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ON OPERATORS T COMMUTING WITH CTC

WHERE C IS A CONJUGATION

Muneo Chō, Eungil Ko, and Ji Eun Lee

Abstract. In this paper, we study the properties of T satisfying [CTC,
T ] = 0 for some conjugation C where [R,S] := RS − SR. In particular,

we show that if T is normal, then [CTC,C] = 0. Moreover, the class of

operators T satisfy [CTC, T ] = 0 is norm closed. Finally, we prove that if
T is complex symmetric, then T is binormal if and only if [C|T |C, |T |] = 0.

1. Introduction

Let H be a separable complex Hilbert space and let L(H) denote the algebra
of all bounded linear operators on H. An operator T ∈ L(H) is said to be
normal if T ∗T = TT ∗ and binormal if T ∗T and TT ∗ commute where T ∗ is the
adjoint of T .

A conjugation on H is an antilinear operator C : H → H which satisfies
〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H and C2 = I. Given T ∈ L(H) and a conjuga-
tion C onH, let CC(T ) := {S ∈ L(H) | [CTC, S] = 0} where [R,S] := RS−SR.

In this paper, we study the case when T ∈ CC(T ), i.e., [CTC, T ] = 0.
An operator T ∈ L(H) is said to be complex symmetric and skew complex
symmetric if there exists a conjugation C such that CTC = T ∗ and CTC =
−T ∗, respectively. In this case, we say that T is (skew) complex symmetric
with a conjugation C. It is clear that if T ∈ CC(T ) is complex symmetric (or
skew complex symmetric) with a conjugation C, then T is normal. Throughout
the paper, we denote the spectrum and the approximate point spectrum of T ∈
L(H) by σ(T ) and σa(T ), respectively. For a set F ⊂ C, let F ∗ = {z : z ∈ F}.
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The following examples show that CC(T ) need not contain complex symmet-
ric operators.

Example 1.1. Let H = `2, let {en} be an orthonormal basis of H and let
C : H → H be the conjugation given by C(

∑∞
n=0 xn en) =

∑∞
n=0 xn en where

{xn} is a sequence in C with
∑∞
n=0 |xn|2 < ∞ and Cen = en for all n. If

W ∈ L(H) is the weighted shift given by Wen = αnen+1 for all n ≥ 1, then
it is easy to compute WCWCen = CWCWen for all n. Hence W ∈ CC(W ).
In particular, if αn = 1 for all n, then W = S is the unilateral shift and so
S ∈ CC(S). However, S is not complex symmetric.

Example 1.2. Let C and J be conjugations on H. Assume that T = ( 0 CJ
I 0 )

and J = ( 0 J
J 0 ) on H⊕H. Then J TJ T = TJ TJ = ( I 0

0 I ). Hence T ∈ CJ (T )
is normal.

Example 1.3. Let H = Cn and C(z1, z2, z3, . . . , zn) = (zn, . . . , z3, z2, z1). If

T =



0 λ1 0 . . . 0
0 0 λ2 0 . . . 0
...

...
. . .

. . . . . . 0
...

... . 0
. . . 0

. . . . 0 λn−1

0 0 . . . . . 0


and e1 =



1
0
...
...
...
0


for all nonzero λj ∈ C, then 0 = (CTC)T e1 6= T (CTC) e1 = λ1 · λn−1 · e1.
Hence T 6∈ CC(T ). But, it is clear that T is binormal.

From Example 1.3, we observe that there exists T such that T 6∈ CC(T ), in
general.

The aim of this paper is to study some properties of an operator which
satisfies T ∈ CC(T ) where C is a conjugation on H. In particular, we prove
that if T is normal, then [CTC,C] = 0. Moreover, the class of operators T
satisfy [CTC, T ] = 0 is norm closed. Finally, we show that if T is complex
symmetric, then T is binormal if and only if [C|T |C, |T |] = 0.

2. Operators satisfying T ∈ CC(T )

In this section, we study several properties about operators which satisfy
T ∈ CC(T ) where C is a conjugation on H. Remark from [7] that if T ∈
L(H) is a complex symmetric operator with a conjugation C, then both ReT
and ImT are complex symmetric operators with same conjugation C. In the
following lemma, we consider the previous statement for operators which satisfy
T ∈ CC(T ).

Lemma 2.1. Let T ∈ CC(T ). Suppose that R = T+CTC
2 and S = T−CTC

2i .
Then R and S belong to CC(T ) such that T = R+iS and [R,S] = 0, [R,C] = 0,
and [S,C] = 0 hold.
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Proof. Suppose that T ∈ CC(T ) for a conjugation C. Since R = T+CTC
2 and

S = T−CTC
2i , we can easily see that T = R+ iS and RS = SR, CRC = R and

CSC = S hold. �

Theorem 2.2. If T ∈ L(H) is a normal operator, then T , T ∗, Re T , and Im T
are in CC(T ) for some conjugation C.

Proof. Assume that T is normal. Then T can be written in the form U |T |,
where U may be taken to be unitary such that U and |T | commute with each
other by [6, Theorem 7, page 67]. Since U is a unitary operator, by Godič
and Lucenko [10], there exist conjugations C and J such that U = CJ and
(CJ)∗ = JC. On the other hand, since T is normal, it follows from [7] that T
is complex symmetric. Thus C|T | = |T |C and J |T | = |T |J (see [8, Lemma 1
and Example 2] for more details). Therefore, it is easy to see CTC T = T CTC
by this conjugation C. Thus T ∈ CC(T ).

Put ReT := T+T∗

2 and ImT := T−T∗

2i . Since T is normal and [CTC, T ] = 0,
it follows from the Fuglede-Putnam Theorem that T ∗(CTC) = (CTC)T ∗, i.e.,
[CTC, T ∗] = 0. Thus T ∗ ∈ CC(T ). Also, we get that

(Re T )CTC =
1

2
(TCTC + T ∗CTC) =

1

2
(CTCT + CTCT ∗) = CTC(ReT )

and

(Im T )CTC =
1

2i
(TCTC − T ∗CTC) =

1

2i
(CTCT − CTCT ∗) = CTC(ImT ).

Hence T, T ∗,Re T , and Im T are in CC(T ) for the conjugation C. �

Remark 2.3. The converse of Theorem 2.2 does not hold.

Example 2.4. LetH = C2 and let C be a conjugation onH given by C(x, y) =
(y, x). Assume that R =

(
i 1
1 −i

)
on H. Then CRC =

(
i 1
1 −i

)
= R. Hence

R ∈ CC(R). However, R is not normal. We also note that Re T 6∈ CC(T ) and
Im T 6∈ CC(T ).

Next, we state some basic properties of an operator T ∈ CC(T ).

Theorem 2.5. Let C be a conjugation on H. Then the following statements
hold.

(i) If T ∈ CC(T ), then f(T ) ∈ CC(T ) for every function f analytic on
σ(T ).

(ii) If T ∈ CC(T ) is invertible, then T−1 ∈ CC(T ).
(iii) If T1, T2 ∈ CC(T ), then T1 + T2, αT1, T1T2, and T2T1 are in CC(T ) for

any α ∈ C.
(iv) The class CC(T ) is closed in norm.

Proof. (i) If T ∈ CC(T ), then p(T ) ∈ CC(T ) for every polynomial p. If T is
a function analytic on σ(T ), then there exists {pn}, sequence of polynomials,
such that {pn} converges uniformly to f on σ(T ). Since pn(T ) ∈ CC(T ), it
follows that f(T ) ∈ CC(T ).



72 M. CHŌ, E. KO, AND J. E. LEE

(ii) Since T ∈ CC(T ) is invertible, it follows that

CTCT−1 = T−1(TCTC)T−1 = T−1(CTCT )T−1 = T−1CTC.

Thus T−1 ∈ CC(T ).
(iii) Since T1, T2 ∈ CC(T ), we have (T1 + T2)CTC = CTC(T1 + T2) and

T1T2(CTC) = T1(CTC)T2 = (CTC)T1T2. Therefore T1 + T2 and T1T2 are in
CC(T ). Similarly, T2T1 is in CC(T ).

(iv) If {Sn} is a sequence of operators such that

Sn ∈ CC(T ) and lim
n→∞

‖Sn − T‖ = 0,

then we obtain

‖TCTC − CTCT‖ ≤ ‖TCTC − SnCTC‖+ ‖CTCSn − CTCT‖
≤ ‖T − Sn‖‖CTC‖+0+‖CTC‖‖Sn − T‖ → 0 as n→∞.

Hence T ∈ CC(T ) and so the class CC(T ) is closed in norm. �

From Theorem 2.5, we observe that CC(T ) is a Banach space.

Corollary 2.6. If N ∈ L(H) is normal, then f(N) ∈ CC(N) for every function
f analytic on σ(N). In particular, if N is invertible, then N−1 ∈ CC(N).

Proof. The proof follows from Theorems 2.2 and 2.5. �

Proposition 2.7. Let T ∈ CC(T ) for some conjugation C. Then the following
statements hold.

(i) T ∗ ∈ CC(T ∗) and T−1 ∈ CC(T−1) if T−1 exists.
(ii) If X ∈ L(H) is invertible with [X,C]=0, then X−1TX ∈ CC(X−1TX).
(iii) If R ∈ L(H) is unitarily equivalent to T , i.e., R = UTU∗ where U is

unitary, then R ∈ CD(R) for a conjugation D = UCU∗.
(iv) [CTnC, Tm] = 0 for all n,m ∈ N.

Proof. (i) If T ∈ CC(T ), then it is clear that T ∗ ∈ CC(T ∗). If T ∈ CC(T ) is
invertible, then T (CTC) = (CTC)T implies

CT−1CT−1 = [T (CTC)]−1 = [(CTC)T ]−1 = T−1CT−1C.

(ii) If X is an invertible with X = CXC, then we obtain

C(X−1TX)C(X−1TX) = CX−1TXX−1CTX

= CX−1TCTX = X−1CTCTX

= X−1TCTCX = X−1TXX−1CTCX

= X−1TXCX−1TCX = (X−1TX)C(X−1TX)C.

Hence X−1TX ∈ CC(X−1TX).
(iii) Since [CTC, T ] = 0, R = UTU∗, and D = UCU∗, it follows that

[DRD,R] = U [CTC, T ]U∗ = 0. Hence R ∈ CD(R) for the conjugation D.
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(iv) It is clear that CTC T 2 = T 2 CTC and CT 2C T = T CT 2C. Assume
that CT kC T j = T j CT kC for all k ≤ n and j ≤ m. Then we have

(1) CTn+1C Tm = CTC CTnC Tm = CTC Tm CTnC = Tm CTn+1C

and

(2) CTnC Tm+1 = CTnC Tm T = Tm CTnC T = Tm+1 CTnC.

Since (1) and (2) hold for n+ 1 and m+ 1, it holds CTnC Tm = Tm CTnC for
every n,m ∈ N. �

Let us recall that H1⊗H2 denotes the completion (endowed with a sensible
uniform cross-norm) of the algebraic tensor product H1 ⊗ H2 of H1 and H2

where H1 and H2 are separable complex Hilbert spaces. For operators T ∈
L(H1) and S ∈ L(H2), we define the tensor product operator T ⊗S on L(H1⊗
H2) by

(T ⊗ S)(

n∑
j=1

αjxj ⊗ yj) =

n∑
j=1

αjTxj ⊗ Syj .

Then it is well known that T ⊗ S ∈ L(H1 ⊗ H2). The definition of T ⊗ S is
extended from these finite linear combinations of simple tensors to the whole
space. It was known from [3] that if C1 and C2 are conjugations on H, we
define C1 ⊗ C2 on H⊗H by

(C1 ⊗ C2)(

n∑
j=1

αjxj ⊗ yj) =

n∑
j=1

αjC1xj ⊗ C2yj .

Then C1 ⊗ C2 is a conjugation on H⊗H.
We also observe the following easy consequences. So we omit its proof.

Proposition 2.8. Let C,C1, C2 be conjugations on H. Then the following
statements hold.

(i) If Ti ∈ CCi
(Ti) for conjugations Ci with i = 1, 2, respectively, then

T1 ⊕ T2 ∈ CC1⊕C2
(T1 ⊕ T2) for a conjugation C1 ⊕ C2.

(ii) Let T ∈ CC(T ) and S ∈ CC(S). If [T, S] = 0 and [CTC, S] = 0, then
T + S ∈ CC(T + S) and TS ∈ CC(TS) for a conjugation C.

(iii) If T ∈ CC1(T ) and S ∈ CC2(S) for conjugations C1 and C2, respectively,
then T ⊗ S ∈ CC1⊗C2(T ⊗ S) for a conjugation C1 ⊗ C2.

For the next result, we need the following lemma.

Lemma 2.9 ([11, Lemma 3.21]). Let T ∈ L(H) and let C be a conjugation on
H. Then σ(CTC) = σ(T )∗ and σa(CTC) = σa(T )∗.

If T satisfies CTC = T , then σ(T ) = σ(T )∗ from Lemma 2.9, that is, σ(T ) is
a symmetric set with the real line. For a commuting pair T = (T1, T2) ∈ L(H)2,
σT (T1, T2) (or σT (T)) and σja(T1, T2) (or σja(T)) denote the Taylor spectrum
and the joint approximate point spectrum of (T1, T2), respectively. We explain
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the Taylor spectrum for a commuting 2-tuple T = (T1, T2) case. Consider the
following chain complex E(T) as follows;

E(T) : 0 −→ H δ1T−→ H⊕H δ2T−→ H −→ 0,

where δ1
T(x) := (−T2x) ⊕ (T1x) and δ2

T(x1 ⊕ x2) := T1x1 + T2x2. Then it is
easy to see that δ2

T ◦ δ1
T = 0. The commuting 2-tuple T = (T1, T2) is said to be

non-singular if the chain complex E(T) is exact, i.e., ker δ1
T = {0}, image δ1

T =
ker δ2

T and image δ2
T = H. It is well known that T is non-singular if and only if

α(T) =

(
T1 T2

−T ∗2 T ∗1

)
is invertible on H ⊕ H (see [14]). For z = (z1, z2) ∈ C2, let T − z = (T1 −
z1, T2 − z2). Then we define the Taylor spectrum σT (T) of T = (T1, T2) as
z = (z1, z2) ∈ σT (T) if the chain complex E(T− z) is not exact.

For a commuting 2-tuple (T, S) ∈ L(H)(2), a number λ = (λ1, λ2) ∈ C2 is
in the joint approximate point spectrum σja(T, S) if and only if there exists a
sequence {xn}n ⊂ H such that ‖xn‖ = 1 and

(T − λ1)xn −→ 0 and (S − λ2)xn −→ 0 as n −→∞.

It is well known σja(T, S) ⊂ σT (T, S) (see [1] and [13]).

Proposition 2.10. Let T ∈ CC(T ). Then there exist commuting operators R
and S such that the following statements hold:

(i) T = R+ iS and (T,R, S) is a commuting 3-tuple.
(ii) σ(R) and σ(S) are symmetric sets with the real line.
(iii) If λ ∈ σ(T ), then there exist α ∈ σ(R) and β ∈ σ(S) such that λ =

α+ iβ.
(iv) If α ∈ σ(R), then there exist λ ∈ σ(T ) and β ∈ σ(S) such that λ =

α+ iβ.
(v) If β ∈ σ(S), then there exist λ ∈ σ(T ) and α ∈ σ(R) such that λ =

α+ iβ.

Proof. The proofs of (i) and (ii) follow from Theorem 2.2 and Lemma 2.9.
(iii) Since (R,S) is a commuting pair and T = R + iS, the proof follows

from the spectral mapping theorem for f(a, b) = a+ ib of the Taylor spectrum.
(iv) Since (T, S) is a commuting pair and R = −T + iS, the proof follows

from the spectral mapping theorem for g(a, b) = −a+ib of the Taylor spectrum.
(v) The proof follows from a similar method of (iv). �

Remark 2.11. The statements (iii), (iv) and (v) hold for the approximate point
spectra σa(T ), σa(R) and σa(S). Please see [1] for the spectral mapping theo-
rem for the joint approximate point spectrum.
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For an operator T ∈ L(H) and a conjugation C, we define the operator
αm(T ;C) by

αm(T ;C) =

m∑
j=0

(−1)j
(
m

j

)
CTm−jC · T j .

An operator T ∈ L(H) is said to be an [m,C]-symmetric operator if αm(T ;C) =
0. See [4] for properties of [m,C]-symmetric operators.

Proposition 2.12. If T ∈ CC(T ) is an [m,C]-symmetric operator, then the
following statements hold.

(i) CTC − T is m-nilpotent, i.e., (CTC − T )m = 0.
(ii) σT (CTC, T ) = {(λ, λ) : λ ∈ σ(T )}. In this case, it holds σ(CTC) =

σ(T ) = σ(T )∗. Moreover, it holds σja(CTC, T ) = {(λ, λ) : λ ∈ σa(T )}.

Proof. (i) Since T commutes with CTC, the proof follows that 0 = αm(T ;C) =
(CTC − T )m.

(ii) Since (CTC, T ) is a commuting pair, by the spectral mapping theorem
of the Taylor spectrum, it holds

f(σT (CTC, T )) = σ(CTC − T ),

where f(µ, λ) = µ − λ. By Proposition 2.12, we have σ(CTC − T ) = {0}
and hence µ = λ. Thus σT (CTC, T ) = {(λ, λ) : λ ∈ σ(T )} and we have
σ(CTC) = σ(T ) = σ(T )∗ from [11]. Since σja(CTC, T ) = {(λ, λ) : λ ∈ σa(T )},
the proof follows from the spectral mapping theorem of the joint approximate
point spectrum. �

For an operator T ∈ L(H), T is said to be normaloid if r(T ) = ‖T‖, where
r(T ) is the spectral radius of T . Then we have the following corollary.

Corollary 2.13. Let T ∈ CC(T ) be an [m,C]-symmetric operator. If CTC−T
is normaloid, then CTC − T = 0.

Proof. By Proposition 2.12, we have σ(CTC − T ) = {0}. Since CTC − T is
normaloid, it holds CTC − T = 0. �

For an operator T ∈ L(H) and a conjugation C, we define the operator
λm(T ;C) by

λm(T ;C) =

m∑
j=0

(−1)j
(
m

j

)
CTm−jC · Tm−j .

An operator T ∈ L(H) is said to be an [m,C]-isometric operator if λm(T ;C) =
0. See [3] for properties of [m,C]-isometric operators.

Proposition 2.14. If T ∈ CC(T ) is an [m,C]-isometric operator, then the
following statements hold.

(i) CTC T − I is m-nilpotent, i.e., (CTC T − I)m = 0.
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(ii) σT (CTC, T ) = {( 1
λ , λ) : λ ∈ σ(T )}. In this case, it holds σ(CTC) =

{ 1
λ : λ ∈ σ(T )}. Moreover, it holds σja(CTC, T ) = {( 1

λ , λ) : λ ∈
σa(T )}.

Proof. (i) Since T commutes with CTC, we have λm(T ;C) = (CTC T − I)m.
Hence, we have (CTC T − I)m = 0.

(ii) Since (CTC, T ) is a commuting pair, by the spectral mapping theorem
of the Taylor spectrum, it holds

f(σT (CTC, T )) = σ(CTC T − I),

where f(µ, λ) = µ ·λ−1. By Proposition 2.14(i), we have σ(CTC T − I) = {0}
and hence µ · λ = 1. Therefore, σT (CTC, T ) = {( 1

λ , λ) : λ ∈ σ(T )} and we

have σ(CTC) = { 1
λ : λ ∈ σ(T )}. By the same way, we get

σja(CTC, T ) = {( 1

λ
, λ) : λ ∈ σa(T )}. �

Finally, we focus on the binormalilty of T when T ∈ CC(T ) for a conjugation
C on H.

Lemma 2.15. Let T ∈ L(H) and let C be a conjugation on H. If (T ∗T )C =
C(TT ∗), then T is binormal if and only if |T | ∈ CC(|T |).

Proof. Let T be binormal. Then |T ∗||T | = |T ||T ∗|. Since (T ∗T )C = C(TT ∗),
it follows that |T ∗| = C|T |C. Therefore |T |C|T |C = C|T |C|T |. Thus |T | ∈
C(|T |).

Conversely, if |T | ∈ C(|T |), then |T |C|T |C = C|T |C|T | implies |T ∗||T | =
|T ||T ∗|. Thus T is binormal. �

It is well known that normal operators are binormal. The Duggal transform

T̃D of T is given by T̃D := |T |U where U is the appropriate partial isometry
satisfying ker(U) = ker(T ) and ker(U∗) = ker(T ∗) (see [5]).

Theorem 2.16. Let T ∈ L(H) be complex symmetric with a conjugation C.
Suppose that T = U |T | is the polar decomposition of T where U = CJ and J is

a partial conjugation supported on ran(|T |), which commutes with |T |. Then
the following statements are equivalent.

(i) T is binormal.
(ii) |T | ∈ CC(|T |).
(iii) [|T̃D|, |T |] = 0 where T̃D := |T |U is the Duggal transform of T .

Proof. (i)⇔ (ii) Let T = U |T | be the polar decomposition of T . By [8], U = CJ
where C and J are conjugations and J commutes with |T |. Since T is complex
symmetric with the conjugation C, it follows that (T ∗T )C = |T |2C = C(TT ∗).
Hence the proof follows from Lemma 2.15.

(i) ⇔ (iii) Let T̃D := |T |U be the Duggal transform of T . If T is binormal,

then T̃D is binormal by [12] and so [|T̃D|, |(T̃D)∗|] = 0. Since T is com-
plex symmetric with the conjugation C, it follows that (T ∗T )C = CTCTC =
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C(TCTC) = C(TT ∗) and so [C, |T |] = 0. In this case, since

|T̃D| = U∗|T |U = JC|T |CJ = J |T |J and |(T̃D)∗| = (U∗|T |UU∗|T |) 1
2 = |T |,

it follows that [|T̃D|, |T |] = [|T̃D|, |(T̃D)∗|] = 0. The converse statement follows
by a similar way. �

As some applications of Theorem 2.16, we get the following corollary.

Corollary 2.17. Let T ∈ L(H) be such that T 2 is normal. Then |T | ∈ CC(|T |).

Proof. By [9, Corollary 3], T is complex symmetric. Hence by [8, Theorem 2],
there exist a conjugation C on H and a partial conjugation J supported on
ran|T | such that T = CJ |T | and J |T | = |T |J. On the other hand, since T 2 is
normal, it follows from the Fuglede-Putnam Theorem that (T 2)T ∗ = T ∗(T 2).
Hence

[T ∗T, TT ∗] = T ∗TTT ∗ − TT ∗T ∗T = TTT ∗T ∗ − TTT ∗T ∗ = 0

and so T is binormal (also see [2]). Therefore, [C|T |C, |T |] = 0 for this conju-
gation C. �

Applying Theorem 2.16, we provide examples of complex symmetric opera-
tors which are binormal or non-binormal.

Example 2.18. Let T = ( 1 2
0 1 ) on C2. Then T is complex symmetric with

the conjugation C defined by C(z1, z2) = (z2, z1) for z1, z2 ∈ C. Since |T | =
1√
2

( 1 1
1 3 ), it follows that

C|T |C|T | =
(

2 3
1 2

)
and |T |C|T |C =

(
2 1
3 2

)
.

Hence T is not binormal by Theorem 2.16.

Example 2.19. Let H = `2 and let C be the canonical conjugation given
by C(

∑∞
n=0 xnen) =

∑∞
n=0 xnen with Cen = en for all n. Assume that T =(

S∗ I
0 S

)
on H ⊕ H, where S ∈ L(H) is the unilateral shift. Then S and S∗

commute with the conjugation C. Denote the conjugation C given by C =
( 0 C
C 0 ). Then we obtain that

CT ∗ − TC =

(
C CS∗

CS 0

)
−
(
C S∗C
SC 0

)
= 0.

Hence T is a complex symmetric operator (cf. [9]). Moreover, since T =
(
S∗ I
0 S

)
,

it follows that

T ∗T =

(
SS∗ S
S∗ 2I

)
and TT ∗ =

(
2I S∗

S SS∗

)
.

Therefore we have

TT ∗T ∗T =

(
2SS∗ + S∗2 2S + 2S∗

S2S∗ + SS∗2 S2 + 2SS∗

)
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and

T ∗TTT ∗ =

(
S2 + 2SS∗ SS∗2 + S2S∗

2S + 2S∗ S∗2 + 2SS∗

)
.

Hence T is not binormal. On the other hand, if S is the unilateral shift on
H, then T = S∗⊕S is binormal and complex symmetric. Indeed, in this case,
we have T ∗T =

(
SS∗ 0

0 I

)
, |T |C =

(
0 C

CSS∗ 0

)
, and C|T | =

(
0 SS∗C
C 0

)
. Hence

[|T |, C|T |C] = 0 and so T ∈ C(|T |). Therefore T is binormal by Theorem 2.16.
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