• 제목/요약/키워드: Conjugation operator

검색결과 7건 처리시간 0.017초

ON OPERATORS T COMMUTING WITH CT C WHERE C IS A CONJUGATION

  • Cho, Muneo;Ko, Eungil;Lee, Ji Eun
    • 대한수학회보
    • /
    • 제57권1호
    • /
    • pp.69-79
    • /
    • 2020
  • In this paper, we study the properties of T satisfying [CTC, T] = 0 for some conjugation C where [R, S] := RS - SR. In particular, we show that if T is normal, then [CTC, C] = 0. Moreover, the class of operators T satisfy [CTC, T] = 0 is norm closed. Finally, we prove that if T is complex symmetric, then T is binormal if and only if [C|T|C, |T|] = 0.

COMPLEX SYMMETRIC WEIGHTED COMPOSITION-DIFFERENTIATION OPERATORS ON H2

  • Lian Hu;Songxiao Li;Rong Yang
    • 대한수학회보
    • /
    • 제60권5호
    • /
    • pp.1141-1154
    • /
    • 2023
  • In this paper, we study the complex symmetric weighted composition-differentiation operator D𝜓,𝜙 with respect to the conjugation JW𝜉,𝜏 on the Hardy space H2. As an application, we characterize the necessary and sufficient conditions for such an operator to be normal under some mild conditions. Finally, the spectrum of D𝜓,𝜙 is also investigated.

On [m, C]-symmetric Operators

  • Cho, Muneo;Lee, Ji Eun;Tanahashi, Kotaro;Tomiyama, Jun
    • Kyungpook Mathematical Journal
    • /
    • 제58권4호
    • /
    • pp.637-650
    • /
    • 2018
  • In this paper first we show properties of isosymmetric operators given by M. Stankus [13]. Next we introduce an [m, C]-symmetric operator T on a complex Hilbert space H. We investigate properties of the spectrum of an [m, C]-symmetric operator and prove that if T is an [m, C]-symmetric operator and Q is an n-nilpotent operator, respectively, then T + Q is an [m + 2n - 2, C]-symmetric operator. Finally, we show that if T is [m, C]-symmetric and S is [n, D]-symmetric, then $T{\otimes}S$ is [m + n - 1, $C{\otimes}D$]-symmetric.

A NEW CLASSIFICATION OF REAL HYPERSURFACES WITH REEB PARALLEL STRUCTURE JACOBI OPERATOR IN THE COMPLEX QUADRIC

  • Lee, Hyunjin;Suh, Young Jin
    • 대한수학회지
    • /
    • 제58권4호
    • /
    • pp.895-920
    • /
    • 2021
  • In this paper, first we introduce the full expression of the Riemannian curvature tensor of a real hypersurface M in the complex quadric Qm from the equation of Gauss and some important formulas for the structure Jacobi operator Rξ and its derivatives ∇Rξ under the Levi-Civita connection ∇ of M. Next we give a complete classification of Hopf real hypersurfaces with Reeb parallel structure Jacobi operator, ∇ξRξ = 0, in the complex quadric Qm for m ≥ 3. In addition, we also consider a new notion of 𝒞-parallel structure Jacobi operator of M and give a nonexistence theorem for Hopf real hypersurfaces with 𝒞-parallel structure Jacobi operator in Qm, for m ≥ 3.

Real Hypersurfaces in the Complex Hyperbolic Quadric with Killing Shape Operator

  • Jeong, Imsoon;Suh, Young Jin
    • Kyungpook Mathematical Journal
    • /
    • 제57권4호
    • /
    • pp.683-699
    • /
    • 2017
  • We introduce the notion of Killing shape operator for real hypersurfaces in the complex hyperbolic quadric $Q^{m*}=SO_{m,2}/SO_mSO_2$. The Killing shape operator implies that the unit normal vector field N becomes A-principal or A-isotropic. Then according to each case, we give a complete classification of real hypersurfaces in $Q^{m*}=SO_{m,2}/SO_mSO_2$ with Killing shape operator.

SKEW COMPLEX SYMMETRIC OPERATORS AND WEYL TYPE THEOREMS

  • KO, EUNGIL;KO, EUNJEONG;LEE, JI EUN
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1269-1283
    • /
    • 2015
  • An operator $T{{\in}}{\mathcal{L}}({\mathcal{H}})$ is said to be skew complex symmetric if there exists a conjugation C on ${\mathcal{H}}$ such that $T=-CT^*C$. In this paper, we study properties of skew complex symmetric operators including spectral connections, Fredholmness, and subspace-hypercyclicity between skew complex symmetric operators and their adjoints. Moreover, we consider Weyl type theorems and Browder type theorems for skew complex symmetric operators.

Real Hypersurfaces with Invariant Normal Jacobi Operator in the Complex Hyperbolic Quadric

  • Jeong, Imsoon;Kim, Gyu Jong
    • Kyungpook Mathematical Journal
    • /
    • 제60권3호
    • /
    • pp.551-570
    • /
    • 2020
  • We introduce the notion of Lie invariant normal Jacobi operators for real hypersurfaces in the complex hyperbolic quadric Qm∗ = SOom,2/SOmSO2. The invariant normal Jacobi operator implies that the unit normal vector field N becomes 𝕬-principal or 𝕬-isotropic. Then in each case, we give a complete classification of real hypersurfaces in Qm∗ = SOom,2/SOmSO2 with Lie invariant normal Jacobi operators.