DOI QR코드

DOI QR Code

SKEW COMPLEX SYMMETRIC OPERATORS AND WEYL TYPE THEOREMS

  • KO, EUNGIL (DEPARTMENT OF MATHEMATICS EWHA WOMANS UNIVERSITY) ;
  • KO, EUNJEONG (DEPARTMENT OF MATHEMATICS EWHA WOMANS UNIVERSITY) ;
  • LEE, JI EUN (DEPARTMENT OF MATHEMATICS-APPLIED STATISTICS SEJONG UNIVERSITY)
  • Received : 2014.08.29
  • Published : 2015.07.31

Abstract

An operator $T{{\in}}{\mathcal{L}}({\mathcal{H}})$ is said to be skew complex symmetric if there exists a conjugation C on ${\mathcal{H}}$ such that $T=-CT^*C$. In this paper, we study properties of skew complex symmetric operators including spectral connections, Fredholmness, and subspace-hypercyclicity between skew complex symmetric operators and their adjoints. Moreover, we consider Weyl type theorems and Browder type theorems for skew complex symmetric operators.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Academic Pub. 2004.
  2. P. Aiena, M. T. Biondi, and C. Carpintero, On Drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2839-2848. https://doi.org/10.1090/S0002-9939-08-09138-7
  3. P. Aiena and P. Pena, Variations on Weyl's theorem, J. Math. Anal. Appl. 324 (2006), no. 1, 566-579. https://doi.org/10.1016/j.jmaa.2005.11.027
  4. M. Amouch and H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasg. Math. J. 48 (2006), no. 1, 179-185. https://doi.org/10.1017/S0017089505002971
  5. I. J. An, Weyl type theorems for $2{\times}2$ operator matrices, Kyung Hee Univ., Ph.D. Thesis. 2013.
  6. M. Berkani, On a class of quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999), no. 2, 244-249. https://doi.org/10.1007/BF01236475
  7. M. Berkani and J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. 69 (2003), no. 1-2, 359-376.
  8. M. Berkani and H. Zariouh, Extended Weyl type theorems, Math. Bohem. 134 (2009), no. 4, 369-378.
  9. J. B. Conway, A Course in Functional Analysis, Springer Verlag, Berlin, Heidelberg, New York, 1990.
  10. S. V. Djordjevic and Y. M. Han, Browder's theorems and spectral continuity, Glasg. Math. J. 42 (2000), no. 3, 479-486. https://doi.org/10.1017/S0017089500030147
  11. S. V. Djordjevic and Y. M. Han, a-Weyl's theorem for operator matrices, Proc. Amer. Math. Soc 130 (2002), no. 3, 715-722. https://doi.org/10.1090/S0002-9939-01-06110-X
  12. S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285-1315. https://doi.org/10.1090/S0002-9947-05-03742-6
  13. S. R. Garcia and M. Putinar, Complex symmetric operators and applications. II, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3913-3931. https://doi.org/10.1090/S0002-9947-07-04213-4
  14. S. R. Garcia and W. R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6065-6077. https://doi.org/10.1090/S0002-9947-2010-05068-8
  15. P. R. Halmos, A Hilbert Space Problem Book, Second edition, Springer-Verlag, New York, 1982.
  16. R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker Inc., New York and Basel, 1988.
  17. R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115-2124. https://doi.org/10.1090/S0002-9947-97-01881-3
  18. S. Jung, E. Ko, and J. Lee, On scalar extensions and spectral decompositions of complex symmetric operators, J. Math. Anal. Appl. 382 (2011), no. 2, 252-260.
  19. S. Jung, E. Ko, and J. Lee, On complex symmetric operator matrices, J. Math. Anal. Appl. 406 (2013), no. 2, 373-385. https://doi.org/10.1016/j.jmaa.2013.04.056
  20. S. Jung, E. Ko, M. Lee, and J. Lee, On local spectral properties of complex symmetric operators, J. Math. Anal. Appl. 379 (2011), no. 1, 325-333. https://doi.org/10.1016/j.jmaa.2011.01.009
  21. J. J. Koliha, A generalized Drazin inverse, Glasg. Math J. 38 (1996), no. 3, 367-381. https://doi.org/10.1017/S0017089500031803
  22. P. Lancaster and L. Rodman, The Algebraic Riccati Equation, Oxford University Press, Oxford, 1995.
  23. K. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336. https://doi.org/10.2140/pjm.1992.152.323
  24. K. Laursen and M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
  25. C. G. Li and S. Zhu, Skew symmetric normal operators, Proc. Amer. Math. Soc. 141 (2013), no. 8, 2755-2762. https://doi.org/10.1090/S0002-9939-2013-11759-4
  26. B. F. Madore and R. A. Martinez-Avendano, Subspace hypercyclicity, preprint.
  27. V. Mehrmann and H. Xu, Numerical methods in control, J. Comput. Appl. Math. 123 (2000), no. 1-2, 371-394. https://doi.org/10.1016/S0377-0427(00)00392-7
  28. C. Sun, X. Cao, and L. Dai, Property ($w_1$) and Weyl type theorem, J. Math. Anal. Appl. 363 (2010), no. 1, 1-6. https://doi.org/10.1016/j.jmaa.2009.07.045

Cited by

  1. On $${m}$$ m -Complex Symmetric Operators II vol.13, pp.5, 2016, https://doi.org/10.1007/s00009-016-0683-y