curvature tensor R̃
satisfies R̃(X,Y )ξ = η(Y )X − η(X)Y for all vector fields X, Y . If c = 0, then
the curvature tensor of T1M̃ satisfies the condition R̃(X,Y )ξ = 0. Applying a D-
homothetic deformation on a contact Riemannian manifold satisfying R̃(X,Y )ξ = 0,
we get a contact Riemannian manifold such that R̃(X, Y )ξ = k[η(Y )X − η(X)Y ] +
µ[η(Y )hX−η(X)hY ], where k, µ are real constants and 2h is the Lie differentiation
of ϕ in the direction of ξ. We call (see [3]) this kind of manifold, (k, µ)−contact
Riemannian manifold, or contact metric manifold with nullity condition.

The tensor field K̃(X, ϕX) = g(R̃(X,ϕX)ϕX, X) is called the ϕ-sectional cur-
vature of M̃ . In [6] the author gave an expression of the curvature tensor when the
ambient manifold M̃ has a constant ϕ-sectional curvature c, denoted by M̃(c).

Theorem 4 will give as the form of the ϕ-sectional curvature and also some
information about the Weigarten operator A on hypersurfaces.

2. Contact metric manifolds with nullity condition

A differential 1-form η on a differentiable (2n + 1)-dimensional manifold M̃ is
called a contact form if it satisfies η ∧ (dη)n 6= 0 everywhere on M̃ . By a contact
manifold (M̃, η) we mean a manifold M̃ together with a contact form η. Since dη
is of rank 2n, there exists a global vector field ξ, called the structure vector field,
such that

(i) η(ξ) = 1 and Lξη = 0, where Lξ denotes the Lie differentiation by ξ. Moreover
it is well known that there exist a Riemannian metric g̃ and a (1, 1)-tensor
field ϕ satisfying

(ii) ϕ2 = −I + η ⊕ ξ

(iii) g̃(ϕX, ϕY ) = g̃(X,Y )− η(X)η(Y )

(iv) ϕξ = 0

(v) η ◦ ϕ = 0, for all vector fields X, Y on M̃ .

The structure (ϕ, ξ, η, g̃) is called a contact Riemannian structure and the manifold
M̃ carrying such structure is said to be a contact metric manifold, and we denote
it by M̃(ϕ, ξ, η, g̃).

Following [3] we define and we define the (1, 1)-type field h by:

2hX = (Lξϕ)X, ∀X ∈ Γ(TM̃)

which satisfies the relations:

(vi) (a) hϕ = −ϕh and
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(vi) (b) hξ = 0

Using (vi)(a), if X is an eigen vector field for h with respect the eigen value λ, then
ϕX is also an eigen vector of h, but with respect the eigen value-λ.

The sectional curvature K̃(X,ϕX) of a plane section spanned by a vector X
orthogonal to ξ is called a ϕ-sectional curvature.

It is known that the tangent sphere bundle T1M̃ of a Riemannian manifold M̃
admits a contact Riemannian structure (ϕ, ξ, η, g), known as the standard contact
metric structure.

For real constants k, µ, the (k, µ)-nullity distribution of a contact metric man-
ifold M̃(ϕ, ξ, η, g̃) is a distribution

N(k, µ) : P → NP (k, µ)

=
{

Z ∈ TP M̃
∣∣ R̃(X, Y )Z = k

[
g(Y,Z)X − g(X, Z)Y

]

+µ
[
g(Y, Z)hX − g(X, Z)hY

]}
.

So, if the structure vector field ξ belongs to the (k, µ)-distribution we have

(1) R̃(X, Y )ξ = k
[
η(Y )X − η(X)Y

]
+ µ

[
η(Y )hX − η(X)hY

]
.

We’ll call M̃ to be a (k, µ)−contact manifold, or contact metric manifold with nullity
condition (1), where k and µ are real contents, and 2h is the Lie differentiantion of
ϕ in direction of ξ (conf. [3]).

The above construction is given in [5] and it study the (k, µ)−contact manifold
introduced by the authors in [3].

It’s important to observe that if h = 0, then the contact metric manifold with
nullity condition (1) is a Sasakian manifold.

The following are true ([3]);

(vii) ∇̃Xξ = −ϕX − ϕhX

(viii) ∇̃ξϕ = 0.

For any vector fields X, Y ∈ Γ(TM̃) orthogonal to the structure vector filed ξ,
K̃(X, Y ) = g(R̃(X, Y )Y, X) is called sectional curvature of the manifold M̃ .

We remind the following results:

Lemma 1 ([3]). Let M̃2n+1(ϕ, ξ, η, g̃) be a contact metric manifold with ξ
belonging to the (k, µ)-nullity distribution. Then

(ix) (∇̃Xϕ)Y = g̃(X + hX, Y )ξ − η(Y )(X + hX)

(x) R̃(ξ,X)Y = k[g̃(X,Y )ξ − η(Y )X] + µ[g̃(hX, Y )ξ − η(Y )hX]

(xi) h2 = (k − 1)ϕ2, for any X,Y ∈ Γ(TM̃).
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We recall that for any vector fields X, Y mutual orthogonal and orthogonal to
the structure vector field ξ, the tensor field K̃(X,Y ) = g(R̃(X, Y )Y,X) is called
the sectional curvature of M̃ given by the sectional plane {X,Y }. The tensor field
K̃(X, ϕX) = g(R̃(X, ϕX)ϕX,X) is called the ϕ-sectional curvature of M̃ . If the
manifold M̃ has a constant ϕ-sectional curvature c for any sectional plane {X, ϕX},
we denote it by M̃(c). The sectional curvature K̃(X, ξ) of a sectional plane spanned
by ξ and another vector field X orthogonal to ξ is called the ξ-sectional curvature.

Theorem 1 ([3]). Let M̃2n+1(ϕ, ξ, η, g̃) be a contact metric manifold, with the
nullity condition (1). Then k 6 1. If k = 1, then h = 0 and M̃ is a Sasakian
manifold. k < 1, then M̃ determined by the eigenspaces of h, where λ =

√
1− k.

Theorem 2 ([3]). Let M̃2n+1(ϕ, ξ, η, g̃) be a contact metric manifold, with the
nullity condition (1). If k < 1, then for any X orthogonal to ξ :

(a) the ξ-sectional curvature K̃(X, ξ) is given by:

(2) K̃(X, ξ) = k + µg̃(hX, X) =

{
k + λµ, if X ∈ D(λ)
k − λµ, if X ∈ D(−λ)

(b) the sectional curvature of a sectional plane {X, Y } normal to ξ is given by:

(3) K̃(X,Y ) =





2(1 + λ)− µ, X, Y ∈ D(λ)
−(k + µ)(g(X,ϕY ))2, X ∈ D(λ) and Y ∈ D(−λ)
2(1− λ)− µ, X, Y ∈ D(−λ)

(c) M̃ has constant scalar curvature, given by

(4) S = 2n[2(n− 1) + k − nµ].

In [6] the author obtained the form for the curvature tensor field of the manifold
M̃(c) with the nullity condition (1) and constant ϕ-sectional curvature c.

Theorem 3 ([6]). Let M̃2n+1(ϕ, ξ, η, g̃) be a contact metric manifold (n > 1)
with ξ belonging to the (k, µ)−nullity distribution. If the ϕ-sectional curvature of
any point of M̃ is independent of the choice of ϕ-section at the point, then it is
constant on M̃ and the curvature tensor is given by

4R̃(X, Y )Z = (c + 3){g̃(Y, Z)X − g̃(X, Z)Y }(5)
+(c + 3− 4k){η(X)η(Z)Y − η(Y )η(Z)X + g̃(X,Z)η(Y )ξ
−g̃(Y,Z)η(X)ξ}
+(c− 1){2g̃(X, ϕY )ϕZ + g̃(X, ϕZ)ϕY − g̃(Y, ϕZ)ϕX}
−2{g̃(hX, Z)hY − g̃(hY,Z)hX + 2g̃(X, Z)hY − 2g̃(Y,Z)hX

−2η(X)η(Z)hY + 2η(Y )η(Z)hX + 2g̃(hX, Z)Y − 2g̃(hY,Z)X
+2g̃(hY,Z)η(X)ξ − 2g̃(hX, Z)η(Y )ξ
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−g̃(ϕhX, Z)ϕhY + g̃(ϕhY, Z)ϕhX}
+4µ{η(Y )η(Z)hX − η(X)η(Z)hY + g̃(hY,Z)η(X)ξ
−g̃(hX, Z)η(Y )ξ},

for any X,Y ∈ Γ(TM̃), where c is the constant ϕ-sectional curvature. Moreover, if
k 6= 1, then µ = k + 1 and c = −2k − 1.

3. Basic results

Let M̃(ϕ, ξ, η, g̃) be a (2n + 1)-dimensional contact metric manifold with
the contact structure given by the Riemannian metric g̃, structure vector field ξ,
1-form η and the (1, 1)-tensor field ϕ. We denote by ∇̃ the Levi-Civita connection
determined by g̃ and the curvature tensor field R̃. We consider M be a submanifold
of M̃ , with the induced connection denoted by ∇, curvature tensor field R and
induced metric tensor denoted also by g.

A submanifold M of a contact metric manifold M̃ is called a CR-submanifold
(semi-invariant, [1]) if there exist two differentiable distributions D and D⊥ on M
which satisfying

(a) TM = D ⊕D⊥ ⊕ {ξ}, where D ⊕D⊥ and {ξ} are mutually orthogonal to
each other

(b) the distribution D is invariant by ϕ, that ϕ(Dx) = Dx for each x ∈ M

(c) the distribution D⊥ is anti-invariant by ϕ, that ϕ(D⊥
x ) ⊆ TxM⊥ for each

x ∈ M .

We denote by 2p and q the real dimensions of D and D⊥ respectively, x ∈ M . If
p · q 6= 0 then M is called a proper CR-submanifold.

Any hypersurface is a CR-submanifold of M̃ .
This paper’s purpose is to study the hypersurfaces into contact metric manifolds

with nullity condition (1).
We recall some properties of hypersurfaces here.
Let M ⊂ M̃ be an orientable hypersurface. We denote by V the normal vector

field to M , into M̃. Then TM̃ = TM ⊕ TM⊥, where TM⊥ = span{V }.
We suppose that the structure vector field ξ is tangent to M , so that we have

g̃(V, ξ) = 0. Let denote U = ϕV . We have g̃(U, V ) = 0, so that the unit vector
field U is tangent to M . Let D⊥ = span{U}, so that dim D⊥

x = 1, for any point
x ∈ M and also ϕ(D⊥) = TM⊥. The distribution generated by ξ will be denoted
by {ξ}, and the complementary orthogonal distribution on TM of the distribution
D⊥ ⊕ {ξ} will be denoted by D. So, we get the following decomposition

(6) TM = D ⊕D⊥ ⊕ {ξ}.
From the last above relation, for any X ∈ Γ(TM) we can write the decomposition

(7) X = PX + ω(X)U + η(X)ξ,
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where P is the projection operator of TM on D, and ω is a 1-form defined by

(8) ω(X) = g(X, U), ∀X ∈ Γ(TM).

From (8), applying ϕ, we get

(9) ϕX = ϕPX − ω(X)V.

If we denote f = ϕP , then f is a tensor filed of type (1,1) over M and we have

(10) ϕX = fX − ω(X)V.

If we apply the operator ϕ to the relation (10) and taking account on (9), we have

(11) f2 = −I + η ⊗ ξ + ω ⊗ U.

Also,

(12) ω ◦ f = 0, ω(ξ) = 0, fξ = 0, fU = 0, η ◦ f = 0, η(ξ) = 1, and ω(U) = 1.

From (iii) and (10) we have

Proposition 1. Let M be a hypersurface of M̃ . Then

(13) g(fX, fY ) = g(X,Y )− η(X)η(Y )− ω(X)ω(Y ),

for any X, Y ∈ Γ(TM).

Corollary 1. The tensor field f is skew-symmetric, i.e., g(fX, Y ) = −g(X, fY ).

We recall the Gauss’ and Weingarten’s equations for a hypersurface

(14) ∇̃XY = ∇XY + g(AX, Y )V,

(15) ∇̃XV = −AX,

for any X, Y ∈ Γ(TM), where A is the Weingarten’s operator.
The Gauss equation for hypersurfaces is

g(R̃(X, Y )Z, W ) = g(R(X,Y )Z, W )(16)
+g(AY,W )g(AX, Z)− g(AX, W )g(AY, Z),

for any X, Y, Z, W ∈ Γ(TM).
In the above situations, we can write

(17) hX = TX + δ(X)V,
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for any vector field X ∈ Γ(TM), where δ is a 1-form defined by

(18) δ(X) = g(hX, V ).

4. Main results

In this paragraph we’ll suppose that M is a hypersurface of the (2n + 1)-
dimensional contact metric manifold M̃ , with the nullity condition (1).

Lemma 2. We have

∇Xξ = −fX − fTX − δ(X)U,(19)
g(AX, ξ) = ω(X) + ω(TX),(20)

for any X ∈ Γ(TM).

Proof. Let be X ∈ Γ(TM). From (vii), using the Gauss formula, we have

(21) ∇̃Xξ = −ϕX − ϕhX

i.e.,

∇Xξ + g(AX, ξ)V = −fX + ω(X)V − ϕ(TX)− δ(X)U(22)
= −fX + ω(X)V − fTX + ω(TX)V − δ(X)U.

Comparing by tangent and normal components, we get the results. ¤
From (2), (5) and Gauss equation we obtain the following:

Proposition 2. Let M be a hypersurface of M̃2n+1(c). Then the sectional curva-
tures of M are given by:

K(U, ξ) = k + µg(U, hU)− [1 + g(U, hU)]2,(23)
K(X, ξ) = k + µg(X, hX)− g(hX, U)2,(24)

K(X,U) =
1
4
(c + 3)− 2{g(hX, U)g(hU,X)(25)

− g(hU,U)g(hX, X)− 2g(hX,X)− 2g(hU,U)
+ g(hX,ϕU)g(ϕhU,X)− g(hU,ϕU)g(ϕhX, X)}
− g(AX,U)2 + g(AX,X)g(AU,U),

for any unitary vector field X ∈ Γ(D).

Corollary 2. If M is a hypersurface in M̃2n+1 so that g(hU,U) = 0, then
K(U, ξ) = k − 1.

Corollary 3. If M is a hypersurface in M̃2n+1 so that
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(a) g(hX, X) = 0, and

(b) g(hX, U) = 0, for any X ∈ Γ(D),

then K(X, ξ) = K̃(X, ξ), for any X ∈ Γ(D).

Theorem 4. Let M be a hypersurface, with hD ⊂ D and constant curvature C, of
M̃2n+1. We have C = k, µ = 0 and A/D = 0.

Proof. If M is a hypersurface with constant curvature C. We have:

(26) R(X, ξ)Y = C[η(Y )X − g(X, Y )ξ],

for any vector fields X,Y ∈ Γ(TM).
On the other hand, using the Gauss equation and (20), from (x) we have:

R(X, ξ)Y = k[η(Y )X − g(X,Y )ξ] + µ[η(Y )hX − g(hX, Y )ξ]
+g(Y + hY, U)AX − g(AX, Y )Aξ,

for any vector fields X,Y ∈ Γ(TM).
From (26) and (27) we get

(k − C)[η(Y )X − g(X,Y )ξ] + µ[η(Y )hX − g(hX, Y )ξ](27)
+g(Y + hY, U)AX − g(AX, Y )Aξ = 0,

for any X, Y ∈ Γ(TM).
Now, we suppose that Y ∈ Γ(D). Taking account on hypothesis that hD ⊂ D,

from (28) we derive that:

(28) (C − k)g(X,Y )ξ − µg(hX, Y )ξ − g(AX,Y )Aξ = 0.

We recall (20), where we have that Aξ and ξ are linear independent and, also,
g(AU, ξ) = 1 + g(hU,U). So, from (29), we obtain:

(29) (C − k)g(X,Y )− µg(hX, Y ) = 0

and

(30) g(AX, Y ) = 0,

for any X ∈ Γ(TM).
From (31) we obtain that A/D = 0.
In (30) we chose X = Y to be an unit vector field, and we obtain

(31) C − k = µg(hY, Y ),

for any Y ∈ Γ(D).
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Now, if we replace Y by ϕY , which is also unitary vector field, and taking
account of (vi)(a) we have

(32) C − k = µg(hϕY, ϕY ) = −µg(hY, Y ).

From the last two relations, (32) and (33), we have the rest of the proof. ¤

On the final of this paper we’ll suppose that M̃(ϕ, ξ, η, g) is a contact metric
manifold with the nullity condition which has the dimension 3, and M be a surface,
i.e., dim M = 2.

Because dim M = 2 and TM = span{U, ξ}, we have that Aξ = αU and from
(17) we get

g(R̃(U, ξ)ξ, U) = g(R(U, ξ)ξ, U)− g(AU,U)g(Aξ, ξ)(33)
+g(Aξ, U)g(AU, ξ),

i.e.,

(34) K̃(U, ξ) = K(U, ξ) + α2,

where K̃(U, ξ) and K(U, ξ) are the sectional curvatures of M̃ and M , respectively,
given by the sectional plane {U, ξ}.
Proposition 3. If M is a surface of the contact metric manifold M̃2n+1 with
the nullity condition, then the curvature of M is k − µ + α(µ − α) and Aξ =
U + g(hU,U)U .

Proof. From (3) and (36) we have

(35) K(U, ξ) = k + µg(hU,U)− α2.

On the other hand, from (21) we have

(36) g(hU, U) = α− 1,

so we get the first relation of the Theorem.
The second relation is deriving from the dimension of M and from (21). ¤
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