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ABSTRACT. The paper shows that a hypersurface with constant curvature with the con-
dition hD C D, of a contact metric manifold with a nullity condition and ¢-constant
sectional curvature, has the curvature equals to k and p = 0.

1. Introduction

The theory of CR-submanifold has been introduced by A. Bejancu in [1] and
was developed in many papers. In [1] is given the first and the most important
example of CR-submanifold, which is the hypersurface.

Let M(p, &, 1, g) be a (2n + 1)-dimensional contact metric manifold with the
contact structure given by the Riemannian metric g, structure vector field £, 1-form
n and the (1, 1)-tensor field ¢. A submanifold M of M is called a CR-submanifold
(semi-invariant, [2]) if there exist two differentiable distributions D and D+ on M

which satisfying

(a) TM = D @ D+ @ {¢}, where D @ D+ and {¢} are mutually orthogonal to
each other

(b) the distribution D is invariant by ¢, that ¢(D,) = D, for each v € M

(c) the distribution D+ is anti-invariant by ¢, that ¢(D}) = T,M* for each
reM.

In this way we obtain in TM* a vector subbundle v+ = (D). The comple-
mentary orthogonal subbundle to v+ in TM~' well denote by v, so that we have
the decomposition

TM* =vovt,

and v is invariant to ¢, i.e., v C v.

__ The goal of this paper is to study the hypersurfaces of contact metric manifolds
M (c) with a nullity condition and having the p-sectional curvature as a constant
number denoted by c.
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Let M be a Riemannian manifold. It is known that the tangent sphere bundle
T1 M admits a contact Riemannian structure (v, &, 7, g). T1M together with

this structure is a contact Riemannian manifold. If M is of constant sectional
curvature ¢ = 1, then T3 M is a Sasakian manifold, i.e., its curvature tensor R

satisfies R(X,Y)¢ = n(Y)X — n(X)Y for all vector fields X,Y. If ¢ = 0, then
the curvature tensor of Tlﬁ satisfies the condition E(X, Y)¢ = 0. Applying a D-
homothetic deformation on a contact Riemannian manifold satisfying E(X ,Y)E=0,
we get a contact Riemannian manifold such that R(X,Y)¢ = k[n(Y)X —n(X)Y]+
un(Y)hX —n(X)hY], where k, u are real constants and 2h is the Lie differentiation
of ¢ in the direction of £&. We call (see [3]) this kind of manifold, (k, u)—contact
Riemannian manifold, or contact metric manifold with nullity condition.

The tensor field K(X,pX) = g(R(X, pX)pX, X) is called the y-sectional cur-
vature of M. In [6] the author gave an expression of the curvature tensor when the

ambient manifold M has a constant y-sectional curvature ¢, denoted by M (o).
Theorem 4 will give as the form of the y-sectional curvature and also some
information about the Weigarten operator A on hypersurfaces.

2. Contact metric manifolds with nullity condition

A differential 1-form n on a differentiable (2n + 1)-dimensional manifold M is
called a contact form if it satisfies n A (dn)™ # 0 everywhere on M. By a contact

manifold (M,n) we mean a manifold M together with a contact form 7. Since dn
is of rank 2n, there exists a global vector field &, called the structure vector field,
such that

(i) n(¢) =1and L¢n = 0, where L¢ denotes the Lie differentiation by £. Moreover
it is well known that there exist a Riemannian metric g and a (1, 1)-tensor
field ¢ satisfying

) P =—-T+n&¢

(iil) g(pX,9Y) = g(X,Y) —n(X)n(Y)

) ¢§=0

(v) nop =20, for all vector fields X, ¥ on M.

The structure (@, &, 1, g) is called a contact Riemannian structure and the manifold
M carrying such structure is said to be a contact metric manifold, and we denote

it by M(p, & n, 9)-
Following [3] we define and we define the (1, 1)-type field h by:
2hX = (Lew)X, VX € T(TM)

which satisfies the relations:

(vi) (a) ho = —ph and
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(vi) (b) hE =0

Using (vi)(a), if X is an eigen vector field for h with respect the eigen value A, then
X is also an eigen vector of h, but with respect the eigen value-A.

The sectional curvature K(X,pX) of a plane section spanned by a vector X
orthogonal to £ is called a ¢-sectional curvature. .

It is known that the tangent sphere bundle 77 M of a Riemannian manifold M
admits a contact Riemannian structure (¢, &, 7, g), known as the standard contact
metric structure.

For real constants k, p, the (k, p)-nullity distribution of a contact metric man-

ifold M(p, & n, §) is a distribution
N(k,p): P — Np(k, i)
= {ZeTeM | RIX,Y)Z = K[g(Y, 2)X — 9(X, 2)Y]

+ulg(Y, Z)hX — g(X, Z)hY] }
So, if the structure vector field £ belongs to the (k, p)-distribution we have
(1) R(X,Y)E = k[n(Y)X = n(X)Y] + u[n(Y)hX = n(X)hY].

We'll call M to be a (k, w)—contact manifold, or contact metric manifold with nullity
condition (1), where k and p are real contents, and 2h is the Lie differentiantion of
¢ in direction of £ (conf. [3]).

The above construction is given in [5] and it study the (k, u)—contact manifold
introduced by the authors in [3].

It’s important to observe that if h = 0, then the contact metric manifold with
nullity condition (1) is a Sasakian manifold.

The following are true ([3]);

(vii) Vxé=—pX — phX
(viii) Vep = 0.

For any vector fields X,Y € I‘(T],\Z ) orthogonal to the structure vector filed ¢&,

K(X,Y) = g(R(X,Y)Y, X) is called sectional curvature of the manifold M.
We remind the following results:

Lemma 1 ([3]). Let M2+1(p, € n, §) be a contact metric manifold with &
belonging to the (k, w)-nullity distribution. Then

(ix) (Vxg)Y =g(X +hX,Y)E = n(Y)(X +hX)
(x) R(&X)Y = k[g(X, V)¢ =n(Y)X] + p[g(hX,Y)E = n(Y)hX]
(xi) h2 = (k—1)@?,  for any X,Y € I(TM).
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We recall that for any vector fields X, ¥ mutual orthogonal and orthogonal to
the structure vector field &, the tensor field K(X,Y) = g(R(X,Y)Y, X) is called
the sectional curvature of M given by the sectional plane {X,Y}. The tensor field
K(X,pX) = g(R(X,0X)pX, X) is called the p-sectional curvature of M. If the
manifold M has a constant @-sectional curvature ¢ for any sectional plane {X, pX },
we denote it by M (c). The sectional curvature K (X, &) of a sectional plane spanned
by & and another vector field X orthogonal to £ is called the &-sectional curvature.

Theorem 1 ([3]). Let M2”+1(<p, &, n, g) be a contact metric manifold, with the
nullity condition (1). Then k < 1. If k = 1, then h = 0 and M is a Sasakian
manifold. k < 1, then M determined by the eigenspaces of h, where A =+/1 — k.

Theorem 2 ([3]). Let M2"+1 (¢, €, 1, §) be a contact metric manifold, with the
nullity condition (1). If k < 1, then for any X orthogonal to & :

(a) the &-sectional curvature K (X, €) is given by:

~ . kE+ A, if X € D))
2 K(X, 8 =k hX, X)=
(2) (X,8) =k + ng( ) {k—/\m if X € D(-\)
(b) the sectional curvature of a sectional plane {X, Y} normal to € is given by:
21+ ) — p, X,Y € D())
3)  K(X,)Y)=q—-(k+p)(9(X,¢Y))? X €D andY € D(-N)
2(1 = X) — p, X, Y € D(—))

(c) M has constant scalar curvature, given by
(4) S=2n2(n—1)+k—nu.

In [6] the author obtained the form for the curvature tensor field of the manifold
M (c) with the nullity condition (1) and constant ¢-sectional curvature c.

Theorem 3 ([6]). Let M?"(p, & n, §) be a contact metric manifold (n > 1)
with & belonging to the (k, p)—nullity distribution. If the @-sectional curvature of

any point of M is independent of the choice of p-section at the point, then it is

constant on M and the curvature tensor is given by

(5)4R(X,Y)Z = (c+3){g(V,2)X —§(X,Z)Y}
+(c+3 = 4k){n(X)n(2)Y —n(Y)n(Z2)X + g(X, Z)n(Y)¢
—9(Y, Z)n(X)¢}
+e = D{20(X, oY )pZ + g(X, 0Z)Y — g(Y,0Z)p X}
—2{g(hX,Z)hY — g(hY, Z)hX + 29(X, Z)hY — 29(Y, Z)h X
=2n(X)In(2)hY +2n(Y)n(Z2)hX +29(hX, Z2)Y — 29(hY, Z)X
+2g(hY, Z)n(X)§ — 29(hX, Z)n(Y)§
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—3(phX, Z)phY + G(phY, Z)phX}
Hp{n(Y)n(Z)hX —n(X)n(Z)hY + g(hY, Z)n(X)§
—g(hX, Z)n(Y)E},

for any XY € F(TM), where ¢ is the constant p-sectional curvature. Moreover, if
k#1, thenp=k+1 and c= -2k —1.

3. Basic results

Let ]\7(@, &, 1, g) be a (2n + 1)-dimensional contact metric manifold with
the contact structure given by the Riemannian metric g, structure vector field ¢,
1-form 1 and the (1,1)-tensor field ¢. We denote by V the Levi-Civita connection
determined by g and the curvature tensor field R. We consider M be a submanifold
of M, with the induced connection denoted by V, curvature tensor field R and
induced metric tensor denoted also by g. .

A submanifold M of a contact metric manifold M is called a CR-submanifold
(semi-invariant, [1]) if there exist two differentiable distributions D and D+ on M
which satisfying

(a) TM = D@ D+ @ {¢}, where D@ D+ and {¢} are mutually orthogonal to
each other

(b) the distribution D is invariant by ¢, that ¢(D,) = D, for each x € M

(c) the distribution D+ is anti-invariant by ¢, that ¢(Dt) C T,M* for each
re M.

We denote by 2p and ¢ the real dimensions of D and D™ respectively, = € M. If
p-q# 0 then M is called a proper CR-submanifold.

Any hypersurface is a CR-submanifold of M.

This paper’s purpose is to study the hypersurfaces into contact metric manifolds
with nullity condition (1).

We recall some properties of hypersurfaces here.

Let M C M be an orientable hypersurface. We denote by V' the normal vector
field to M, into M. Then TM = TM & TM*, where TM* = span{V}.

We suppose that the structure vector field £ is tangent to M, so that we have
g(V,€) = 0. Let denote U = ¢V. We have g(U,V) = 0, so that the unit vector
field U is tangent to M. Let D+ = span{U}, so that dim D} = 1, for any point
x € M and also ¢(D+) = TM+. The distribution generated by ¢ will be denoted
by {¢}, and the complementary orthogonal distribution on T'M of the distribution
D+ @ {¢} will be denoted by D. So, we get the following decomposition

(6) TM =D& D* & {¢}.
From the last above relation, for any X € I'(T'M) we can write the decomposition

(7) X =PX +w(X)U +n(X)E,
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where P is the projection operator of TM on D, and w is a 1-form defined by
(8) w(X)=9(X,U),VX e T(TM).

From (8), applying ¢, we get

(9) X = pPX —w(X)V.

If we denote f = P, then f is a tensor filed of type (1,1) over M and we have
(10) X = fX —w(X)V.

If we apply the operator ¢ to the relation (10) and taking account on (9), we have
(11) fP=-I+n@{+wal.

Also,

(12) wof=0,w(&)=0,f=0, fU=0,n0f=0,n¢) =1, and w(U) = 1.
From (iii) and (10) we have

Proposition 1. Let M be a hypersurface of M. Then

(13) GUFX, JY) = g(X, V) = n(X)n(¥) - w(X)e(Y),

for any X, Y € T(TM).

Corollary 1. The tensor field f is skew-symmetric, i.e., g(fX,Y) = —g(X, fY).

We recall the Gauss’ and Weingarten’s equations for a hypersurface

(14) VxY = VxY + g(AX,Y)V,

(15) VxV = —AX,

for any X,Y € I'(T'M), where A is the Weingarten’s operator.
The Gauss equation for hypersurfaces is

(16)  g(R(X,Y)Z,W) = g(R(X,Y)Z,W)
+9(AY, W)g(AX, Z) — g(AX, W)g(AY, Z),

for any X,Y, Z, W € I'(TM).
In the above situations, we can write

(17) hX =TX 4+ 0(X)V,
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for any vector field X € I'(T'M), where ¢ is a 1-form defined by
(18) 6(X) =g(hX,V).

4. Main results

In this paragraph we’ll suppose that M is a hypersurface of the (2n + 1)-
dimensional contact metric manifold M, with the nullity condition (1).

Lemma 2. We have
(19) Vi€ = —fX— fTX —6(X)U,
(20) 9(AX, €) w(X) + w(T'X),

for any X € T(TM).
Proof. Let be X € T'(T'M). From (vii), using the Gauss formula, we have

(21) Vxé=—pX — phX
ie.,
(22) Vx&+9(AX, )V = —fX+wX)V—p(TX)-6X)U

= —fX4+wX)V—-fTX+w(TX)V-06X)U.
Comparing by tangent and normal components, we get the results. O

From (2), (5) and Gauss equation we obtain the following:

Proposition 2. Let M be a hypersurface of MQ”'H(C). Then the sectional curva-
tures of M are given by:

(23) K(Ua 5) = k+:ug(U? hU) - [1+g<Ua hU)]Za
(24)  K(X, &) = k+pug(X,hX)—-g(hX,U)?
() K(X.U) = g(c+3)~2{g(hX,U)g(hl, X)

— g(hU,U)g(hX, X) — 29(hX, X) — 2g(hU,U)
+g(hX, oU)g(phU, X) — g(hU, pU)g(phX, X)}
- g(AX7 U)2 + g(AXa X)g(AU7 U)v

for any unitary vector field X € T'(D).

Corollary 2. If M is a hypersurface in M2+ so that g(hU,U) = 0, then
KU,&)=k—1.

Corollary 3. If M is a hypersurface in M2"+1 5o that
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(a) g(hX,X)=0, and
(b) g(hX,U) =0, forany X € T'(D),
then K(X,§) = I?(X,ﬁ), for any X € T'(D).

Theorem 4. Let M be a hypersurface, with hD C D and constant curvature C, of
M?* L We have C =k, p=0 and A/p = 0.

Proof. If M is a hypersurface with constant curvature C. We have:
(26) R(X, )Y = Cn(Y)X — g(X,Y)¢],

for any vector fields X, Y € T'(TM).

On the other hand, using the Gauss equation and (20), from (x) we have:

R(X, QY = kn(Y)X —g(X,Y)§] + pn(Y)hX — g(hX,Y)E]
+g(Y + hY,U)AX — g(AX,Y)AE,

for any vector fields X, Y € T'(TM).

From (26) and (27) we get
(27) (k= C)n(Y)X — g(X,Y)E] + pn(Y)hX — g(hX,Y)¢]

+g(Y + hY,U)AX — g(AX,Y)AE = 0,

for any X, Y € (T M).

Now, we suppose that Y € I'(D). Taking account on hypothesis that hD C D,
from (28) we derive that:

(28) (C — K)g(X, V)¢ — pg(hX,Y)E — g(AX,Y)AE = 0.

We recall (20), where we have that A and & are linear independent and, also,
g(AU, &) = 14 g(hU,U). So, from (29), we obtain:

(29) (C—k)g(X,Y) — pg(hX,Y) =0
and
(30) g(AX,)Y) =0,

for any X € I'(T'M).
From (31) we obtain that A/p = 0.
In (30) we chose X =Y to be an unit vector field, and we obtain

(31) C— k= pg(hYY),

for any Y € T'(D).



Hypersurfaces of the Contact Metric Manifold 239

Now, if we replace Y by @Y, which is also unitary vector field, and taking
account of (vi)(a) we have

(32) C —k = pg(heY,pY) = —ug(hY)Y).
From the last two relations, (32) and (33), we have the rest of the proof. O

On the final of this paper we’ll suppose that ]\A/[/(go, &, n, g) is a contact metric
manifold with the nullity condition which has the dimension 3, and M be a surface,
ie., dimM = 2.

Because dim M = 2 and TM = span{U, £}, we have that A = aU and from
(17) we get

(33) g(RU,EEU) = g(R(U,EEU) — g(AU,U)g(AE,€)
+9(AE, U)g(AU,€),
(34) K(U.&) = K(U,&) +a?,

where K (U, ¢) and K (U, €) are the sectional curvatures of M and M, respectively,
given by the sectional plane {U, &}.

Proposition 3. If M is a surface of the contact metric manifold M2+ with,
the nullity condition, then the curvature of M is k — u + a(p — «) and A =
U+ g(hU,U)U.

Proof. From (3) and (36) we have

On the other hand, from (21) we have

(36) g(hU, U) = a —1,
so we get the first relation of the Theorem.

The second relation is deriving from the dimension of M and from (21). O
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