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SKEW COMPLEX SYMMETRIC OPERATORS AND WEYL

TYPE THEOREMS

Eungil Ko, Eunjeong Ko, and Ji Eun Lee

Abstract. An operator T ∈ L(H) is said to be skew complex symmetric
if there exists a conjugation C on H such that T = −CT ∗C. In this pa-
per, we study properties of skew complex symmetric operators including
spectral connections, Fredholmness, and subspace-hypercyclicity between
skew complex symmetric operators and their adjoints. Moreover, we con-
sider Weyl type theorems and Browder type theorems for skew complex
symmetric operators.

1. Introduction

Let L(H) be the algebra of all bounded linear operators on a separable
complex Hilbert space H and let K(H) be the ideal of all compact operators on
H. If T ∈ L(H), we write ρ(T ), σ(T ), σsu(T ), σcomp(T ), σr(T ), σc(T ), σa(T ),
σe(T ), σle(T ), and σre(T ) for the resolvent set, for the spectrum, the surjective
spectrum, the compression spectrum, the residual spectrum, the continuous
spectrum, the approximate point spectrum, the essential spectrum, the left
essential spectrum, and the right essential spectrum of T , respectively.

A conjugation on H is an antilinear operator C : H → H which satisfies
〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H and C2 = I. An antiunitary operator is
an antilinear operator C : H → H which satisfies 〈Cx,Cy〉 = 〈y, x〉 for all
x, y ∈ H. An operator T ∈ L(H) is said to be complex symmetric if there ex-
ists a conjugation C on H such that T = CT ∗C and skew complex symmetric

if there exists a conjugation C on H such that CTC = −T ∗. Many standard
operators such as normal operators, Hankel matrices, finite Toeplitz matrices,
all truncated Toeplitz operators, and some Volterra integration operators are
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included in the class of complex symmetric operators. Several authors have
studied the structure of complex symmetric operators (see [12]-[14], [20], and
[18] for more details). On the other hand, less attention has been paid to skew
complex symmetric operators. There are several motivations for such opera-
tors. In particular, skew symmetric matrices have many applications in pure
mathematics, applied mathematics and even in engineering disciplines. Real
skew symmetric matrices are very important in applications, including function
theory, the solution of linear quadratic optimal control problems, robust con-
trol problems, model reduction, crack following in anisotropic materials, and
others. In view of these applications, it is natural to study skew symmetric
operators on the Hilbert space H (see [22], [25], and [27] for more details).

In this paper, we study properties of skew complex symmetric operators
including spectral connections, Fredholmness, and subspace-hypercyclicity be-
tween skew complex symmetric operators and their adjoints. Moreover, we
consider Weyl type theorems and Browder type theorems for skew complex
symmetric operators.

2. Preliminaries

An operator T ∈ L(H) is called upper semi-Fredholm if T has closed range
and dimker(T ) < ∞, and T ∈ L(H) is called lower semi-Fredholm if T has
closed range and dim(H/ran(T )) < ∞. When T is upper semi-Fredholm or
lower semi-Fredholm, T is said to be semi-Fredholm. The index of a semi-

Fredholm operator T ∈ L(H), denoted ind(T ), is given by

ind(T ) = dimker(T )− dim(H/ran(T ))

and this value is an integer or ±∞. An operator T ∈ L(H) is said to be
Fredholm if it is both upper and lower semi-Fredholm. An operator T ∈ L(H)
is said to be Weyl if it is Fredholm of index zero. If there is a nonnegative
integer m such that ker(Tm) = ker(Tm+1), then T is said to have finite ascent.
If there is a nonnegative integer n satisfying ran(T n) = ran(T n+1), then T is
said to have finite descent. We say that T ∈ L(H) is Browder if it has finite
ascent and finite descent. We define the Weyl spectrum σw(T ) and the Browder
spectrum σb(T ) by

σw(T ) = {λ ∈ C : T − λ is not Weyl}

and

σb(T ) = {λ ∈ C : T − λ is not Browder}.

It is evident that σe(T ) ⊂ σw(T ) ⊂ σb(T ). We say that Weyl’s theorem holds

for T ∈ L(H) if

σ(T ) \ π00(T ) = σw(T ), or equivalently, σ(T ) \ σw(T ) = π00(T ),

where π00(T ) = {λ ∈ isoσ(T ) : 0 < dimker(T − λ) < ∞}, π0f (T ) is the
set of the eigenvalue of finite multiplicity, and iso∆ denotes the set of all
isolated points of ∆. An operator T ∈ L(H) is said to be isoloid if for any
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λ ∈ iso σ(T ), λ ∈ C is an eigenvalue of T . We say that Browder’s theorem

holds for T ∈ L(H) if σb(T ) = σw(T ), or equivalently, σ(T ) \ σw(T ) = p00(T )
where p00(T ) = σ(T ) \ σb(T ). It is known that

Weyl’s theorem =⇒ Browder’s theorem.

We refer the reader to [1], [10], [17], and [20] for more details.

We recall the definitions of some spectra;

σea(T ) := ∩{σa(T +K) : K ∈ K(H)}

is the essential approximate point spectrum, and

σab(T ) := ∩{σa(T +K) : TK = KT and K ∈ K(H)}

is the Browder essential approximate point spectrum. We put

π00(T ) := {λ ∈ iso σ(T ) : 0 < dim ker(T − λ) < ∞}

and

πa
00(T ) := {λ ∈ iso σa(T ) : 0 < dim ker(T − λ) < ∞}.

Let T ∈ L(H). We say that

(i) a-Browder’s theorem holds for T if σea(T ) = σab(T ) or equivalently,
σa(T ) \ σea(T ) = pa00(T ) where pa00(T ) = σa(T ) \ σab(T );

(ii) a-Weyl’s theorem holds for T if σa(T ) \ σea(T ) = πa
00(T );

(iii) T has the property (w) if σa(T ) \ σea(T ) = π00(T ).

It is known that

Property (w) =⇒ a-Browder’s theorem

⇓ ⇑

Weyl’s theorem ⇐= a-Weyl’s theorem.

We refer the reader to [1], [10], [17] for more details.
Let Tn = T |ran(Tn) for each nonnegative integer n; in particular, T0 = T .

If Tn is upper semi-Fredholm for some nonnegative integer n, then T is called
a upper semi-B-Fredholm operator. In this case, by [6], Tm is a upper semi-
Fredholm operator and ind(Tm) = ind(Tn) for each m ≥ n. Thus, one can
consider the index of T , denoted by indB(T ), as the index of the semi-Fredholm
operator Tn. Similarly, we define lower semi-B-Fredholm operators. We say that
T ∈ L(H) is B-Fredholm if it is both upper and lower semi-B-Fredholm. In [6],
Berkani proved that T ∈ L(H) is B-Fredholm if and only if T = T1 ⊕ T2 where
T1 is Fredholm and T2 is nilpotent. Let A be a unital algebra. Recall that
x ∈ A is Drazin invertible of degree k if there exists an elements a ∈ A such
that xkax = xk, aca = a, and xa = ax.

Let SBF−
+ (H) be the class of all upper semi-B-Fredholm operators such

that indB(T ) ≤ 0, and let

σSBF
−

+

(T ) := {λ ∈ C : T − λ 6∈ SBF−
+ (H)}.
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An operator T ∈ L(H) is called B-Weyl if it is B-Fredholm of index zero. The
B-Weyl spectrum σBW (T ) of T is defined by

σBW (T ) := {λ ∈ C : T − λ is not a B-Weyl operator}.

We say that λ ∈ σa(T ) is a left pole of T if it has finite ascent, i.e., a(T ) < ∞
and ran(T a(T )+1) is closed where a(T ) = dimker(T ). The notation p0(T )
(respectively, pa0(T )) denotes the set of all poles (respectively, left poles) of T ,
while π0(T ) (respectively, π

a
0 (T )) is the set of all eigenvalues of T which is an

isolated point in σ(T ) (respectively, σa(T )).

Let T ∈ L(H). We say that

(i) T satisfies generalized Browder’s theorem if σBW (T ) = σ(T ) \ p0(T );
(ii) T satisfies generalized a-Browder’s theorem if σSBF

−

+

(T ) = σa(T ) \

pa0(T );
(iii) T satisfies generalized Weyl’s theorem if σBW (T ) = σ(T ) \ π0(T );
(iv) T satisfies generalized a-Weyl’s theorem if σSBF

−

+

(T ) = σa(T ) \ π
a
0 (T ).

It is known that

generalized a-Weyl’s theorem =⇒ generalized Weyl’s theorem

⇓ ⇓

generalized a-Browder’s theorem =⇒ generalized Browder’s theorem.

We refer the reader to [5]-[8], and [21] for more details.

3. Main results

In this section, we study some properties of skew complex symmetric opera-
tors. For a fixed conjugation C onH, set SC(H) = {X ∈ L(H) | CXC = −X∗}
and we call SC(H) the set of skew complex symmetric operators. For a sim-
ple example, if A ∈ L(H) is complex symmetric, then it is easy to show that
A⊕(−A) is skew complex symmetric on H⊕H. We also know that if A ∈ L(H)
is skew complex symmetric, then −A ⊕ (−A) is skew complex symmetric on
H⊕H. We next explain how to get some skew complex symmetric operators
from given any complex symmetric operators.

Example 3.1. If R ∈ L(H) is a complex symmetric operator with a conjuga-

tion C, then an easy computation shows that

T1 =

(

R 0
0 −R

)

, T2 =

(

0 R
R 0

)

, and T3 =

(

0 R
−R 0

)

are skew complex symmetric operators on H⊕H.

We first provide some relations among spectra of skew complex symmetric
operators and their adjoint. Since the proof of the following lemma is similar
to one in [20], we state it without its proof.

Lemma 3.2. If T ∈ SC(H), then the following relations are valid:
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(i) σp(T )
∗ = −σp(T

∗), σa(T )
∗ = −σa(T

∗), σsu(T )
∗ = −σsu(T

∗),
σcomp(T )

∗ = −σcomp(T
∗), σr(T )

∗ = −σr(T
∗), and σc(T )

∗ = −σc(T
∗).

(ii) σle(T )
∗ = −σle(T

∗), σre(T )
∗ = −σre(T

∗), and σe(T )
∗ = −σe(T

∗).
(iii) σp(T ) = −σcomp(T ) and σp(T

∗) = −σcomp(T
∗).

Example 3.3. Assume that T and S are in L(C3) which admit the following
representations:

T =





1 a 0
0 0 a
0 0 −1



 and S =





1 a 0
0 0 a
0 0 1



 .

Then T is a skew complex symmetric operator with respect to the conjugation
C(α1, α2, α3) = (−α3, α2,−α1) and a simple calculation shows that σ(T )∗ =
σp(T )

∗ = {−1, 0, 1} = −σp(T
∗) = −σ(T ∗). However, we know that σp(S)

∗ 6=
−σp(S

∗). Therefore, S is not a skew complex symmetric operator by Lemma
3.2, while S is a complex symmetric with the conjugation C(α1, α2, α3) =
(α3, α2, α1).

We next give more examples for skew complex symmetric operators on a
3-dimensional space.

Example 3.4. Let {e1, e2, e3} be an orthonormal basis of C3. If C is a conju-
gation on C3 defined by the one of the followings;































(i) Cx = ±α1e1 ± α2e2 ± α3e3

(ii) Cx = ±α1e1 ∓ α2e2 ± α3e3

(iii) Cx = ±α1e1 ± α3e2 ± α2e3

(iv) Cx = ±α2e1 ± α1e2 ± α3e3

(v) Cx = ±α3e1 ± α2e2 ± α1e3

where x = α1e1 + α2e2 + α3e3, it is easy to show that the following matrices
are skew complex symmetric matrices;

(1)





0 a b
∓a 0 c
∓b −c 0



 with respect to Cx = ±α1e1 ± α2e2 ± α3e3, respec-

tively.

(2)





0 a b
±a 0 c
∓b c 0



 with respect to Cx = ±α1e1 ∓ α2e2 ± α3e3, respec-

tively.

(3)





0 a b
∓b c 0
∓a 0 −c



 with respect to Cx = ±α1e1 ± α3e2 ± α2e3, respec-

tively.
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(4)





a 0 b
0 −a c
∓c ∓b 0



 with respect to Cx = ±α2e1 ± α1e2 ± α3e3, respec-

tively.

(5)





a b 0
c 0 ∓b
0 ∓c −a



 with respect to Cx = ±α3e1 ± α2e2 ± α1e3, respec-

tively.

As some applications of Lemma 3.2, we get the following proposition.

Proposition 3.5. If T ∈ SC(H), then the following relations hold:

(i) σ(T ) = σa(T ) ∪ [−σa(T )] and σ(T ∗) = σsu(T
∗) ∪ [−σsu(T

∗)].
(ii) σe(T ) = [−σre(T )] ∪ σre(T ) = σle(T ) ∪ [−σle(T )] and

σe(T
∗) = [−σre(T

∗)] ∪ σre(T
∗) = σle(T

∗) ∪ [−σle(T
∗)].

Proof. (i) For any T ∈ L(H), σ(T ) = σa(T ) ∪ σa(T
∗)∗ by [15, Corollary, page

222]. Since σa(T ) = −σa(T
∗)∗ by Lemma 3.2, we obtain

σ(T ) = σa(T ) ∪ [−σa(T )].

On the other hand, since σsu(T
∗) = σa(T )

∗ for any T ∈ L(H) and T ∈ SC(H),
it follows from Lemma 3.2 that

−σ(T ∗)∗ = σa(T ) ∪ [−σa(T )] = σsu(T
∗)∗ ∪ [−σsu(T

∗)∗].

Hence we get σ(T ∗) = σsu(T
∗) ∪ [−σsu(T

∗)].
(ii) Since σle(T )

∗ = σre(T
∗) for any T ∈ L(H), σle(T )

∗ = −σle(T
∗), and

σre(T )
∗ = −σre(T

∗) by Lemma 3.2, we obtain

σle(T ) = −σre(T ) and σle(T
∗) = −σre(T

∗).

Hence we conclude that

σe(T ) = σle(T ) ∪ σre(T ) = [−σre(T )] ∪ σre(T ) = σle(T ) ∪ [−σle(T )] and

σe(T
∗) = σle(T

∗) ∪ σre(T
∗) = [−σre(T

∗)] ∪ σre(T
∗) = σle(T

∗) ∪ [−σle(T
∗)].

�

Corollary 3.6. Let T ∈ SC(H). The following statements are equivalent:

(i) T − λ is invertible.

(ii) T ± λ are bounded below.

(iii) T ± λ are one-to-one and have closed range.

Proof. (i) =⇒ (ii) and (iii): If T − λ is invertible, then λ /∈ σa(T ) ∪ [−σa(T )]
from Proposition 3.5. Hence λ 6∈ σa(T ) and −λ 6∈ σa(T ). Therefore [9] implies
that T − λ and T + λ are bounded below. Equivalently, T ± λ are one-to-one
and have closed range.

(ii) ⇐⇒ (iii): It is trivial from [9].
(ii) =⇒ (i): If T ± λ are bounded below, then ±λ /∈ σa(T ) and so λ /∈

σa(T ) ∪ [−σa(T )]. Therefore, from Proposition 3.5, we have λ /∈ σ(T ). �
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The following corollary immediately follows from Proposition 3.5 and [9].

Corollary 3.7. If T ∈ SC(H), the following arguments are equivalent:

(i) λ 6∈ σe(T ).
(ii) dimker(T ± λ) < ∞ and ran(T ± λ) are closed.

(iii) dim[ran(T ± λ)]⊥ < ∞ and ran(T ± λ) are closed.

Let M be a nonzero subspace of H. Recall that T is subspace-hypercyclic

for M if there exists x ∈ H such that O(T, x) ∩ M is dense in M, where
O(T, x) := {T nx : n ∈ N ∪ {0}}. We call x a subspace-hypercyclic vector.

Proposition 3.8. Let T ∈ SC(H). Then the following arguments hold.

(i) T is subspace-hypercyclic for CM if and only if −T ∗ is subspace-

hypercyclic for M.

(ii) If T is subspace-hypercyclic for M, then ker(T + λ) ⊂ CM⊥ for all

λ ∈ C.

Proof. (i) Let C be a conjugation on H. If T is subspace-hypercyclic for CM,
then there exists x ∈ H such that O(T, x) ∩ CM is dense in CM. Hence we

get that CO(T, x) ∩CM = C2M = M. Moreover, since T ∈ SC(H), it follows
that CT n = (−T ∗)nC for all nonnegative integer n. Thus we obtain that

M = O(−T ∗, Cx) ∩M.

Therefore, −T ∗ is subspace-hypercyclic for M. The converse implication fol-
lows from the same method as the above.

(ii) Suppose that T is subspace-hypercyclic for M. Fix any λ ∈ C. If

y ∈ ker(T + λ), then C(T ∗ − λ)Cy = 0 and so T ∗Cy = λCy. Let f : M → C

be the functional defined by f(x) = 〈x, y〉. If f is onto and y ∈ M⊥, then

f(x) = 〈x, y〉 = 0 for all x ∈ M. Thus f ≡ 0 on M. Since M is a nonzero
subspace of H, this is a contradiction. Hence y 6∈ M⊥. Assume that y 6∈ M⊥.
For all z ∈ C, there exists x = z y

‖y‖2 ∈ M such that f(x) = 〈x, y〉 = z.

Thus f is onto. Therefore, we get that f is onto if and only if y 6∈ M⊥. Since
T ∈ SC(H), it ensures that

〈T nCx,Cy〉 = 〈Cx, T ∗nCy〉 = 〈Cx, λnCy〉

= λ
n
〈Cx,Cy〉 = λ

n
〈y, x〉 = λ

n
〈x, y〉.

Hence we obtain that

(1) f(O(T,Cx) ∩M) = {λn〈x, y〉 : there exists n such that T nCx ∈ M}.

On the other hand, if O(T,Cx) ∩M = M, then f(O(T,Cx) ∩M) should be
dense in C, otherwise f is not onto. Since the above set of (1) is obviously not
dense in C, it follows that f is not onto. So, Cy ∈ M⊥ and so y ∈ CM⊥.
Hence we complete the proof. �

Corollary 3.9. If H is finite-dimensional and T ∈ SC(H), then T and T ∗ are

not subspace-hypercyclic for any M.
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Proof. The proof follows from [26, Theorem 4.9] and Proposition 3.8. �

We next obtain the following spectra relations from Lemma 3.2 and Propo-
sition 3.5.

Lemma 3.10.

(i) π0(T )
∗ = −π0(T

∗), π00(T )
∗ = −π00(T

∗), and πa
00(T )

∗ = −πa
00(T

∗).
(ii) p00(T )

∗ = −p00(T
∗) and pa00(T )

∗ = −pa00(T
∗).

(iii) σab(T )
∗ = −σab(T

∗) and σea(T )
∗ = −σea(T

∗).

We say that T ∈ L(H) satisfies the property (b) if σa(T ) \ σea(T ) = p00(T ),
the property (ab) if σ(T ) \ σw(T ) = pa00(T ), and the property (aw) if σ(T ) \
σw(T ) = πa

00(T ). In the following theorem, if T ∈ L(H) is a skew complex sym-
metric operator, then we provide an equivalence statement about a Fredholm,
Drazin invertible, Weyl type theorems, and Browder type theorems, respec-
tively.

Theorem 3.11. If T ∈ SC(H), then the following statements hold:

(i) T − λ is Fredholm if and only if T ∗ + λ is for all λ ∈ C.

(ii) T − λ is Drazin invertible if and only if T ∗ + λ is for all λ ∈ C.

(iii) T satisfies Browder’s theorem (respectively, a-Browder’s theorem) if

and only if T ∗ does.

(iv) If T − λ has finite descent for all λ ∈ C, then both T and T ∗ satisfy

Browder’s theorem.

(v) T satisfies Weyl’s theorem (respectively, a-Weyl’s theorem) if and only

if T ∗ does.

(vi) T satisfies property (δ) if and only if T ∗ does where (δ) denotes (w),
(aw), (b), and (ab).

Proof. (i) Assume that T − λ is Fredholm. Then T − λ has closed range,
ker(T − λ) and ker(T − λ)∗ are finite dimensional. Since T ∈ SC(H), we know
that T ∗ + λ has closed range. Since dimker(T − λ) = dimC ker(T ∗ + λ) and
dimker(T − λ)∗ = dimC ker(T + λ), it suffices to show that

{

dimC ker(T ∗ + λ) = dimker(T ∗ + λ)

dimC ker(T + λ) = dimker(T + λ).

If dimker(T ∗ + λ) = n, there exists a basis {e1, . . . , en} ∈ ker(T ∗ + λ) and so
{Ce1, . . . , Cen} ∈ C ker(T ∗ + λ). If

∑n

i=1 αiCei = 0 for all complex numbers
α1, . . . , αn, then we have C(

∑n

i=1 αiCei) =
∑n

i=1 αiei = 0. Since the linear

independence property of {e1, . . . , en} in ker(T ∗ + λ), it follows that αi = 0
for all i = 1, 2, . . . , n. On the other hand, for any x ∈ C ker(T ∗ + λ), we
write x = Cy where y ∈ ker(T ∗ + λ). By spanning property of {e1, . . . , en} in

ker(T ∗ + λ), y =
∑n

i=1 βiei where β1, . . . , βn are complex numbers. Thus we
have

x = C(

n
∑

i=1

βiei) =

n
∑

i=1

βiCei
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where β1, . . . , βn are complex numbers. This means that {Ce1, . . . , Cen} is a
basis of C ker(T ∗+λ). Hence we conclude dimC ker(T ∗+λ) = n. The converse
inclusion and dimC ker(T+λ) = dimker(T+λ) hold by using a similar method.
Hence T ∗ + λ is Fredholm. Similarly, the converse implication holds.

(ii) If T −λ is Drazin invertible, it is well-known that T −λ has finite ascent
and finite descent. Suppose that ker(T −λ)n = ker(T −λ)n+1 for some positive

integer n. Since ker(T ∗ + λ)n ⊂ ker(T ∗ + λ)n+1 is clear, it suffices to show
ker(T ∗+λ)n+1 ⊂ ker(T ∗+λ)n. If x ∈ ker(T ∗+λ)n+1, then (T ∗+λ)n+1x = 0.
Since T ∗ = −CTC, it follows that (CTC − λ)n+1x = 0 and hence

0 = (CTC − λ)n+1x = [C(T − λ)C]n+1x = [C(T − λ)n+1C]x.

So, we have (T −λ)n+1Cx = 0. Thus Cx ∈ ker(T −λ)n+1 = ker(T −λ)n which
means (T − λ)nCx = 0. Hence we get that

0 = C(T − λ)nCx = (CTC − λ)nx = [−(T ∗ + λ)]nx.

Therefore, x ∈ ker(T ∗+λ)n. Thus ker(T ∗+λ)n+1 ⊂ ker(T ∗+λ)n. The converse
implication holds by using a similar argument. Hence T ∗ +λ has finite ascent.

Assume that ran(T − λ)n = ran(T − λ)n+1 for some positive integer n.
Since ran(T ∗ + λ)n+1 ⊂ ran(T ∗ + λ)n is trivial, we only need to show that
ran(T ∗ + λ)n ⊂ ran(T ∗ + λ)n+1. If y ∈ ran(T ∗ + λ)n, then

y = (T ∗ + λ)nx = (−CTC + λ)nx

= [−C(T − λ)C]nx = C[−(T − λ)]nCx

for some x ∈ H. Since Cy = [−(T − λ)]nCx ∈ ran(T − λ)n = ran(T − λ)n+1,
there exists a vector z ∈ H such that Cy = (T − λ)n+1z. This forces that

y = C(T − λ)n+1z = C[−C(T ∗ + λ)C]n+1z

= [−(T ∗ + λ)]n+1Cz ∈ ran(T ∗ + λ)n+1.

Hence, ran(T ∗+λ)n ⊂ ran(T ∗+λ)n+1. The converse implication holds by using

a similar way. Hence T ∗ + λ has finite descent. Since T ∗ + λ has finite ascent
and finite descent, it ensures that T ∗ + λ is Drazin invertible. The converse
implication holds by a similar method. Hence the proof is completed.

(iii) If T satisfies Browder’s theorem, then σb(T ) = σw(T ). Note that if
T ∈ SC(H), then σw(T ) = −σw(T

∗)∗. Indeed, If T is Weyl, then T is Fredholm
with ind(T ) = 0. By the argument (i), T ∗ is also Fredholm. Since dimker(T ) =
dimker(T ∗), we get dimker(T ∗) = dimker(T ). Hence ind(T ∗) = 0 and so T ∗

is Weyl. The converse implication holds by using a similar argument. By the
similar proof of [20], we have σb(T ) = −σb(T

∗)∗. Hence we obtain σb(T
∗) =

σw(T
∗) which means T ∗ satisfies Browder’s theorem. Similarly, the converse

statement holds. Hence we complete the proof.
Assume that a-Browder’s theorem holds for T . Then, by Lemma 3.10, we

have σea(T
∗) = −σea(T )

∗ = −σab(T )
∗ = σab(T

∗). Then a-Browder’s theorem
holds for T ∗. The converse statement holds by a similar method.
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(iv) Since σw(T ) ⊂ σb(T ) holds for every T ∈ L(H), it suffices to show that
the inclusion σb(T ) ⊂ σw(T ) holds. If λ /∈ σw(T ), then T − λ is Fredholm of
index 0. Since T −λ has finite descent, ran(T −λ)n = ran(T −λ)n+1 holds for
some n ∈ N. By taking the orthogonal complement, we have ker(T ∗ − λ)n =

ker(T ∗ − λ)n+1 for some n ∈ N. Moreover, since ind(T − λ) = 0, we get that
0 = n · ind(T − λ) = ind(T − λ)n = dimker(T − λ)n − dimker(T ∗ − λ)n and
0 = (n+1) ind(T−λ) = ind(T−λ)n+1 = dimker(T−λ)n+1−dimker(T ∗−λ)n+1.
Hence we have dimker(T − λ)n+1 = dimker(T − λ)n for some n ∈ N. Since
ker(T − λ)n ⊂ ker(T − λ)n+1 and dimker(T − λ)n = dimker(T − λ)n+1 < ∞,
we conclude that ker(T − λ)n = ker(T − λ)n+1 for some n ∈ N. Therefore,
T − λ has finite ascent and so λ /∈ σb(T ). Hence T satisfies Browder’s theorem
and so T ∗ satisfies Browder’s theorem from (iii).

(v) If T satisfies Weyl’s theorem, then σ(T ) − σw(T ) = π00(T ) holds. Note
that if T ∈ SC(H), σw(T )

∗ = −σw(T
∗) as in the proof of (iii). Since T ∈

SC(H), it follows from [25] and Lemma 3.10 that

−σ(T ∗)∗ + σw(T
∗)∗ = −π00(T

∗)∗ implies σ(T ∗)− σw(T
∗) = π00(T

∗).

Therefore T ∗ satisfies Weyl’s theorem. Conversely, if T ∗ satisfies Weyl’s the-
orem, then σ(T ∗) − σw(T

∗) = π00(T
∗). By [25] and Lemma 3.10, we obtain

−σ(T )∗+σw(T )
∗ = −π00(T )

∗ and hence σ(T )−σw(T ) = π00(T ) holds. There-
fore, T satisfies Weyl’s theorem.

Assume that T satisfies a-Weyl’s theorem. From Lemma 3.10, we get that

σa(T
∗)\σea(T

∗) = −(σa(T )\σea(T ))
∗ = −πa

00(T )
∗ = πa

00(T
∗).

Hence T ∗ satisfies a-Weyl’s theorem. The converse statement holds by a similar
method.

(vi) Suppose that T satisfies the property (w). From Lemma 3.10, we get
that

σa(T
∗)\σea(T

∗) = −(σa(T )\σea(T ))
∗ = −π00(T )

∗ = π00(T
∗).

Hence T ∗ satisfies the property (w). The converse statement holds by a similar
way.

Assume that T satisfies the property (aw). From Lemma 3.10 and [25], we
get that

σ(T ∗)\σw(T
∗) = −(σ(T )\σw(T ))

∗ = −πa
00(T )

∗ = πa
00(T

∗).

Hence T ∗ satisfies the property (aw). The converse statement holds by a similar
method.

If T satisfies the property (b), then Browder’s theorem holds for T by [8] and
so σw(T )

∗ = σb(T )
∗. By the proof of (iii) and Corollary 3.13, T ∗ satisfies the

Browder’s theorem and σw(T
∗) = σb(T

∗). Hence σea(T
∗) = σa(T

∗) ∩ σb(T
∗)

by [28] and [5]. From Lemma 3.10, we get that

σ(T ∗)\σea(T
∗) = −(σ(T )\σea(T ))

∗ = −p00(T )
∗ = p00(T

∗).
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Hence T ∗ satisfies the property (b). The converse statement holds by a similar
method.

If T satisfies the property (ab), then Browder’s theorem holds for T by [8]
and σw(T )

∗ = σb(T )
∗. By the proof of (iii) and Corollary 3.13, T ∗ satisfies the

Browder’s theorem and σw(T
∗) = σb(T

∗). Hence σab(T
∗) = σa(T

∗) ∩ σw(T
∗)

by [5, Theorem 3.1]. From Lemma 3.10, we get that

σ(T ∗)\σw(T
∗) = −(σ(T )\σw(T ))

∗ = −pa00(T )
∗ = pa00(T

∗).

Hence T ∗ satisfies the property (ab). The converse statement holds by a similar
method. �

Corollary 3.12. Let S and T be which have complex symmetric operators

with a conjugation C on H. If [S, T ] := ST − TS, then [S, T ] satisfies Weyl’s

theorem (respectively, a-Weyl’s theorem, Browder’s theorem, and a-Browder’s
theorem) if and only if [S, T ]∗ does.

Proof. Since [S, T ] is skew symmetric from [25], the proof follows from Theorem
3.11. �

Recall that an operator T ∈ L(H) is said to have the single-valued extension

property (or SVEP) if for every open subset G of C and any H-valued analytic
function f on G such that (T − λ)f(λ) ≡ 0 on G, we have f(λ) ≡ 0 on G.

Corollary 3.13. Assume that T ∈ SC(H). If T ∗ + λ has finite ascent for all

λ ∈ C, then both T and T ∗ have the single-valued extension property. In this

case, σ(T ) = σsu(T ) = σa(T ).

Proof. Since T ∗ + λ has finite ascent for all λ ∈ C, it follows from Theorem
3.11(ii) that T − λ has finite ascent. Hence both T and T ∗ have single-valued
extension property from [23]. In this case, since T has the single-valued ex-
tension property, we obtain σ(T ) = σsu(T ) by [24]. Moreover, by Lemma 3.2,
[24], and [25], σ(T ) = σsu(T ) implies σ(T )∗ = σ(T ∗) = σsu(T

∗) = −σsu(T )
∗ =

−σa(T
∗) = σa(T )

∗. Thus we have σ(T ) = σa(T ). Hence we conclude that
σ(T ) = σsu(T ) = σa(T ). �

For an operator T ∈ L(H), the quasinilpotent part of T is defined by

H0(T ) := {x ∈ H : lim
n→∞

‖T nx‖
1
n = 0}.

Then H0(T ) is a linear (not necessarily closed) subspace of H.

Corollary 3.14. For an operator T ∈ SC(H), then the following arguments

hold:

(i) If kerT = kerT ∗ and H0(T−λ) = ker(T−λ)pλ for some integer pλ ∈ N,

then these operators T , T ∗, T |(kerT )⊥ , and (T |(kerT )⊥)
∗ satisfy Weyl’s

theorem.

(ii) If H0(T −λ) is closed for every λ ∈ π0f (T ), then Weyl’s theorem holds

for T and T ∗.
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Proof. If T ∈ L(H) with kerT = kerT ∗, we first claim that T ∈ SC(H)
if and only if T |(kerT )⊥∈ SC(H). Assume that T is skew complex symmet-
ric. Since CTC = −T ∗ for some conjugation C, it ensures that C(kerT ) =
kerT ∗ = kerT and C(kerT )⊥ = (kerT )⊥. Then C admits the matrix repre-
sentation C = C1 ⊕C2 on kerT ⊕ (kerT )⊥ where C1 is a conjugation on kerT
and C2 is a conjugation on (kerT )⊥. This implies that C2(T |(kerT )⊥)C2 =
−(T |(kerT )⊥)

∗. Hence T |(kerT )⊥ is skew complex symmetric. Conversely, we
assume T |(kerT )⊥∈ SC(H) and set T1 = T |(kerT )⊥ . Since kerT = kerT ∗ by
hypothesis, we conclude that T = 0⊕T1 is also skew complex symmetric. Since
H0(T − λ) = ker(T − λ)pλ for some integer pλ ∈ N, it follows from Theorem
3.11 and [1, Theorems 3.91 and 3.99] that Weyl’s theorem hold for T and T ∗.
Moreover, in this case, T |(kerT )⊥ and (T |(kerT )⊥)

∗ satisfy Weyl’s theorem by
[1, Theorem 3.99].

(ii) If H0(T −λ) is closed for every λ ∈ π0f (T ), then T and T ∗ satisfy Weyl’s
theorem from Theorem 3.11 and [1, Theorem 3.91]. �

Recall that an operator T ∈ L(H) is said to a-polaroid if isoσa(T ) ⊂ p0(T )
where p0(T ) denotes the set of poles of the resolvent of T .

Corollary 3.15. Let T ∈ SC(H) have the property (b) and let T be a-polaroid.
Then T ∗ satisfies generalized a-Browder’s theorem.

Proof. Suppose that T has the property (b) and T is a-polaroid. From Lemmas
3.2 and 3.10, we know that σa(T ) = −σa(T

∗) and π0(T )
∗ = −π0(T

∗). Since
T ∈ SC(H), it ensures from Theorem 3.11(v) that T ∗ has the property (b).
Moreover, since T is a-polaroid, it follows that isoσa(T ) ⊂ p0(T ). By Lemma
3.10, we know that σa(T

∗) = −σa(T )
∗ and p0(T

∗) = −p0(T )
∗. This gives that

isoσa(T
∗) ⊂ p0(T

∗). Hence T ∗ is also a-polaroid. Since T ∗ has the property
(b) from Theorem 3.11, it holds that σa(T

∗) \ σea(T
∗) = p00(T

∗). The relation
p00(T

∗) ⊂ pa00(T
∗) for any T ∈ L(H) implies σa(T

∗)\σea(T
∗) ⊂ pa00(T

∗). Since
σa(T

∗) \ σea(T
∗) ⊃ pa00(T

∗), we get that T ∗ satisfies a-Browder’s theorem.
Therefore, we conclude that T ∗ satisfies generalized a-Browder’s theorem from
[2]. �

Recall that an operator T ∈ L(H) satisfies the property (R) if the equality
pa00(T ) = π00(T ) holds. Finally, we provide equivalence statements of a-Weyl’s
theorem for skew complex symmetric operators.

Theorem 3.16. Suppose that T ∈ SC(H) has the single-valued extension prop-

erty. Then the following arguments are equivalent:

(i) T has the property (R).
(ii) T has the property (w).
(iii) Weyl’s theorem holds for T .
(iv) a-Weyl’s theorem holds for T .

Proof. (i) ⇔ (iii): Suppose that T has the property (R), i.e., pa00(T ) = π00(T ).
Since T ∈ SC(H) has the single-valued extension property, we can easily show
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that T ∗ has the single-valued extension property by a similar method of [18].
This implies that p00(T ) = pa00(T ). Moreover, since T has the property (R),
we get that p00(T ) = π00(T ). Since T has the single-valued extension property,
it follows that T satisfies Browder’s theorem. Hence we conclude that Weyl’s
theorem holds for T from [3, Theorem 2.4].

Conversely, we assume that T satisfies Weyl’s theorem. From [3], we have
p00(T ) = π00(T ). Since T ∗ has the single-valued extension property, we know
that p00(T ) = pa00(T ). So, p

a
00(T ) = π00(T ). Hence T has the property (R).

(ii) ⇔ (iv): Since (iv) ⇒ (ii) is clear, it suffices to show the converse impli-
cation. Assume that T has the property (w). Since T ∈ SC(H) has the single-
valued extension property, it follows that T ∗ has the single-valued extension
property by [20]. This ensures that σa(T ) = σ(T ) and π00(T ) = πa

00(T ) by [1].
Since T has the property (w), it follows that σa(T )\σea(T ) = π00(T ) = πa

00(T ).
Hence T satisfies a-Weyl’s theorem.

(iii) ⇔ (iv): Since (iv) ⇒ (iii) is obvious, it suffices to prove the converse
implication. Suppose that T satisfies Weyl’s theorem. Since T ∈ SC(H) has
the single-valued extension property, it follows that T ∗ has the single-valued
extension property by [18]. This ensures that σa(T ) = σ(T ), σea(T ) = σw(T ),
and π00(T ) = πa

00(T ) by [1]. Since T satisfies Weyl’s theorem, we obtain that
σa(T ) \ σea(T ) = σ(T ) \ σw(T ) = π00(T ). Hence T has the property (w). �

Corollary 3.17. Assume that T ∈ SC(H) has the single-valued extension prop-

erty. If T satisfies Weyl’s theorem or T has the property (R), then T ∗ has the

property (w).

Proof. If T satisfies Weyl’s theorem, then it has the property (w) from Theorem
3.16. Hence T ∗ has the property (w) from Theorem 3.11. If T has the property
(R), then the above statement also holds by using a similar argument. �
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