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A CHARACTERIZATION THEOREM FOR LIGHTLIKE

HYPERSURFACES OF SEMI-RIEMANNIAN MANIFOLDS

OF QUASI-CONSTANT CURVATURES

Dae Ho Jin

Abstract. In this paper, we study lightlike hypersurfaces M of semi-

Riemannian manifolds M̄ of quasi-constant curvatures. Our main result
is a characterization theorem for screen homothetic Einstein lightlike hy-

persurfaces of a Lorentzian manifold of quasi-constant curvature subject

such that its curvature vector field ζ is tangent to M .

1. Introduction

B.Y. Chen and K. Yano [2] introduced the notion of a Riemannian manifold
of quasi-constant curvature as a Riemannian manifold (M̄, ḡ) endow with the
curvature tensor R̄ satisfying the following equation:

ḡ(R̄(X,Y )Z,W ) = α{ḡ(Y, Z)ḡ(X,W )− ḡ(X,Z)ḡ(Y,W )} (1.1)

+ β{ḡ(X,W )θ(Y )θ(Z)− ḡ(X,Z)θ(Y )θ(W )

+ ḡ(Y, Z)θ(X)θ(W )− ḡ(Y,W )θ(X)θ(Z)},

for any vector fields X, Y, Z and W of M̄ , where α and β are smooth functions
and θ is a 1-form associated with a non-vanishing smooth unit vector field ζ by

θ(X) = ḡ(X, ζ), (1.2)

ζ is called the curvature vector field of M̄ . It is well known that if the curvature
tensor R̄ is of the form (1.1), then M̄ is conformally flat. If β = 0, then M̄ is
a space of constant curvature α.

A non-flat Riemannian manifold M̄ of dimension n(> 2) is called a quasi-
Einstein manifold [1] if its Ricci tensor R̄ic satisfies the condition

R̄ic(X,Y ) = a ḡ(X,Y ) + b φ(X)φ(Y ),

where a and b are smooth functions such that b 6= 0 and φ is a non-vanishing
1-form such that ḡ(X,U) = φ(X) for any vector field X, where U is a unit
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vector field. If b = 0, then M̄ is an Einstein manifold. It is easily to see that
every Riemannian manifold of quasi-constant curvature is quasi-Einstein.

The classification of Einstein lightlike hypersurfaces M in semi-Riemannian
manifolds M̄ was studied by K.L. Duggal and D.H. Jin [5]. Their main results
focused on the geometry of Einstein lightlike hypersurfaces M of a Lorentzian
space form M̄(c) of constant curvature c, whose shape operator is conformal
to the shape operator of its screen distribution by some non-zero constant ϕ,
which is called the conformal factor. Such a M is called screen homothetic. The
reason for this geometric restriction on M was due to the fact that such a class
admits a canonical integrable screen distribution and a symmetric induced Ricci
tensor of M . Authors proved a characterization theorem for screen homothetic
Einstein lightlike hypersurfaces of a Lorentzian space form as it follow:

Theorem 1.1. Let M be a screen homothetic Einstein lightlike hypersurface
of a Lorentzian space form M̄m+2(c), m > 2, such that Ric = κg. Then c = 0,
i.e., M̄ is flat manifold, and M is locally a product manifold C ×M

1
×M

2
,

where C is a null curve tangent to the radical distribution, and M
1

and M
2

are
leaves of some integerable distributions of M such that

(1) If κ 6= 0, then either M
1

or M
2

is an m-dimensional totally umbilical
Einstein Riemannian space form which is isometric to a sphere or a
hyperbolic space according to the sign of κ and the other is a point.

(2) If κ = 0, then M1 is an (m− 1) or an m-dimensional Euclidean space
and M2 is a non-null curve or a point.

After that, D.H. Jin [6] generalized the above Duggal-Jin’s characterization
theorem for screen conformal Einstein lightlike hypersurfaces of Lorentzian
space forms in which the conformal factor is non-vanishing smooth function ϕ.

The objective of this paper is to generalize the above characterization the-
orem for screen homothetic Einstein lightlike hypersurfaces of a Lorentzian
manifold of quasi-constant curvature. We prove a characterization theorem for
screen homothetic lightlike hypersurfaces M of a Lorentzian manifold M̄ of
quasi-constant curvature subject such that the curvature vector field ζ of M̄ ,
defined by (1.2), is tangent to M .

2. Lightlike hypersurface

It is well-known [3] that the normal bundle TM⊥ of the lightlike hyper-
surfaces (M, g) of a semi-Riemannian manifold (M̄, ḡ) is a subbundle of the
tangent bundle TM and coincides with the radical distribution Rad(TM) =
TM ∩TM⊥. Thus there exists a non-degenerate complementary vector bundle
S(TM) of Rad(TM) in TM , which is called a screen distribution, such that

TM = Rad(TM) ⊕orth S(TM), (2.1)

where ⊕orth denotes the orthogonal direct sum. We denote such a lightlike
hypersurface by M = (M, g, S(TM)). Denote by F (M) the algebra of smooth
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functions on M and by Γ(E) the F (M) module of smooth sections of a vector
bundle E over M . It is well-known [3] that, for any null section ξ of Rad(TM)
on a coordinate neighborhood U ⊂ M , there exists a unique null section N of
a unique lightlike vector bundle tr(TM) in S(TM)⊥ satisfying

ḡ(ξ,N) = 1, ḡ(N,N) = ḡ(N,X) = 0, ∀X ∈ Γ (S(TM)|U ) .

Then the tangent bundle TM̄ of M̄ is decomposed as follows:

TM̄ = TM ⊕ tr(TM) = {Rad(TM) ⊕ tr(TM)} ⊕orth S(TM). (2.2)

We call tr(TM) and N the transversal vector bundle and the null transversal
vector field of M with respect to S(TM) respectively.

In the sequel, we take X, Y, Z, W ∈ Γ(TM), unless otherwise specified. Let
∇̄ be the Levi-Civita connection of M̄ and P the projection morphism of TM
on S(TM) with respect to the decomposition (2.1). Then the local Gauss and
Weingartan formulas for M and S(TM) are given respectively by

∇̄XY = ∇XY +B(X,Y )N, (2.3)

∇̄XN = −A
N
X + τ(X)N ; (2.4)

∇XPY = ∇∗XPY + C(X,PY )ξ, (2.5)

∇Xξ = −A∗ξX − τ(X)ξ, (2.6)

where ∇ and ∇∗ are the linear connections on TM and S(TM) respectively, B
and C are the local second fundamental forms on TM and S(TM) respectively,
A

N
andA∗ξ are the shape operators on TM and S(TM) respectively and τ is a 1-

form on TM . Since ∇̄ is torsion-free, ∇ is also torsion-free and B is symmetric.
From the fact B(X, Y ) = g(∇̄XY, ξ), we know that B is independent of the
choice of the screen distribution S(TM) and

B(X, ξ) = 0. (2.7)

The induced connection ∇ of M is not metric and satisfies

(∇Xg)(Y,Z) = B(X,Y ) η(Z) +B(X,Z) η(Y ), (2.8)

η(X) = ḡ(X,N).

But the induced connection ∇∗ on S(TM) is metric. The above two local
second fundamental forms B and C are related to their shape operators by

B(X,Y ) = g(A∗ξX,Y ), ḡ(A∗ξX,N) = 0, (2.9)

C(X,PY ) = g(A
N
X,PY ), ḡ(A

N
X,N) = 0. (2.10)

From (2.9), A∗ξ is S(TM)-valued and self-adjoint on TM such that

A∗ξξ = 0. (2.11)

Denote by R̄, R and R∗ the curvature tensors of the connections ∇̄, ∇ and
∇∗ respectively. Using the Gauss-Weingarten formulas for M and S(TM), we
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obtain the Gauss-Codazzi equations for M and S(TM) such that

ḡ(R̄(X,Y )Z, PW ) = g(R(X,Y )Z, PW ) (2.12)

+ B(X,Z)C(Y, PW )−B(Y,Z)C(X,PW ),

ḡ(R̄(X,Y )Z, ξ) = (∇XB)(Y,Z)− (∇YB)(X,Z) (2.13)

+ B(Y, Z)τ(X)−B(X,Z)τ(Y ),

ḡ(R̄(X,Y )Z, N) = ḡ(R(X,Y )Z, N), (2.14)

ḡ(R̄(X,Y )ξ, N) = g(A∗ξX,AN
Y )− g(A∗ξY,AN

X)− 2dτ(X,Y ), (2.15)

g(R(X,Y )PZ, PW ) = g(R∗(X,Y )PZ, PW ) (2.16)

+ C(X,PZ)B(Y, PW )− C(Y, PZ)B(X,PW ),

ḡ(R(X,Y )PZ, N) = (∇XC)(Y, PZ)− (∇Y C)(X,PZ) (2.17)

+ C(X,PZ)τ(Y )− C(Y, PZ)τ(X).

The Ricci tensor R̄ic of M̄ is defined by

R̄ic(X,Y ) = trace{Z → R̄(Z,X)Y },
for any X, Y ∈ Γ(TM̄). Let dim M̄ = m+ 2. Locally, R̄ic is given by

R̄ic(X,Y ) =

m+2∑
i=1

εi ḡ(R̄(Ei, X)Y, Ei), (2.18)

where {E1, . . . , Em+2} is an orthonormal frame field of TM̄ .

3. Screen homothetic lightlike hypersurfaces

Now we consider an induced quasi-orthonormal frame field {ξ;Wa} on M ,
where Rad(TM) = Span{ξ} and S(TM) = Span{Wa} and let E = {ξ,N,Wa}
be the corresponding frame field on M̄ . By using (2.18), we get

R̄ic(X,Y ) =

m∑
a=1

εa ḡ(R̄(Wa, X)Y, Wa) + ḡ(R̄(ξ,X)Y, N) (3.1)

+ ḡ(R̄(N,X)Y, ξ), ∀X, Y ∈ Γ(TM̄),

where εa(= ±1) denotes the causal character of respective vector field Wa. Let
R(0, 2) denote the induced Ricci type tensor of type (0, 2) on M given by

R(0, 2)(X,Y ) = trace{Z → R(Z,X)Y } , ∀X, Y ∈ Γ(TM). (3.2)

Using the induced quasi-orthonormal frame field {ξ;Wa} on M , we obtain

R(0, 2)(X,Y ) =

m∑
a=1

εa g(R(Wa, X)Y, Wa) + ḡ(R(ξ,X)Y, N). (3.3)

Substituting (2.12) and (2.14) in (3.1) an using (2.9) and (2.10), we obtain

R(0, 2)(X,Y ) = R̄ic(X,Y ) +B(X,Y )trA
N
− g(A

N
X,A∗ξY ) (3.4)

− ḡ(R(ξ, Y )X, N), ∀X, Y ∈ Γ(TM).
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This shows that R(0, 2) is not symmetric. The tensor field R(0, 2) is called its
induced Ricci tensor [4], and denote it by Ric, if it is symmetric. If R(0, 2) is
an induced Ricci tensor Ric of M and Ric = κg, then M is called an Einstein
manifold. In this case, if m > 1, then we show that κ is a constant.

Using (2.15), (3.4) and the first Bianchi’s identity, we obtain

R(0, 2)(X, Y )−R(0, 2)(Y, X) = 2dτ(X, Y ), ∀X, Y ∈ Γ(TM).

From this equation, we have the following theorem:

Theorem 3.1. [3, 4] Let M be a lightlike hypersurface of a semi-Riemannian
manifold M̄ . Then the Ricci type tensor R(0, 2) is symmetric if and only if the
1-form τ is closed, i.e., dτ = 0, on any coordinate neighborhood U ⊂M .

Remark 1. In case dτ = 0, by the cohomology theory there exist a smooth
function l such that τ = dl. Thus we get τ(X) = X(l). If we take ξ̃ = γξ,
then we have τ(X) = τ̃(X) + X(ln γ). Setting γ = exp(l) in this equation,
we get τ̃(X) = 0. We call the pair {ξ, N} such that the corresponding 1-form
τ vanishes the canonical null pair of M . Although S(TM) is not unique and
the lightlike geometry depends on its choice but it is canonically isomorphic to
the factor vector bundle S(TM)] = TM/Rad(TM) due to Kupeli [8]. Thus
all S(TM) are mutually isomorphic. In the sequel, we deal with only lightlike
hypersurfaces M equipped with the canonical null pair {ξ, N}.

Let M be a lightlike hypersurface of a semi-Riemannian manifold M̄ of
quasi-constant curvature. We may assume that the curvature vector field ζ
of M̄ is a spacelike unit tangent vector field of M . In this case, if ζ belongs
to Rad(TM), then ζ = eξ, where e = θ(N) 6= 0. From this fact, we have
1 = ḡ(ζ, ζ) = e2g(ξ, ξ) = 0. It is a contradiction. This enables one to choose a
screen distribution S(TM) which contains ζ due to (2.1). This implies that if
ζ is tangent to M , then it belongs to S(TM) which we assume in this paper.

Definition 1. A lightlike hypersurface M of a semi-Riemannian manifold M̄
is screen conformal [4, 5, 6] if the shape operators A

N
and A∗ξ are related by

A
N

= ϕA∗ξ , or equivalently, the second fundamental forms B and C satisfy

C(X,PY ) = ϕB(X,Y ), (3.5)

where ϕ is a non-vanishing smooth function on a coordinate neighborhood U
in M . If ϕ is a non-zero constant, then we say that M is screen homothetic.

Example 1. Let (R7
2, ḡ0

) be a 7-dimensional semi-Euclidean space of index 2
with signature (−,−,+,+,+,+,+) of the canonical basis

{∂x1, ∂x2, · · · , ∂x6, ∂x7 = ζ}.

Consider a lightlike hypersurface M of R7
2, defined by

X(u1, u2, u3, u4, u5, t) = (u1 + u2 + u3, u1, u2, u3, u4, u5, t),
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whose radical distribution Rad(TM) is spanned by

ξ = ∂1 − ∂2 + ∂3 + ∂4.

We consider a complementary vector bundle F ∗ of TM⊥ in S(TM)⊥ and take
V ∗ = ∂1 − ∂2 ∈ Γ(F ∗), V ∗ 6= 0, such that ḡ

0
(ξ, V ∗) 6= 0. Then the transversal

vector bundle is given by tr(TM) = Span{N}, where

N =
1

ḡ0(ξ, V ∗)

{
V ∗ − ḡ

0
(V ∗, V ∗)

2ḡ0(ξ, V ∗)
ξ

}
= −1

4
(∂1 − ∂2 − ∂3 − ∂4).

It follows that the corresponding screen distribution S(TM) is spanned by

{W1 = ∂1 + ∂2, W2 = ∂3 − ∂4, W3 = ∂5, W4 = ∂6, W5 = ∂7 = ζ}.

Taking the covariant derivative to N along R7
2, we get

∇̄XN =
1

4
∇̄Xξ, since ∇̄XV ∗ = 0.

Using Gauss and Weingarten formulae, we obtain

−A
N
X + τ(X)N = −1

4
(A∗ξX + τ(X)ξ).

Taking the scaler product with ξ and N to this, we get τ(X) = 0, which gives

A
N
X =

1

4
A∗ξX, ∀X ∈ Γ(TM).

Thus M is a screen homothetic lightlike hypersurface of conformal factor ϕ = 1
4 .

Theorem 3.2. Let M be a screen conformal lightlike hypersurface of a semi-
Riemannian manifold M̄ of quasi-constant curvature. If ζ is tangent to M ,
then the tensor field R(0, 2) is an induced symmetric Ricci tensor of M .

Proof. Replacing W by N to (1.1) and using the fact θ(N) = 0, we have

ḡ(R̄(X,Y )Z, N) = α{η(X)g(Y, Z)− η(Y )g(X,Z)} (3.6)

+ β{θ(Y )η(X)− θ(X)η(Y )}θ(Z).

Replacing Z by ξ to (3.6) and using θ(ξ) = 0, we have ḡ(R̄(X,Y )ξ, N) = 0.
Comparing this result with (2.15) and using the fact A

N
= ϕA∗ξ , we show that

dτ = 0. Thus, by Theorem 3.1, we have our assertion. �

Theorem 3.3. Let M be a screen homothetic lightlike hypersurface of a semi-
Riemannian manifold M̄ of quasi-constant curvature. If ζ is tangent to M ,
then the functions α and β vanish identically. Thus M̄ is a flat manifold.

Proof. Using (1.1), (2.14) and (3.6), we have

R̄ic(X,Y ) = {(m+ 1)α+ β}g(X,Y ) +mβ θ(X)θ(Y ), (3.7)

ḡ(R(ξ, Y )X, N) = αg(X,Y ) + βθ(X)θ(Y ). (3.8)
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Substituting the last two equations into (3.4), we have

R(0, 2)(X,Y ) = {mα+ β}g(X,Y ) + β(m− 1)θ(X)θ(Y ) (3.9)

+ B(X,Y )trA
N
− g(A

N
X,A∗ξY ).

As dτ = 0, we can take a canonical null pair such that τ = 0 due to Remark 1.
Replacing W by ξ to (1.1) and using (2.13) and the fact θ(ξ) = 0, we have

(∇XB)(Y, Z)− (∇YB)(X,Z) = 0. (3.10)

Assume that M is screen homothetic. Substituting (3.5) into (2.17) and us-
ing (3.10), we get ḡ(R(X,Y )PZ,N) = 0. From this result and the fact
ḡ(R(X,Y )ξ,N) = 0, we show that, for all Z ∈ Γ(TM),

ḡ(R(X,Y )Z,N) = 0.

Replacing X by ξ and Z by X to this and comparing with (3.8), we have

βθ(X)θ(Y ) = −αg(X,Y ), ∀X, Y ∈ Γ(TM). (3.11)

Taking X = Y = ζ to (3.11), we get β = −α. Substituting (3.11) into (3.9)
and using the fact β = −α, we obtain

Ric(X,Y ) = ϕ{B(X,Y )trA∗ξ − g(A∗ξX,A
∗
ξY )}. (3.12)

Substituting (3.11) into (1.1) and using (2.12), (2.13) and (3.5), we have

R(X,Y )Z = α{g(X,Z)Y − g(Y, Z)X} (3.13)

+ ϕ{B(Y,Z)A∗ξX −B(X,Z)A∗ξY }.

Substituting (3.13) and ḡ(R(ξ, Y )X, N) = 0 into (3.3), we also have

Ric(X,Y ) = − (m− 1)α g(X,Y ) + ϕ{B(X,Y )trA∗ξ − g(A∗ξX,A
∗
ξY )}. (3.14)

Comparing (3.12) and (3.14), we obtain α = 0 as m > 1. As β = −α, we also
have β = 0. Thus M̄ is a flat manifold. �

By the characterization theorem of Duggal-Jin [5] (Theorem 1.1 in this pa-
per), we have the following result:

Theorem 3.4. Let M be a screen homothetic Einstein lightlike hypersurface
of a Lorentzian manifold M̄m+2, m > 2, of quasi-constant curvature such that
Ric = κg. If the curvature vector field ζ of M̄ is tangent to M , then M̄ is flat
manifold and M is locally a product manifold C ×M

1
×M

2
, where C is a null

curve tangent to the radical distribution, and M
1

and M
2

are leaves of some
integerable distributions of M such that

(1) If κ 6= 0, then either M
1

or M
2

is an m-dimensional totally umbilical
Einstein Riemannian space form which is isometric to a sphere or a
hyperbolic space according to the sign of κ and the other is a point.

(2) If κ = 0, then M
1

is an (m− 1) or an m-dimensional Euclidean space
and M

2
is a non-null curve or a point.
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