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ON H;-PROPER TIMELIKE HYPERSURFACES IN LORENTZ
4-SPACE FORMS

FIRO0OZ PASHAIE

ABSTRACT. The ordinary mean curvature vector field H on a submanifold
M of a space form is said to be proper if it satisfies equality AH = aH
for a constant real number a. It is proven that every hypersurface of
an Riemannian space form with proper mean curvature vector field has
constant mean curvature. In this manuscript, we study the Lorentzian
hypersurfaces with proper second mean curvature vector field of four di-
mensional Lorentzian space forms. We show that the scalar curvature of
such a hypersurface has to be constant. In addition, as a classification
result, we show that each Lorentzian hypersurface of a Lorentzian 4-space
form with proper second mean curvature vector field is C-biharmonic, C-
1-type or C-null-2-type. Also, we prove that every Ha-proper Lorentzian
hypersurface with constant ordinary mean curvature in a Lorentz 4-space
form is 1-minimal.

1. Introduction

Among the differential geometric research subjects, the study of constant
mean curvature submanifolds is of great importance. Clearly, every such a
submanifold of an Euclidean space satisfies the proper condition. On the con-
trary, this is a question that has remained unanswered in some cases and is
closely related to a famous conjecture of Bang-Yen Chen which says that ev-
ery submanifold of an Euclidean space with harmonic mean curvature vector
field has zero mean curvature [6]. It has several improvements (for instance)
in [1,5,8,9]. In this field, Defever has proved that the mean curvature of a
hypersurface in E* is constant if its mean curvature vector is proper ([7]). The
subject of hypersurfaces in semi-Riemannian manifolds has been studied in the
last two decades (see [2,4,17,20]).

By definition, a hypersurface is H-proper if it satisfies the condition AH =
aH for a constant real number a, where A is the Laplace operator. In this
paper, we take an extended version of this condition by putting the Cheng-Yau
operator C instead of A. The operator C denotes the linear operator arisen
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from the first variation of the second mean curvature (see [3,11,15,16, 19]).
We study the Hy-proper timelike (i.e. Lorentzian) hypersurfaces of Lorentz 4-
space forms. Since there are four possible matrix forms for the shape operator
of such a hypersurface, we discuss the subject in four different cases.

2. Preliminaries

We recall some notations and formulae from [10,13-16,21]. We use the semi-
Euclidean 5-space Eg of index & = 1,2, equipped with the product defined by

(v,w) = — Zle vw; + Zf:g-s—l v;w;, for each vectors v = (vy,...,v;5) and
w = (wy,...,ws) in R®. In fact, we deal with the 4-dimensional Lorentzian
space forms with the following common notation

SH(r) (if c =1/r?)
Mi(c) =< L*=E} (if ¢=0)
Hi(—r) (if c = —1/r?),

where, for r > 0, S{(r) = {v € E}|(v,v) = r?} denotes the 4-pseudosphere
of radius 7 and curvature 1/r%, and Hi(—r) = {v € E3|(v,v) = —r?,v; > 0}
denotes the pseudo-hyperbolic 4-space of radius —r and curvature —1/r%. In
the canonical cases ¢ = +1, we get the de Sitter 4-space dS* := S}(1) and anti
de Sitter 4-space AdS* = H}(—1). Also, for ¢ = 0 we get the Lorentz-Minkowski
4-space L* := Ef.

We consider a Lorentzian (timelike) hypersurface M; of a canonical Lorentzi-
an 4-space form (i.e. Mj(c) for ¢ = 0,£1) defined by an isometric immersion
x : M3 — Mi(c). The set of all smooth tangent vector fields on M5 is denoted
by x(M3). The symbols V and V denote the Levi-Civita connections on M;
and M{(c), respectively. Also, V° denotes the Levi-Civita connection on E3
(for v = 1,2). The Weingarten formula on M; is VyW = Vy W + (SV, W)n,
for each V,W € x(Mj3), where S is the shape operator associated to a unit
normal vector field n on M. Furthermore, in the case |c| = 1, M?*(c) is a
4-hyperquadric with the unit normal vector field x and the Gauss formula
VOW =VyW —c(V,W)x.

According to the Lorentz metric on M3 induced from M*(c), we can de-
termine the possible states for a base of the tangent space of Mj. For a de-
tailed study, one can refer to the references [12,13,18]. In general, a basis
Q := {wy,wa, w3} of a Lorentz linear 3-space is said to be orthonormal if it
satisfies equalities (w1, w1) = —1, (w2, we) = (w3, ws) = 1 and (w;,w;) = 0
for each i # j. Also, Q is called pseudo-orthonormal if it satisfies (w1, wq) =
(wa, wa) = 0, (wy,ws) = —1 and (w;, ws) = &3 for i = 1,2,3. As usual, § is the
Kronecker Delta.

Associated to a basis chosen on M3, the second fundamental form (shape
operator) S has four different matrix forms. When the metric on M3 has
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diagonal form G; := diag[—1,1, 1], then S is of form D; = diag[A1, A2, A3] or

D, =diagl| X, 3 | Nl (2 £0)

In the non-diagonal metric case G = diag[{ 0 (1) } , 1] the shape operator is of
form "
1 1 A 0 ¥2
Dy=diag[| M2 7, [ NJoDi=| o oA -2 |
oM 2 -2

When S = Dy, we say that M; is a Dy-hypersurface. To unify symbols, we
define the ordered triple {k1; k2; k3} of principal curvatures as follows:

{/\1;)\2;)\3} (lf SZDl)

. . _ {/\1 +i/\2;>\1 —i/\2;>\3} (lf SZDQ)

{msmaimal =9\ ) (it S = Dy)
{2} (if S ="Dy)

We apply the symmetric functions
3
Sp ‘= 1,51 = ZHj,SQ = Z Ri Riy and S3 i= K1K2K3,
Jj=1 1<i1<i2<3
in the definition of jth mean curvature of M} given by H; = (Tll)sj (where

j = 0,1,2,3). When H,4 is identically null, M7 is called j-minimal. By
definition, a D;-hypersurface M7 is isoparametric if it has constant principal
curvatures. For k = 2, 3,4, a Dy-hypersurface M; is isoparametric if the coeffi-
cients of minimal polynomial of its shape operator are constant. By a theorem
in [12], each timelike hypersurface of M (c) with complex principal curvatures
is non-isoparametric. The Newton operators on M; are given by the inductive
definitions No = I and Nj = s;1 —SoN,_; for j =1,2,3. As usual, I denotes
the identity operator (see [15,16]).

In special case, H; is the ordinary mean curvature H. The second mean
curvature Hy and the normalized scalar curvature R satisfy the equality Hy :=
n(n—1)(1 - R).

We apply the Newton map on M; by expression

(2.1) No=1I, Ny =—511+S, Nog=s95] —51S+ s2.

We need to certify the matrix form of Ny and Ny in four cases S = Dy, (k =
1,2,3,4). When S = Dy, we have Ny = diag[As + A3, A1 + A3, A1 + A2] and
N2 = diag[)\g)\g,, /\1)\3, /\1 /\2]

In the case S = D,

A1+ A3 —A2
A2 A1+ A3

AAs  —A2)g

N; = diag[{ },2&] and Np = diag[[ ],/\% + A3

A3 A1A3
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When S = Ds,
T A4+ Ap — L -1
Nldlag[[ s 2 A1+Az+% },2)\1] and
. (A1 — DHxs —1ix; 2
No = dlag[|: Ixe A1+ )X :| 7)\1].

In the case S = Dy,

22 0 -2
o a2 2

V2 V2
T 3 2X

15

2 1 1
1 2

‘&N
>

1
2

N1 = and N2 = A2 4
V25 25

Nl

] |

> )
S

We have the following formulae for the Newton transformations:
tr(Ny) = ¢;Hj, tr(SoN;) = ¢;Hjpa,

tl"(S2 o Nl) = 9H1H2 - 3H3, tI’(52 o Nz) = 3H1H3,
where 7 =0,1,2, ¢cg =c2 =3 and ¢; = 6.

Now, we consider the Cheng-Yau operator C : C*°(M3) — C*°(M3) given
by C(f) = tr(Ny o V2f), where, V2f : x(M) — x(M) denotes the self-adjoint
linear operator metrically equivalent to the Hessian of f which is defined by
(V2f)X = Vx (V) for every smooth vector fields X on M3, where Vf = #df.
In other words, C(f) is given by C(f) = Zle wii(eeif —Veeif).

A hypersurface is said to be Hy-proper if its second mean curvature vector
field satisfies the condition CHy = aHj, for a constant number a. Clearly, this
condition has a simpler expression by two equations as:

(1) CH2 = HQ(CL + 9H1H2 - 3H3),

(2.2)

(2.3) ) 9
(11) NQVHQ == 5H2VH2.
Now we recall the definition of an C-finite type hypersurface from [10]. The
structure equations of E are given by
4
dw; = Zwij Nwj, Wij + Wi = 0
j=1

and
4

dwij = Zwu Awij.
1=1
With restriction to M3, we have wy = 0 and then,
3
0=dws = Zwm N\ Wj.
i=1
A lemma due to Cartan gives the decomposition

3
wai =y hijw;
j=1
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for smooth functions h,; satisfying the equality B = ) h;jw;wjes, where B is
the second fundamental form of M. The mean curvature H is given by

13
So, the structure equations of M are
3
dw; = Zwij AWy, Wij +wj; = 0,
j=1

3 3
1
dw;; = Zwik ANWrj — 3 Z Rijriwr A wy
k=1 k=1
for 4,5 = 1,2, 3, and the Gauss equations R;;x = (hithji — hithjx), where R;ji
denotes the components of the Riemannian curvature tensor of M. Now, let
hiji denote the covariant derivative of h;;. We have

3 3 3
dhij = hirwp + Y higwie + Y hirwix.
k=1 k=1 k=1

One can choose ey, ...,e, such that h;; = K;0;5. On the other hand, the
Levi-Civita connection of M? satisfies V¢,e; = Y, wjk(ei)er, and we have
ei(k;) = wij(e;j) (ki — K;) and

wij(e) (ki — k5) = wale;) (ki — K1)
whenever 1, 7,1 are distinct.

Definition 2.1. An isometrically immersed hypersurface ¢ : M — Mf(c)
(for ¢ = £1) is said to be of C-finite type if 9 has a finite decomposition
=Y i, for some positive integer m, satisfying the condition Ctp; = 1),
for some real numbers v; € R and vector mappings v; : M7 — E? (where
s=1lors=2)fori=12,---,m, and 9 is a constant vector. M" is called
C-m-~type if all ;’s are mutually distinct. An C-m-type hypersurface is said to
be null if for at least one 7 (1 < i < m) we have v; = 0.

3. Hso-proper Hypersurfaces

In this section, we study the Ha-proper timelike hypersurfaces of M (c).

Theorem 3.1. Every Hy-proper Di-hypersurface x : M7 — Mi(c) satisfies
one of the following conditions:

(i) M3 is C-biharmonic,
(i) M3 is of C-1-type,
(iii) M3 is of C-null-2-type.
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Proof. By assumption, Hs is proper, which means that it satisfies condition
CH, = cH, for a constant real number c¢. If ¢ = 0, then Mf is a C-biharmonic
hypersurface, which gives (i). In the case ¢ # 0, taking x; = 1Cx and x¢ =
X — X1, we have

1 6
CX1 = EC2X = ECH2 = 6H2 = Cx.

Hence, M is either of C-1-type or of C-null-2-type, depending on xg is a con-
stant or non-constant. The converse is easy to verify. (]

Theorem 3.2. The C-finite type Lorentz hypersurfaces of the 4-dimensional
Lorentz space form can not be C-biharmonic.

Proof. Let x : M3 — Mj(c) be a C-k-type Lorentzian hypersurface. There is
a decomposition as

(3.1) X =Xo+ X1+ -+ Xg,

with Cxg = 0 and Cx; = \;x; for nonzero distinct eigenvalues Aq,..., Ax of C.
From (3.1) we get

(3.2) C’x = Aix1 + -+ + A\ixg,

for s=1,2,3,....

Now, assume that x is C-biharmonic (i.e C*x = C*x = 0). So, from (3.2)
we get
/\%x1+~~+)\zxk =0
)\:{’x1+~~~+)\ixk =0,

Since A1, ..., A; are mutually distinct eigenvalues of C, the vectors x1,...,xy
are linearly independent. Hence, we have \; = --- = A\ = 0, which is a
contradiction. (]

Proposition 3.3. Each Hy-proper D;-hypersurface of Mi(c) with three dis-
tinct principal curvatures has constant scalar curvature.

Proof. Let x : M7 — Mj(c) be such a hypersurface. It is enough to prove
that Hs is constant. By the method of reasoning on reductio ad absurdum,
we assume that U = {p € M : VH3(p) # 0} is non-empty. Since the shape
operator S is of type Dy, for mutually distinct A;’s (i = 1,2,3) we have Se; =

3
Aie; and Noe; = p; 2¢;. By decomposition VHs = Y €;e;(Ha)e;, the condition
i=1
(2.3)(ii) gives

(3.3) ei(Hz)(pi2 — gHz) =0, (i=1,2,3).

Around each point in U, there exists an open neighborhood on which we have
e;(Hs) # 0 for at least one i. We can assume (without loss of generality)
that e1(Hz) # 0 and then we get pu12 = JHs (locally) on U, which gives
Aos = 3 H,.
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The continuation of the proof is the confirmation of several equalities, which
is done in three steps.

Step 1: 62(H2) = 63(H2) =0.
If eo(Hz) # 0 or eg(Hz) # 0, then by (3.3) we get 12 = poo = %HQ or
Hi2 = H32 = %Hg, which give (A — A2)A3 = 0 or (A1 — A3)A2 = 0. Since \;’s
are distinct, we have A3 = 0 or Ay = 0, and then Hy = 0 on U. The result
contradicts with the definition of U.

Step 2: 62()\1) = 63()\1) =0.
From the assumption that H is constant, it follows that

6’2(/\1) = 62(3H — )\1 — )\2) = —62(/\1) — 62(/\2).

On the other hand, by Step 1 we have ex(Hz) = 0 and AaAg = %Hg and then
we have

ea(A1A3) + ea(A1A2) = ea(3Hs — gHg) =0,
which gives Ajea(A2 + Ag) + (A2 + Az)e2 A1 = 0, and then we have
Area(3H — A1) + (A2 + As)eas
=A1e2(—A1) + (A2 + Az)ea s
=(=A1 + A2+ Az)ea; = 0.
Therefore, assuming e (A1) # 0, we get Ay = A\y+ A3 which gives a contradiction
e2(A1) = ea(Aa + A3) = ea(3H — A1) = —ea(A1).

Consequently, es(A) = 0.
Similarly, one can show e3z(A\1) = 0.
Step 3: 62()\3) = 63()\2) =0.
From the covariant derivatives

Ve, ej = iwfjek (i,7=1,2,3),
k=1
using the compatibility condition Ve, (e;, e;) = 0, we get
wh =0, wl, +wk; =0 (i,4,k=1,2,3),
and by the Codazzi equation
(VySYW =V SV (YV, W € x(M)),
for distinct 4, j, k € {1,2, 3}, we obtain

(i) ei(Aj) = (N = Aj)wis,
(1) (A = Al = (e — Aj)wl.

A simple computation on the components of the identity (V,S)e; —(V,S)e; =
0 for distinct 4,7 = 1,2,3, gives [ea, e3](Ha) = 0, wiy = wi; = wi = w3, =
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wiy =0 and

s e(h2) 5 er(M3) o es(N) 5 ea(Ns3)

TN TN AT R T N R T
Hence, we have V. e, =0 for k =1,2,3, and

(3.4)
_e1(\2) _e1(X3) _ (M)
vegel - )\1 — )\2 €2, vegel - )\1 — /\363ave2e2 - )\2 — )\1 €1
_ea(Xg) ~e3(No) _ e(Ng) e2(A3)
Ve,e2 = N )\3637Ve263 BPWE W Veses3 = N A + I

The Gauss equations (R(ez, e3)e1, ez) and (R(ez,e3)er, es) give

B9 gl sl (at)  at))
B0 ()bl (a0) abdy

Also equations (R(e1,ez2)er, e2) and (R(es, e1)er, e3) give
(3.7)

e1(A2) er(X2) \° e1(A3) er(Xs) \2
= A = A s,
el(Al—/\2>+<>\1—/\2 e X)) TN o 148

Finally, from (R(es, e1)es, e3) we have
ea(X3) > e1(As)ea(As)
3.8 e = .
(3:8) ! </\2—)\3 (A3 = A1)(A2 — A3)

On the other hand, from Step 1 we obtain
(3.9)

e1(A2) e1(As)
_ H
,u1,1€161( 2) + <,u'2,1 )\2 — )\1 + ,LLS,l )\3 . )\1

) el(Hg) — 9H22(H — g/\l) =

By covariant derivative of (3.9) along e; and es respectively, and using (3.5),
(3.6) we get

(3.10) e (;;(_AQA)I) - ;;(_Ai (;11(_/\3)3 N ;1193)2) ’

(3.11) es <;31(_A‘°’A)1> = ;;(_,\2/\)2 (;11(32;\)2 N ;11(_/\3;\)3)'

Using (3.4), we find that

61()\2) e
Xo— A

(3.12) le1, ea] =
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( A)pplying both sides of the equality (3.12) on i;(_)‘f\z, using (3.10), (3.7), and
3.8), we deduce that

(3.13)

62()\3) 61(/\3) + 61()\2) _ 0
)\2—/\3 /\3—)\1 /\1—/\2 ’

(3.13) shows that e3(A3) =0 or

e1(A3) _ e1(A2)
Az —A1 X — A

From equation (3.14), by differentiating on its both sides along e; and ap-
plying (3.7), we get A2 = A3, which is a contradiction, so we have to confirm
the result es(A3) = 0.

Analogously, using (3.4), we find that [e;, e3] = 29‘265 By a similar
manner, we deduce that

63()\2) el(Ag) 4 61()\3) _ 0
Az—A2 \da— A1 A — A3 ’

(3.14)

(3.15)

and one can show that e3z(\2) necessarily has to be vanished.

Hence, we have obtained es(A3) = e3(A2) = 0 which, by applying the Gauss
equation for < R(eq, es)er, es >, gives the following equality

e1 (/\3)61 (Ag)
(Az = A1) (A2 — A1)

Finally, using (3.7), differentiating (3.16) along e; gives

(3.17) Aods ( era) | eldo) > =0,

(3.16) = A2)s.

Az — A1 AL — A

which implies As A3 = 0 (since we have seen above that (% + %) #0).
Therefore, we obtain Hy = 0 on U, which is a contradiction. Hence Hs is
constant on M3. O

Theorem 3.4. Every H,-proper Di-hypersurface of M{(c) with constant mean
curvature and three distinct principal curvatures is 1-minimal.

Proof. By Proposition 3.3, the 2nd mean curvature Hs is constant. We prove
that Ho = 0. Assume that Hs # 0 on a neighborhood around a point. The
condition (2.3)(i) gives that Hj is constant. Hence M7 is isoparametric because
Hy, Hy and Hj are constant. Using Corollary 2.7 in [12], we know that every
isoparametric D;-hypersurface may not have more than one nonzero principal
curvature. Therefore, we have a contradiction with the assumption that, M
has three distinct principal curvatures. Hence Hy = 0. (]

Proposition 3.5. Each Hs-proper Di-hypersurface of Mi(c) with exactly two
distinct principal curvatures has constant scalar curvature.
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Proof. Let x : M7 — Mj(c) be such a hypersurface. It is enough to prove
that Hs is constant. In the method of reasoning on reductio ad absurdum, we
assume that U = {p € M : VH3(p) # 0} is non-empty. The shape operator
S is of type Dy with two distinct eigenfunctions n and A of multiplicities 1
and 2, respectively. Hence, we have Se; = Aej, Sea = Aes, Ses = nes and
Noe; = p; 2€; for ¢ = 1,2, 3, where

(318) H1,2 = U222 = )\7], H3,2 = )\2, 3H2 == )\2 + ZAT]
By (2.3)(ii), we get No(VHs) = 3H,V H,, which using
3

VH; = Z EZ‘<VH27 €i>€i7
i=1
gives

9
€i(VHa, e;)(pi2 — §H2) =0

on U for i = 1,2,3. Hence, for each i if (VHs,e;) # 0 on U, then we get
9
(3.19) iz = §H2-

Since VHy # 0 on U, one or both of the following cases hold.
Case 1. (VHa,e;) #0, for i =1 or ¢ = 2. By equalities (3.18) and (3.19),
we obtain
9.2
A M >\2
n=5(3An+ 337,

which gives
3
(3.20) A(2n + 5)\) =0.

If A =0 then Hs = 0. Otherwise, we get n = —%/\, Hy = —é/\Q.
Case 2. (VHj,e3) # 0. By equalities (3.18) and (3.19), we obtain

9.2

A= \n )\2
2 (3 +34),
which gives
1
(3.21) A(3n + §>\) =0.
If A =0 then Hy = 0. Otherwise, we have n = — £\, Hy = 22,

Both cases require the same calculation, so we cons1der for instance Case 2.
Let us denote the maximal integral submanifold through = € U, corresponding
to A by UT"*(z). We write

3 3
i=1 j=1
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Then, we have A\ = Ay = 0. We can assume that A > 0 on U, then we have

-1
(3.23) n= ?)\ < 0.
From the formula of dh;; in Section 2, we obtain
3
(324) Z hijkwk = (5Zjd/\j + ()\z - )\j)wij,
k=1

for i,4,k = 1,2, 3. Here, we take a,b,c =1, 2.
From (3.22) and (3.24), we have
hiak = ha1, = 0,
(3.25) haab = 0, haaz = A3,
h3zq =0, hsss = 3.

From
3 3 3

> hasiwi = dhas + Y hiswia + Y haiwis = (A = n)was,
i—1 i—1 i—1
and equality (3.23) we obtain

(3.26) Wag = ~

Therefore we have

dws = nga/\wa =0.

a=1

Notice that we may consider A to be locally a function of the parameter
s, where s is the arc length of an orthogonal trajectory of the family of the
integral submanifolds corresponding to A. We may put ws = ds.
Thus, for A = A(s), we have

d)\ = Azds, A3 = N(s),
so from (3.26), we get
)\3 6)\/(8)

= Wo = Wa-

A—n A
According to the structure equations of Ef and (3.27), we may compute
(3.28)

(327) Wa3

2 2
)\/
(1) dwaS = b§:1wab A wp3 + Waqg N w3z = ((,57)\> b§:1wab A wp — )\nwa A dS7

. 6N 6\ 6N
(ii) dwag =d {Mwa} = (7)\> ds A w, + (7)\> dw,

6)\’>’ <6)\’>2} (6X> 2
=¢—|= ] +| = We Nds + | =— Zwab/\wb.
{ <7A 72 ™) &~
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’ / ! 2
Comparing equalities (3.28)(i) and (3.28)(ii), we get (% ) - (Gg ) =
0, which, by combining with (3.23), gives

6N\ 6N\ (-1
. — ] (=) - (=] =0
52 (n) -(5) ~(F)=0
Defining function S(s) := (ﬁ)7 for s € (—o0,+00), from (3.29) we get

B’ = (%) 3%, which by integrating, gives (3')2 = —87F + ¢, where c is the
constant of integration. The last equation is equivalent to

(3.30) (V)2 =— (2)2 Mt (2)2 AT

Now, in order to compare two sides of condition (2.3)(i), we need to compute
V.,VH; and Pi(e;) for i =1,2,3. From (3.20) we have VHy = 3\ es, which
by using (3.27), gives

4 8
V., VH, = gAXveaeg = §)\T)\/Zw3b(ea)eb = ﬁx%m
(3.31) b
4 / 4 2 4.\,
V63VH2 = §V63(/\>\ 63) = §>\ es + §/\)\ es.

By using (3.18) and (3.23), we compute Pj(e,) and P;(e3).
5 5
(332) Pl(el) = 6)\61, P1(62) = 6>\62 P1(63) = 2A63.
From (3.31) and (3.32), we get

_ —10(\)?%  20\)?% 2,
(3.33) D(Hg)_GHg( 51 + ) +§>\ )

From 2.3(i), we have ((H;) = Hatr(S? o P) = 2H3 A3, which combining
with (3.33), gives

-5\ .2 33
) " 1+ — | N =22t =0.
(3.34) AN +(+7)>\ 12/\ 0

On the other hand, the equality (3.29) is equivalent to

13 . -7
) AN = 2N
(3.35) A"+ 55

Now, substituting (3.35) and (3.34), we obtain

15,0 191
3.36 N+ =\t =0.
( ) 7 * 36
From equations (3.30), (3.36) and (3.20), we get that Hj is locally constant on
U, which is a contradiction with the definition of U. Hence H> is constant on

M. By a similar discussion, one can get the same result in Case 1. (|
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Theorem 3.6. Each Hy-proper Di-hypersurface of Mi(c) with constant mean
curvature and at most two distinct principal curvatures is 1-minimal.

Proof. The proof is similar to the proof of Theorem 3.4. O

Proposition 3.7. Each H,-proper Do-hypersurface of Mi(c) with constant
ordinary mean curvature and a constant real principal curvature has constant
second and third mean curvatures.

Proof. In the first stage, we show that the open subset U = {p € M : VH2(p) #
0} is empty. By the method of reasoning on reductio ad absurdum, we assume
that U is non-empty. Since S is of type Ds, we have Se; = ke; — ey, Seg =
Aey + Kkea, Ses = nes and then, Noey = kney + Anea, Noes = —Ane; 4+ knes and
N263 = (Iﬁ)z + )\2)63.

The condition (2.3)(ii) by using VHsy = Zle e;e;(Ha)e; gives

(i) erer(Ha)(kn — gHz) = egea(Ha)\n,

(3.37) (ii) eaea(Hz)(kn — gHg) = —ere1(Ha)An,

(iii) eges(Hy)(k? + A\ — gHQ) =0.

The continuation of the proof is the confirmation of several equalities, which is
done in two steps.

Step 1: e;(Hz) = ez(Hz) = 0.
If e1 (H2) # 0, then we divide both sides of equations (3.37)(i), (ii) by e1e1(Hz),
so we get

9 H.
(i) kn— SHy = c2e2( ) ;
2 6161(H2)
(3.38)
(i) 2200 () 21 = g
6161(H2) 2 2
Substituting (3.38)(i) in (3.38)(ii), we get An(1 + (%)2) = 0, which gives

An = 0. Since A # 0 is assumed, we have n = 0. So, by (3.38)(i), we get Hy = 0.
In a Similar way, if ea(Hz) # 0, then by dividing both sides of equations
(3.37)(i), (ii) by ezea(Hz) we get

. €1e1(H. 9
() LHQ)(W — 5 Hz) = A,
(3.39) 2e2(H) ’
(i) #n — gHg _ _ae(H) n
2 6262(H2) ’
which, by substituting (3.39)(i) in (3.39)(ii), we have An(1 + (%)2) =0,

(
then An = 0. Since by assumption A # 0, we get n = 0. So, by (3.39)(ii), we
have Hy = 0.
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Step 2: e3(H;) = 0.
If e3(Hy) # 0, then from equality (3.37)(iii) we have k?+A? = § Hy, which gives

K2+ A2 = —6kn, where n = 3H; — 2k and n and H, are assumed to be constant
on U. So, k is also constant on U, and then, we obtain Hy = %4/{77 = %K2—4H1l€
and Hz = —6xkn? = —6k(3H; — 2k)? are constant on U. O

Theorem 3.8. Every Hy-proper Do-hypersurface of M (c) with constant ordi-
nary mean curvature and a constant real principal curvature is 1-minimal and
2-minimal.

Proof. By Proposition 3.7, the second mean curvature of M7 is constant, which
gives C(Hz) = 0. Then, by (2.3)(i), we have 9H; H3 — 3HyH3 = 0, which gives
(Tn — 4k)K2n? = 0.

Now, if 7 = 4k, then from k2 + A\?> = —6kn we get 3—7152 + A2 =0, and
then Kk = A = 0, which gives Hy, = H; = 0. Also, if k?n? = 0, then we have
Hy = H3 =0. O

Proposition 3.9. Every Hy-proper Ds-hypersurface of Mi(c) with constant
ordinary mean curvature has constant second mean curvature.

Proof. Suppose that, Hs is non-constant. Considering the open subset U =
{p € M : VH3(p) # 0}, we try to show U = (). By the assumption, with
respect to a suitable (local) orthonormal tangent frame {ej, ez, e3} on M, the
shape operator S has the matrix form Dj, such that Se; = (k + 1)e; — Leo,
Sey = %el +(k— %)627 Ses = Aes and then, we have Noe; = (k— %))\el + %)\62,
Nyey = —%/\61 + (k + %))\62 and Naes = k2es.

Using the polar decomposition VHy = Z?Zl e;e;(Hz)e;, from condition
(2.3)(ii) we get

) cxea(HR)[(s — A = S ] = exea(Fa)3,
9 A

(3.40) (ii) egea(H2)[(k + %))\ —-3 2] = *6161(H2)§,

(111) 6363(H2)(I€2 - %HQ) =0.

Now, we prove a simple claim.

Claim : 61(H2) = 62(H2) = 63(H2) =0.
If e;(H3) # 0, then by dividing both sides of equalities (3.40)(i), (ii) by €1e1 (Hz)
we get

1 Hy) A
6) (s~ DA — Sy = 2202
2 2 6161(H2) 2
(3.41) () o \
.\ €2€2(Ho
SV 2H =2
(11) 6161(H2)[( + 2) D) 2] 2’
which, by substituting (i) in (ii), gives 3(1 + u)? = 0, where u := Z:Egz;

Then A =0 or u = —1. If A =0, then we get Hy = 0 from (3.41)(i). Also, by
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assumption A # 0 we get u = —1 which gives kA = %Hg. Then k(3k4+4X\) =0

and finally k = f%/\ (since k = 0 gives Hy = 0 again). Hence, we have
Hs = %m)\ = —28—7)\2 and H; = —g)\, and since H; is assumed to be constant,
H; has to be constant and we have e;(Hsz) = 0, which is a contradiction.

Therefore, the first claim is proved. The second claim (i.e. ex(Hsz) = 0) can be
proven by a similar manner.

Now, if e3(Hs) # 0, then by (3.40)(iii) we get % = 3 Ho, then r(k+6X) = 0,
which gives Kk = 0 or k = —6A. If Kk = 0, then Hy = 0, and if k = —6\ then
since Hy = —%)\ is assumed to be constant, we get that H, is constant and
then eg(Hz) = 0. Which is a contradiction, so we have ez(Hz) = 0. O

Theorem 3.10. Let x : M — E} be a Dz-hypersurface with proper second
mean curvature vector field. If M} has constant ordinary mean curvature, then
it is 1-minimal.

Proof. By assumption H; is assumed to be constant and then, by Proposition
3.9 it is proved that Hs has to be constant. We claim that Hs is null. Since
the shape operator is of type D3, there exist two possible cases as:

Case 1: M3 has a principal curvature x of multiplicity 3;

Case 2: M3 has two principal curvatures x and A of multiplicities 2 and 1,
respectively.

In Case 1, we have Hy = k, Hy = k% and H3 = x*. By (2.3)(i), we have
3H1H22 = H,Hs;, which gives x> = 0, and then Hy = 0.

In Case 2, we have Hy = 1(2k 4+ ), Hy = $(k* 4 26)) and Hy = k2X. We
assume that Hy # 0 and continue in two subcases as follow. Since Hy # 0,
then k # 0 and by using (2.3)(i) we obtain that Hj is constant. Therefore,
all of mean curvatures H; (for ¢ = 1,2,3) are constant, which means that
M3} is isoparametric. By Corollary 2.7 in [12], an isoparametric Lorentzian
hypersurface of Case D3 in the Einstein space has at most one nonzero principal
curvature, so we get A = 0. Then H; = %m, H, = %&2 and H3 = 0, hence,
by (2.3)(i), we get k = 0, which contradicts with the assumption of this case.
Therefore Hy = 0. [l

Proposition 3.11. Let ¢ : M{ — Mf}(c) be a Dy-hypersurface with proper
second mean curvature vector field. Then its second mean curvature is constant.

Proof. Suppose that, Hy be non-constant. Considering the open subset U =
{p € M : VH3(p) # 0}, we try to show U = (). By the assumption, with
respect to a suitable (local) orthonormal tangent frame {ej, ez, e3} on M, the

shape operator S has the matrix form Bg, such that Se; = ke; + %eg, Seq =

Keg — %63, Ses = —@el — §62 + ke and then, we have Pye; = (k2 — %)61 —

%627?%63, PQ@Q = %€1+(R2+%)62+§I€63 and P263 = 72/’1361+§I€62+K2263.
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Using the polar decomposition VHy = Zle e;e;(Hz)e;, from condition
(2.3)(ii) we get

(1) 6161(H2)[(Ii2 — %) - gHQ] + %6262(H2) + gegeg(Hg)li = 0

1 9

(342) (ii) _716161(H2) + GQGQ(HQ)[(KQ + 2) - ng} + §6363(H2)K =0

—V2 2 9
\[n + 6262(H2)§K, + 6363(H2)(K2 — §H2) =0.

(111) €1€1 (Hg)

Now, we prove some simple claims.

Claim: el(Hg) = 62(H2) = 63(H2) =0.
If e1(Hz) # 0, then by dividing both sides of equalities (3.40)(i), (ii), (iii) by
e1e1(Hz), and using the identity Hy = k2, we get

1 7, 1
() =5 =g +gut Guar=
-1 1 7
— 2 7
(iii) ;[/-@—l— %ulm — §,€2)u2 =0,

. €zea(Ha2)
where u; := rer (M)

k2(uy — 1) = 0. If K = 0, then Hy = 0. Assuming x # 0, we get u; = 1, which,
using (3.43)(iii), gives ug = 0. Substituting u; = 1 and us = 0 in (3.43)(i), we
obtain again k£ = 0, which is a contradiction. Hence e;(Hz) = 0.

Therefore, using the result e; (Hz) = 0, the system of equations (3.42) gives

and ug 1= :nggzg, which, by comparing (i) and (ii), gives

(i) %6262([12) + §63€3<H2)K =0
y 1 7, V2
(3.44) (ii) EQ@Q(HQ)(§ — 5k )+ 76363(H2)I<& =0

2 7
(lll) 6262(H2)§K/ - 6363(H2)§I€2 =0.

Comparing (i) and (ii), we get kea(Hz) = 0, which using (iii) gives kesz(Hz) = 0,
and then, using (i), gives ea(Hz) = 0. Then, the second claim (i.e. ea(Hz) =0
is proved.

Now, using the results e;(Hs) = ea(Hz) = 0, we get kez(Hz) = 0, which,
using Hy = x2, implies xe3(x?) = 0 and then e3(k?) = 0, and finally e3(Hs) =
0. O

Theorem 3.12. Let z: M7 — M{(c) be a Dy-hypersurface with proper second
mean curvature vector field. If the ordinary mean curvature of M3 is constant,
then it is 1-minimal. Furthermore, all of mean curvatures of M3 are null.
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Proof. By Proposition 3.11, the 2th mean curvature of M3 is constant, which,
by (23)(1), gives L1H2 = 9H1H22 - 3H2H3 = 0. Then 3H1H22 = H2H3, WhiCh,
using Hy = k, Hy = k2 and H3 = x3, gives k° = 0, and then H; = Hy, = H3 =

0.
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