KYUNGPOOK Math. J. 60(2020), 551-570
https://doi.org/10.5666/KMJ.2020.60.3.551
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

Real Hypersurfaces with Invariant Normal Jacobi Operator in the Complex Hyperbolic Quadric

Imsoon Jeong
Department of Mathematics Education, Cheongju University, Cheongju 28503, Republic of Korea
e-mail: isjeong@cju.ac.kr
Gyu Jong Kim*
Department of Mathematics Education, Woosuk University, Wanju, Jeonbuk 55338, Republic of Korea
e-mail : hb2107@naver.com

Abstract. We introduce the notion of Lie invariant normal Jacobi operators for real hypersurfaces in the complex hyperbolic quadric $Q^{m *}=S O_{m, 2}^{o} / S O_{m} S O_{2}$. The invariant normal Jacobi operator implies that the unit normal vector field N becomes \mathfrak{A}-principal or \mathfrak{A}-isotropic. Then in each case, we give a complete classification of real hypersurfaces in $Q^{m *}=S O_{m, 2}^{o} / S O_{m} S O_{2}$ with Lie invariant normal Jacobi operators.

1. Introduction

When we consider Hermitian symmetric spaces of rank 2, we can usually give examples of Riemannian symmetric spaces $S U_{m+2} / S\left(U_{2} U_{m}\right)$ and $S U_{2, m} / S\left(U_{2} U_{m}\right)$, which are said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grassmannians respectively (see [21, 22, 23]). These are viewed as Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure J and the quaternionic Kähler structure \mathfrak{J}.

In the complex projective space $\mathbb{C} P^{m+1}$ and the quaternionic projective space $\mathbb{Q} P^{m+1}$ some classifications related to commuting Ricci tensor were investigated by Kimura [5, 6], Pérez [13] and Pérez and Suh [14, 15] respectively. The classification

* Corresponding Author.

Received March 5, 2019; revised May 20, 2019; accepted June 10, 2019.
2020 Mathematics Subject Classification: primary 53C40, secondary 53C55.
Key words and phrases: invariant normal Jacobi operator, \mathfrak{A}-isotropic, \mathfrak{A}-principal, Kähler structure, complex conjugation, complex hyperbolic quadric.
The first author was supported by grant Proj. No. NRF-2020-R1H1A2014198 and the second author by grant Proj. No. NRF-2020-R1G1A1A01003570 from National Reearch Foundation.
problems of the complex 2-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)=S U_{m+2} / S\left(U_{2} U_{m}\right)$ with various geometric conditions were discussed in Jeong, Kim and Suh [4], Pérez [13], and Suh [21, 22, 29], where the classification of contact hypersurfaces, parallel Ricci tensor, harmonic curvature and Jacobi operator of a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ were extensively studied.

Another example of Hermitian symmetric space with rank 2 having noncompact type different from the above ones, is the complex hyperbolic quadric $S_{2, m}^{0} / \mathrm{SO}_{2} \mathrm{SO}_{m}$. It is a simply connected Riemannian manifold whose curvature tensor is the negative of the curvature tensor of the complex quadric Q^{m} (see Besse [2], Helgason [3], and Knapp [10]). The complex hyperbolic quadric also can be regarded as a kind of real Grassmann manifolds of non-compact type with rank 2 . Accordingly, the complex hyperbolic quadric $Q^{m *}$ admits two important geometric structures, a complex conjugation structure A and a Kähler structure J, which anti-commute with each other, that is, $A J=-J A$. For $m \geq 2$ the triple $\left(Q^{m *}, J, g\right)$ is a Hermitian symmetric space of non-compact type and its maximal sectional curvature is equal to -4 (see Klein [7], Kobayashi and Nomizu [11], and Reckziegel [16]).

Two last examples of different Hermitian symmetric spaces with rank 2 in the class of compact type or non-compact type, are the complex quadric $Q^{m}=$ $S O_{m+2} / S O_{m} S O_{2}$ or the complex hyperbolic quadric $Q^{m *}=S O_{2, m}^{o} / S O_{m} S O_{2}$, which are a complex hypersurface in complex projective space $C P^{m+1}$ or in complex hyperbolic space respectively(see Romero [17, 18], Suh [24, 25], and Smyth [19]). The complex quadric Q^{m} or the complex hyperbolic quadric $Q^{m *}$ can be regarded as a kind of real Grassmann manifold of compact or non-compact type with rank 2 respectively(see Helgason [3], Kobayashi and Nomizu [11]). Accordingly, the complex quadric Q^{m} and the complex hyperbolic quadric $Q^{m *}$ both admit two important geometric structures, a complex conjugation structure A and a Kähler structure J, which anti-commute with each other, that is, $A J=-J A$ (see Klein [7] and Reckziegel [16]).

Now let us introduce a complex hyperbolic quadric $Q^{m *}=S O_{m, 2}^{o} / S O_{2} S O_{m}$, which can be regarded as a Hermitian symmetric space with rank 2 of noncompact type. Montiel and Romero [12] proved that the complex hyperbolic quadric $Q^{m *}$ can be immersed in the indefinite complex hyperbolic space $C H_{1}^{m+1}(-c), c>0$, by interchanging the Kähler metric with its opposite. Changing the Kähler metric of $C P_{n-s}^{n+1}$ with its opposite, we have that Q_{n-s}^{n} endowed with its opposite metric $g^{\prime}=-g$ is also an Einstein hypersurface of $C H_{s+1}^{n+1}(-c)$. When $s=0$, we know that $\left(Q_{n}^{n}, g^{\prime}=-g\right)$ can be regarded as the complex hyperbolic quadric $Q^{m *}=$ $S O_{m, 2}^{o} / \mathrm{SO}_{2} S O_{m}$, which is immersed in the indefinite complex hyperbolic quadric $C H_{1}^{m+1}(-c), c>0$ as a space-like complex Einstein hypersurface.

Apart from the complex structure J there is another distinguished geometric structure on $Q^{m *}$, namely a parallel rank two vector bundle \mathfrak{A} which contains a S^{1} bundle of real structures. Note that these real structures are complex conjugations A on the tangent spaces of the complex hyperbolic quadric $Q^{m *}$. This geometric
structure determines a maximal \mathfrak{A}-invariant subbundle \mathcal{Q} of the tangent bundle $T M$ of a real hypersurface M in the complex hyperbolic quadric $Q^{m *}$.

Recall that a nonzero tangent vector $W \in T_{[z]} Q^{m *}$ is called singular if it is tangent to more than one maximal flat in $Q^{m *}$. There are two types of singular tangent vectors for the complex hyperbolic quadric $Q^{m *}$ as follows:

1. If there exists a conjugation $A \in \mathfrak{A}$ such that $W \in V(A)$, then W is singular. Such a singular tangent vector is called \mathfrak{A}-principal.
2. If there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $W /\|W\|=(X+J Y) / \sqrt{2}$, then W is singular. Such a singular tangent vector is called \mathfrak{A}-isotropic.

Here $V(A)=\left\{X \in T_{[z]} Q^{m^{*}}: A X=X\right\}$ and $J V(A)=\left\{X \in T_{[z]} Q^{m *}: A X=\right.$ $-X\},[z] \in Q^{m *}$, are the $(+1)$-eigenspace and (-1)-eigenspace for the involution A on $T_{[z]} Q^{m *},[z] \in Q^{m *}$.

When we consider a hypersurface M in the complex hyperbolic quadric $Q^{m *}$, under the assumption of some geometric properties the unit normal vector field N of M in $Q^{m *}$ can be divided into two cases depending on whether N is \mathfrak{A}-isotropic or \mathfrak{A}-principal (see $[27,28,30,31]$). In the first case where N is \mathfrak{A}-isotropic, we have shown in [27] that M is locally congruent to a tube over a totally geodesic complex hyperbolic space $\mathbb{C} H^{k}$ in the complex hyperbolic quadric $Q^{2 k^{*}}$. In the second case, when the unit normal N is \mathfrak{A}-principal, we proved that a contact hypersurface M in the complex hyperbolic quadric $Q^{m *}$ is locally congruent to a tube over a totally geodesic and totally real submanifold $\mathbb{R} H^{m}$ in $Q^{m *}$ or a horosphere (see Suh [9], and Suh and Hwang [30]).

Usually, Jacobi fields along geodesics of a given Riemannian manifold \bar{M} satisfy a well known differential equation. Naturally the classical differential equation inspires the so-called Jacobi operator. That is, if \bar{R} is the curvature operator of \bar{M}, the Jacobi operator with respect to X at $z \in M$, is defined by

$$
\left(\bar{R}_{X} Y\right)(z)=(\bar{R}(Y, X) X)(z)
$$

for any $Y \in T_{z} \bar{M}$. Then $\bar{R}_{X} \in \operatorname{End}\left(T_{z} \bar{M}\right)$ becomes a symmetric endomorphism of the tangent bundle $T \bar{M}$ of \bar{M}. Clearly, each tangent vector field X to \bar{M} provides a Jacobi operator with respect to X.

From such a view point, in the complex hyperbolic quadric $Q^{m *}$ the normal Jacobi operator \bar{R}_{N} is defined by

$$
\bar{R}_{N}=\bar{R}(\cdot, N) N \in E n d\left(T_{z} M\right), \quad z \in M
$$

for a real hypersurface M in the complex hyperbolic quadric $Q^{m *}$ with unit normal vector field N, where \bar{R} denotes the curvature tensor of the complex hyperbolic quadric $Q^{m *}$. Of course, the normal Jacobi opeartor \bar{R}_{N} is a symmetric endomorphism of M in the complex hyperbolic quadric $Q^{m *}$.

The normal Jacobi operator \bar{R}_{N} of M in the complex hyperbolic quadric $Q^{m *}$ is said to be Lie invariant if the operator \bar{R}_{N} satisfies

$$
0=\left(\mathfrak{L}_{X} \bar{R}_{N}\right) Y
$$

for any $X, Y \in T_{z} M, z \in M$, where the Lie derivative $\left(\mathfrak{L}_{X} \bar{R}_{N}\right) Y$ is defined by

$$
\begin{align*}
\left(\mathfrak{L}_{X} \bar{R}_{N}\right) Y & =\left[X, \bar{R}_{N}(Y)\right]-\bar{R}_{N}([X, Y]) \tag{1.1}\\
& =\nabla_{X}\left(\bar{R}_{N}(Y)\right)-\nabla_{\bar{R}_{N}(Y)} X-\bar{R}_{N}\left(\nabla_{X} Y-\nabla_{Y} X\right) \\
& =\left(\nabla_{X} \bar{R}_{N}\right) Y-\nabla_{\bar{R}_{N}(Y)} X+\bar{R}_{N}\left(\nabla_{Y} X\right) .
\end{align*}
$$

For real hypersurfaces in the complex quadric Q^{m} we investigated the notions of parallel Ricci tensor, harmonic curvature and commuting Ricci tensor, which are respectively given by ∇ Ric $=0, \delta$ Ric $=0$ and Ric $\cdot \phi=\phi \cdot \operatorname{Ric}$ (see Suh [25], [26], and Suh and Hwang [29]). But from the assumption of Ricci parallel or harmonic curvature, it was difficult for us to derive the fact that either the unit normal vector field N is \mathfrak{A}-isotropic or \mathfrak{A}-principal. So in [25] and [26] we gave a classification with the further assumption of \mathfrak{A}-isotropic. Also in the study of complex hyperbolic quadric $Q^{m *}$ we also have some obstructions to get the fact that the unit normal N is singular.

In the paper due to Suh [27] we investigate this problem of isometric Reeb flow for the complex hyperbolic quadric $Q^{m *}=S O_{2, m}^{o} / S O_{m} S O_{2}$. In view of the previous results, naturally, we expected that the classification might include at least the totally geodesic $Q^{m-1^{*}} \subset Q^{m *}$. But, the results are quite different from our expectations. The totally geodesic submanifolds of the above type are not included. Now we introduce the classification as follows:
Theorem 1.1. Let M be a real hypersurface of the complex hyperbolic quadric $Q^{m *}=S O_{2, m}^{o} / S O_{m} S O_{2}, m \geq 3$. The Reeb flow on M is isometric if and only if m is even, say $m=2 k$, and M is an open part of a tube around a totally geodesic $\mathbb{C} H^{k} \subset Q^{2 k^{*}}$ or a horosphere whose center at infinity is \mathfrak{A}-isotropic singular.

But fortunately, when we consider Lie invariant normal Jacobi operator, that is., $\mathcal{L}_{X} \bar{R}_{N}=0$ for any tangent vector field X on M in $Q^{m *}$, we can assert that the unit normal vector field N becomes either \mathfrak{A}-isotropic or \mathfrak{A}-principal as follows:
Theorem 1.2. Let M be a Hopf real hypersurface in the complex hyperbolic quadric $Q^{m *}, m \geq 3$, with Lie invariant normal Jacobi operator. Then the unit normal vector field N is singular, that is, N is \mathfrak{A}-isotropic or \mathfrak{A}-principal.

Then motivated by Theorem 1.1 and Theorem 1.2, we can give a complete classification for real hypersurfaces in $Q^{m *}$ with invariant normal Jacobi operator as follows:

Theorem 1.3. Let M be a Hopf real hypersurface in the complex hyperbolic quadric $Q^{m *}, m \geq 3$ with Lie invariant normal normal Jacobi operator. Then M is locally congruent to a tube of radius r over a totally geodesic $C H^{k}$ in $Q^{2 k^{*}}$ or a horosphere
whose center at infinity is \mathfrak{A}-isotropic singular.

2. The Complex Hyperbolic Quadric

In this section, let us introduce a new known result of the complex hyperbolic quadric $Q^{m *}$ different from the complex quadric Q^{m}. This section is due to Klein and Suh [9], and Suh [28].

The m-dimensional complex hyperbolic quadric $Q^{m *}$ is the non-compact dual of the m-dimensional complex quadric Q^{m}, which is a kind of Hermitian symmetric space of non-compact type with rank 2 (see Besse [2], and Helgason [3]).

The complex hyperbolic quadric $Q^{m *}$ cannot be realized as a homogeneous complex hypersurface of the complex hyperbolic space $\mathbb{C} H^{m+1}$. In fact, Smyth [20, Theorem 3(ii)] has shown that every homogeneous complex hypersurface in $\mathbb{C} H^{m+1}$ is totally geodesic. This is in marked contrast to the situation for the complex quadric Q^{m}, which can be realized as a homogeneous complex hypersurface of the complex projective space $\mathbb{C} P^{m+1}$ in such a way that the shape operator for any unit normal vector to Q^{m} is a real structure on the corresponding tangent space of Q^{m}, see [7] and [16]. Another related result by Smyth, [20, Theorem 1], which states that any complex hypersurface $\mathbb{C} H^{m+1}$ for which the square of the shape operator has constant eigenvalues (counted with multiplicity) is totally geodesic, also precludes the possibility of a model of $Q^{m *}$ as a complex hypersurface of $\mathbb{C} H^{m+1}$ with the analogous property for the shape operator.

Therefore we realize the complex hyperbolic quadric $Q^{m *}$ as the quotient manifold $S O_{2, m}^{0} / S O_{2} S O_{m}$. As $Q^{1^{*}}$ is isomorphic to the real hyperbolic space $\mathbb{R} H^{2}=S O_{1,2}^{0} / S O_{2}$, and $Q^{2^{*}}$ is isomorphic to the Hermitian product of complex hyperbolic spaces $\mathbb{C} H^{1} \times \mathbb{C} H^{1}$, we suppose $m \geq 3$ in the sequel and throughout this paper. Let $G:=S O_{2, m}^{0}$ be the transvection group of $Q^{m *}$ and $K:=S O_{2} S O_{m}$ be the isotropy group of $Q^{m *}$ at the "origin" $p_{0}:=e K \in Q^{m *}$. Then

$$
\sigma: G \rightarrow G, g \mapsto s g s^{-1} \quad \text { with } \quad s:=\left(\begin{array}{ccccc}
-1 & & & & \\
& -1 & & & \\
& & 1 & & \\
& & & 1 & \\
& & & & \\
& & & & \\
& & & & \\
& & &
\end{array}\right)
$$

is an involutive Lie group automorphism of G with $\operatorname{Fix}(\sigma)_{0}=K$, and therefore $Q^{m *}=G / K$ is a Riemannian symmetric space. The center of the isotropy group K is isomorphic to $S O_{2}$, and therefore $Q^{m *}$ is in fact a Hermitian symmetric space.

The Lie algebra $\mathfrak{g}:=\mathfrak{s o}_{2, m}$ of G is given by

$$
\mathfrak{g}=\left\{X \in \mathfrak{g l}(m+2, \mathbb{R}): X^{t} \cdot s=-s \cdot X\right\}
$$

(see [10, p. 59]). In the sequel we will write members of \mathfrak{g} as block matrices with respect to the decomposition $\mathbb{R}^{m+2}=\mathbb{R}^{2} \oplus \mathbb{R}^{m}$, i.e. in the form

$$
X=\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right)
$$

where $X_{11}, X_{12}, X_{21}, X_{22}$ are real matrices of the dimension $2 \times 2,2 \times m, m \times 2$ and $m \times m$, respectively. Then

$$
\mathfrak{g}=\left\{\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right): X_{11}^{t}=-X_{11}, X_{12}^{t}=X_{21}, X_{22}^{t}=-X_{22}\right\}
$$

The linearisation $\sigma_{L}=\operatorname{Ad}(s): \mathfrak{g} \rightarrow \mathfrak{g}$ of the involutive Lie group automorphism σ induces the Cartan decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{m}$, where the Lie subalgebra

$$
\begin{aligned}
\mathfrak{k} & =\operatorname{Eig}\left(\sigma_{*}, 1\right)=\left\{X \in \mathfrak{g}: s X s^{-1}=X\right\} \\
& =\left\{\left(\begin{array}{cc}
X_{11} & 0 \\
0 & X_{22}
\end{array}\right): X_{11}^{t}=-X_{11}, X_{22}^{t}=-X_{22}\right\} \\
& \cong \mathfrak{s o}_{2} \oplus \mathfrak{s o}_{m}
\end{aligned}
$$

is the Lie algebra of the isotropy group K, and the $2 m$-dimensional linear subspace

$$
\mathfrak{m}=\operatorname{Eig}\left(\sigma_{*},-1\right)=\left\{X \in \mathfrak{g}: s X s^{-1}=-X\right\}=\left\{\left(\begin{array}{cc}
0 & X_{12} \\
X_{21} & 0
\end{array}\right): X_{12}^{t}=X_{21}\right\}
$$

is canonically isomorphic to the tangent space $T_{p_{0}} Q^{m *}$. Under the identification $T_{p_{0}} Q^{m *} \cong \mathfrak{m}$, the Riemannian metric g of $Q^{m *}$ (where the constant factor of the metric is chosen so that the formulae become as simple as possible) is given by

$$
g(X, Y)=\frac{1}{2} \operatorname{tr}\left(Y^{t} \cdot X\right)=\operatorname{tr}\left(Y_{12} \cdot X_{21}\right) \quad \text { for } \quad X, Y \in \mathfrak{m}
$$

g is clearly $\operatorname{Ad}(K)$-invariant, and therefore corresponds to an $\operatorname{Ad}(G)$-invariant Riemannian metric on $Q^{m *}$. The complex structure J of the Hermitian symmetric space is given by

$$
J X=\operatorname{Ad}(j) X \quad \text { for } \quad X \in \mathfrak{m}, \quad \text { where } \quad j:=\left(\begin{array}{ccccc}
0 & 1 & & & \\
-1 & 0 & & & \\
& & 1 & & \\
& & & & \\
& & & \ddots & \\
& & & & 1
\end{array}\right) \in K
$$

Because j is in the center of K, the orthogonal linear map J is $\operatorname{Ad}(K)$-invariant, and thus defines an $\operatorname{Ad}(G)$-invariant Hermitian structure on $Q^{m *}$. By identifying the multiplication with the unit complex number i with the application of the linear map J, the tangent spaces of $Q^{m *}$ thus become m-dimensional complex linear spaces, and we will adopt this point of view in the sequel.

Like for the complex quadric (again compare $[7,8,16]$), there is another important structure on the tangent bundle of the complex quadric besides the Riemannian metric and the complex structure, namely an S^{1}-bundle \mathfrak{A} of real structures. The situation here differs from that of the complex quadric in that for $Q^{m *}$, the real structures in \mathfrak{A} cannot be interpreted as the shape operator of a complex hypersurface in a complex space form, but as the following considerations will show, \mathfrak{A} still plays an important role in the description of the geometry of $Q^{m *}$.

Let

$$
a_{0}:=\left(\begin{array}{cccccc}
1 & & & & \\
& -1 & & & \\
& & 1 & & & \\
& & & 1 & & \\
& & & & \ddots & \\
& & & & & 1
\end{array}\right)
$$

Note that we have $a_{0} \notin K$, but only $a_{0} \in O_{2} S O_{m}$. However, $\operatorname{Ad}\left(a_{0}\right)$ still leaves \mathfrak{m} invariant, and therefore defines an \mathbb{R}-linear map A_{0} on the tangent space $\mathfrak{m} \cong$ $T_{p_{0}} Q^{m *} . A_{0}$ turns out to be an involutive orthogonal map with $A_{0} \circ J=-J \circ A_{0}$ (i.e. A_{0} is anti-linear with respect to the complex structure of $T_{p_{0}} Q^{m *}$), and hence a real structure on $T_{p_{0}} Q^{m *}$. But A_{0} commutes with $\operatorname{Ad}(g)$ not for all $g \in K$, but only for $g \in S O_{m} \subset K$. More specifically, for $g=\left(g_{1}, g_{2}\right) \in K$ with $g_{1} \in S O_{2}$ and $g_{2} \in S O_{m}$, say $g_{1}=\left(\begin{array}{cc}\cos (t) & -\sin (t) \\ \sin (t) & \cos (t)\end{array}\right)$ with $t \in \mathbb{R}$ (so that $\operatorname{Ad}\left(g_{1}\right)$ corresponds to multiplication with the complex number $\mu:=e^{i t}$), we have

$$
A_{0} \circ \operatorname{Ad}(g)=\mu^{-2} \cdot \operatorname{Ad}(g) \circ A_{0}
$$

This equation shows that the object which is $\operatorname{Ad}(K)$-invariant and therefore geometrically relevant is not the real structure A_{0} by itself, but rather the "circle of real structures"

$$
\mathfrak{A}_{p_{0}}:=\left\{\lambda A_{0} \mid \lambda \in S^{1}\right\}
$$

$\mathfrak{A}_{p_{0}}$ is $\operatorname{Ad}(K)$-invariant, and therefore generates an $\operatorname{Ad}(G)$-invariant S^{1}-subbundle \mathfrak{A} of the endomorphism bundle $\operatorname{End}\left(T Q^{m *}\right)$, consisting of real structures on the tangent spaces of $Q^{m *}$. For any $A \in \mathfrak{A}$, the tangent line to the fibre of \mathfrak{A} through A is spanned by $J A$.

For any $p \in Q^{m *}$ and $A \in \mathfrak{A}_{p}$, the real structure A induces a splitting

$$
T_{p} Q^{m *}=V(A) \oplus J V(A)
$$

into two orthogonal, maximal totally real subspaces of the tangent space $T_{p} Q^{m *}$. Here $V(A)$ resp. $J V(A)$ are the $(+1)$-eigenspace resp. the (-1)-eigenspace of A. For every unit vector $Z \in T_{p} Q^{m *}$ there exist $t \in\left[0, \frac{\pi}{4}\right], A \in \mathfrak{A}_{p}$ and orthonormal vectors $X, Y \in V(A)$ so that

$$
Z=\cos (t) \cdot X+\sin (t) \cdot J Y
$$

holds; see [16, Proposition 3]. Here t is uniquely determined by Z. The vector Z is singular, i.e. contained in more than one Cartan subalgebra of \mathfrak{m}, if and only if either $t=0$ or $t=\frac{\pi}{4}$ holds. The vectors with $t=0$ are called \mathfrak{A}-principal, whereas the vectors with $t=\frac{\pi}{4}$ are called \mathfrak{A}-isotropic. If Z is regular, i.e. $0<t<\frac{\pi}{4}$ holds, then also A and X, Y are uniquely determined by Z.

Like for the complex quadric, the Riemannian curvature tensor \bar{R} of $Q^{m *}$ can be fully described in terms of the "fundamental geometric structures" g, J and \mathfrak{A}. In fact, under the correspondence $T_{p_{0}} Q^{m *} \cong \mathfrak{m}$, the curvature $\bar{R}(X, Y) Z$ corresponds to $-[[X, Y], Z]$ for $X, Y, Z \in \mathfrak{m}$, see [11, Chapter XI, Theorem 3.2(1)]. By evaluating the latter expression explicitly, one can show that one has

$$
\begin{align*}
\bar{R}(X, Y) Z= & -g(Y, Z) X+g(X, Z) Y \tag{2.1}\\
& -g(J Y, Z) J X+g(J X, Z) J Y+2 g(J X, Y) J Z \\
& -g(A Y, Z) A X+g(A X, Z) A Y \\
& -g(J A Y, Z) J A X+g(J A X, Z) J A Y
\end{align*}
$$

for arbitrary $A \in \mathfrak{A}_{p_{0}}$. Therefore the curvature of $Q^{m *}$ is the negative of that of the complex quadric Q^{m}, compare [16, Theorem 1]. This confirms that the symmetric space $Q^{m *}$ which we have constructed here is indeed the non-compact dual of the complex quadric.

Let M be a real hypersurface in complex hyperbolic quadric $Q^{m *}$ and denote by (ϕ, ξ, η, g) the induced almost contact metric structure on M and by ∇ the induced Riemannian connection on M. Note that $\xi=-J N$, where N is a (local) unit normal vector field of M. The vector field ξ is known as the Reeb vector field of M. If the integral curves of ξ are geodesics in M, the hypersurface M is called a Hopf hypersurface. The integral curves of ξ are geodesics in M if and only if ξ is a principal curvature vector of M everywhere. The tangent bundle $T M$ of M splits orthogonally into $T M=\mathcal{C} \oplus \mathcal{F}$, where $\mathcal{C}=\operatorname{ker}(\eta)$ is the maximal complex subbundle of $T M$ and $\mathcal{F}=\mathbb{R} \xi$. The structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure J restricted to \mathcal{C}, and we have $\phi \xi=0$. We denote by νM the normal bundle of M.

We first introduce some notations. For a fixed real structure $A \in \mathfrak{A}_{[z]}$ and $X \in T_{[z]} M$ we decompose $A X$ into its tangential and normal component, that is,

$$
A X=B X+\rho(X) N
$$

where $B X$ is the tangential component of $A X$ and

$$
\rho(X)=g(A X, N)=g(X, A N)=g(X, A J \xi)=g(J X, A \xi) .
$$

Since $J X=\phi X+\eta(X) N$ and $A \xi=B \xi+\rho(\xi) N$ we also have

$$
\rho(X)=g(\phi X, B \xi)+\eta(X) \rho(\xi)=\eta(B \phi X)+\eta(X) \rho(\xi) .
$$

We also define

$$
\delta=g(N, A N)=g(J N, J A N)=-g(J N, A J N)=-g(\xi, A \xi) .
$$

At each point $[z] \in M$ we define

$$
Q_{[z]}=\left\{X \in T_{[z]} M: A X \in T_{[z]} M \text { for all } A \in \mathfrak{A}_{[z]}\right\},
$$

which is the maximal $\mathfrak{A}_{[z]}$-invariant subspace of $T_{[z]} M$. Then by using the same method for real hypersurfaces in complex hyperbolic quadric $Q^{m *}$ as in Berndt and Suh [1] we get the following
Lemma 2.1. Let M be a real hypersurface in complex hyperbolic quadric $Q^{m *}$. Then the following statements are equivalent:
(i) The normal vector $N_{[z]}$ of M is \mathfrak{A}-principal,
(ii) $Q_{[z]}=\mathfrak{C}_{[z]}$,
(iii) There exists a real structure $A \in \mathfrak{A}_{[z]}$ such that $A N_{[z]} \in \mathbb{C} \nu_{[z]} M$.

Assume now that the normal vector $N_{[z]}$ of M is not \mathfrak{A}-principal. Then there exists a real structure $A \in \mathfrak{A}_{[z]}$ such that

$$
N_{[z]}=\cos (t) Z_{1}+\sin (t) J Z_{2}
$$

for some orthonormal vectors $Z_{1}, Z_{2} \in V(A)$ and $0<t \leq \frac{\pi}{4}$. This implies

$$
\begin{align*}
A N_{[z]} & =\cos (t) Z_{1}-\sin (t) J Z_{2} \tag{2.2}\\
\xi_{[z]} & =\sin (t) Z_{2}-\cos (t) J Z_{1} \\
A \xi_{[z]} & =\sin (t) Z_{2}+\cos (t) J Z_{1}
\end{align*}
$$

and therefore $\mathcal{Q}_{[z]}=T_{[z]} Q^{m} \ominus\left(\left[Z_{1}\right] \oplus\left[Z_{2}\right]\right)$ is strictly contained in $\mathcal{C}_{[z]}$. Moreover, we have

$$
A \xi_{[z]}=B \xi_{[z]} \text { and } \rho\left(\xi_{[z]}\right)=0
$$

We have

$$
\begin{aligned}
g\left(B \xi_{[z]}+\delta \xi_{[z]}, N_{[z]}\right) & =0 \\
g\left(B \xi_{[z]}+\delta \xi_{[z]}, \xi_{[z]}\right) & =0 \\
g\left(B \xi_{[z]}+\delta \xi_{[z]}, B \xi_{[z]}+\delta \xi_{[z]}\right) & =\sin ^{2}(2 t)
\end{aligned}
$$

where the function δ denotes $\delta=-g(\xi, A \xi)=-\left(\sin ^{2} t-\cos ^{2} t\right)=\cos 2 t$. Therefore

$$
U_{[z]}=\frac{1}{\sin (2 t)}\left(B \xi_{[z]}+\delta \xi_{[z]}\right)
$$

is a unit vector in $\mathcal{C}_{[z]}$ and

$$
\mathcal{C}_{[z]}=\mathcal{Q}_{[z]} \oplus\left[U_{[z]}\right] \text { (orthogonal direct sum). }
$$

If $N_{[z]}$ is not \mathfrak{A}-principal at $[z]$, then N is not \mathfrak{A}-principal in an open neighborhood of $[z]$, and therefore U is a well-defined unit vector field on that open neighborhood. We summarize this in the following
Lemma 2.2. Let M be a real hypersurface in complex hyperbolic quadric $Q^{m *}$ whose unit normal $N_{[z]}$ is not \mathfrak{A}-principal at $[z]$. Then there exists an open neighborhood of $[z]$ in M and a section A in \mathfrak{A} on that neighborhood consisting of real structures such that
(i) $A \xi=B \xi$ and $\rho(\xi)=0$,
(ii) $U=(B \xi+\delta \xi) /\|B \xi+\delta \xi\|$ is a unit vector field tangent to \mathfrak{C},
(iii) $\mathcal{C}=\mathcal{Q} \oplus[U]$.

3. Some General Equations

Let M be a real hypersurface in the complex hyperbolic quadric $Q^{m *}$ and denote by (ϕ, ξ, η, g) the induced almost contact metric structure. Note that $\xi=-J N$, where N is a (local) unit normal vector field of M and η the corresponding 1 -form defined by $\eta(X)=g(\xi, X)$ for any tangent vector field X on M. The tangent bundle $T M$ of M splits orthogonally into $T M=\mathcal{C} \oplus \mathbb{R} \xi$, where $\mathcal{C}=\operatorname{ker}(\eta)$ is the maximal complex subbundle of $T M$. The structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure J restricted to \mathcal{C}, and $\phi \xi=0$.

At each point $z \in M$ we define a maximal \mathfrak{A}-invariant subspace of $T_{z} M, z \in M$ as follows:

$$
Q_{z}=\left\{X \in T_{z} M: A X \in T_{z} M \text { for all } A \in \mathfrak{A}_{z}\right\} .
$$

Then we want to introduce an important lemma which will be used in the proof of our main Theorem in the introduction.

Lemma 3.1.([24]) For each $z \in M$ we have
(i) If N_{z} is \mathfrak{A}-principal, then $Q_{z}=\mathfrak{C}_{z}$.
(ii) If N_{z} is not \mathfrak{A}-principal, there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $N_{z}=\cos (t) X+\sin (t) J Y$ for some $t \in(0, \pi / 4]$. Then we have $Q_{z}=\mathcal{C}_{z} \ominus \mathbb{C}(J X+Y)$.

From the explicit expression of the Riemannian curvature tensor of the complex hyperbolic quadric $Q^{m *}$ we can easily derive the Codazzi equation for a real hypersurface M in $Q^{m *}$:

$$
\begin{align*}
& g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, Z\right) \tag{3.1}\\
&=-\eta(X) g(\phi Y, Z)+\eta(Y) g(\phi X, Z)+2 \eta(Z) g(\phi X, Y) \\
&-\rho(X) g(B Y, Z)+\rho(Y) g(B X, Z) \\
&+\eta(B X) g(B Y, \phi Z)+\eta(B X) \rho(Y) \eta(Z) \\
&-\eta(B Y) g(B X, \phi Z)-\eta(B Y) \rho(X) \eta(Z) .
\end{align*}
$$

We now assume that M is a Hopf hypersurface. Then the shape operator S of M in $Q^{m *}$ satisfies

$$
S \xi=\alpha \xi
$$

with the smooth function $\alpha=g(S \xi, \xi)$ on M. Inserting $Z=\xi$ into the Codazzi equation leads to

$$
g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, \xi\right)=2 g(\phi X, Y)-2 \rho(X) \eta(B Y)+2 \rho(Y) \eta(B X) .
$$

On the other hand, we have

$$
\begin{align*}
& g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, \xi\right) \tag{3.2}\\
& =g\left(\left(\nabla_{X} S\right) \xi, Y\right)-g\left(\left(\nabla_{Y} S\right) \xi, X\right) \\
& =d \alpha(X) \eta(Y)-d \alpha(Y) \eta(X)+\alpha g((S \phi+\phi S) X, Y)-2 g(S \phi S X, Y) .
\end{align*}
$$

Comparing the previous two equations and putting $X=\xi$ yields

$$
d \alpha(Y)=d \alpha(\xi) \eta(Y)+2 \delta \rho(Y),
$$

where the function $\delta=-g(A \xi, \xi)$ and $\rho(Y)=g(A N, Y)$ for any vector field Y on M in $Q^{m *}$.

Reinserting this into the previous equation yields

$$
\begin{aligned}
g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, \xi\right)= & -2 \delta \eta(X) \rho(Y)+2 \delta \rho(X) \eta(Y) \\
& +\alpha g((\phi S+S \phi) X, Y)-2 g(S \phi S X, Y) .
\end{aligned}
$$

Altogether this implies

$$
\begin{align*}
0= & 2 g(S \phi S X, Y)-\alpha g((\phi S+S \phi) X, Y)+2 g(\phi X, Y) \tag{3.3}\\
& -2 \delta \rho(X) \eta(Y)-2 \rho(X) \eta(B Y)+2 \rho(Y) \eta(B X)+2 \delta \eta(X) \rho(Y) \\
= & g((2 S \phi S-\alpha(\phi S+S \phi)+2 \phi) X, Y) \\
& -2 \rho(X) \eta(B Y+\delta Y)+2 \rho(Y) \eta(B X+\delta X) \\
= & g((2 S \phi S-\alpha(\phi S+S \phi)+2 \phi) X, Y) \\
& -2 \rho(X) g(Y, B \xi+\delta \xi)+2 g(X, B \xi+\delta \xi) \rho(Y) .
\end{align*}
$$

If $A N=N$ we have $\rho=0$, otherwise we can use Lemma 2.2 to calculate $\rho(Y)=$ $g(Y, A N)=g(Y, A J \xi)=-g(Y, J A \xi)=-g(Y, J B \xi)=-g(Y, \phi B \xi)$. Thus we have proved
Lemma 3.2. Let M be a Hopf hypersurface in $Q^{m *}, m \geq 3$. Then we have

$$
(2 S \phi S-\alpha(\phi S+S \phi)+2 \phi) X=2 \rho(X)(B \xi+\delta \xi)+2 g(X, B \xi+\delta \xi) \phi B \xi .
$$

If the unit normal vector field N is \mathfrak{A}-principal, we can choose a real structure $A \in \mathfrak{A}$ such that $A N=N$. Then we have $\rho=0$ and $\phi B \xi=-\phi \xi=0$, and therefore

$$
2 S \phi S-\alpha(\phi S+S \phi)=-2 \phi .
$$

If N is not \mathfrak{A}-principal, we can choose a real structure $A \in \mathfrak{A}$ as in Lemma 2.2 and get

$$
\begin{aligned}
& \rho(X)(B \xi+\delta \xi)+g(X, B \xi+\delta \xi) \phi B \xi \\
= & -g(X, \phi(B \xi+\delta \xi))(B \xi+\delta \xi)+g(X, B \xi+\delta \xi) \phi(B \xi+\delta \xi) \\
= & \|B \xi+\delta \xi\|^{2}(g(X, U) \phi U-g(X, \phi U) U) \\
= & \sin ^{2}(2 t)(g(X, U) \phi U-g(X, \phi U) U),
\end{aligned}
$$

which is equal to 0 on \mathcal{Q} and equal to $\sin ^{2}(2 t) \phi X$ on $\mathcal{C} \ominus Q$. Altogether we have proved:
Lemma 3.3. Let M be a Hopf hypersurface in $Q^{* m}, m \geq 3$. Then the tensor field

$$
2 S \phi S-\alpha(\phi S+S \phi)
$$

leaves \mathfrak{Q} and $\mathcal{C} \ominus \mathbb{Q}$ invariant and we have

$$
2 S \phi S-\alpha(\phi S+S \phi)=-2 \phi \text { on } \mathbb{Q}
$$

and

$$
2 S \phi S-\alpha(\phi S+S \phi)=-2 \delta^{2} \phi \text { on } \mathcal{C} \ominus \mathcal{Q}
$$

where $\delta=\cos 2 t$ as in section 3 .

4. Invariant Normal Jacobi Operator and a Key Lemma

By the curvature tensor \bar{R} of (2.1) for a real hypersurface in the complex hyperbolic quadric $Q^{m *}$ in section 2 , the normal Jacobi operator \bar{R}_{N} is defined in such a way that

$$
\begin{aligned}
\bar{R}_{N}(X)= & \bar{R}(X, N) N \\
= & -X-g(J N, N) J X+g(J X, N) J N+2 g(J X, N) J N \\
& -g(A N, N) A X+g(A X, N) A N-g(J A N, N) J A X+g(J A X, N) J A N
\end{aligned}
$$

for any tangent vector field X in $T_{z} M$ and the unit normal N of M in $T_{z} Q^{m *}$, $z \in Q^{m *}$. Then the normal Jacobi operator \bar{R}_{N} becomes a symmetric operator on the tangent space $T_{z} M, z \in M$, of $Q^{m *}$. From this, by the complex structure J and the complex conjugations $A \in \mathfrak{A}$, together with the fact that $g(A \xi, N)=0$ and $\xi=-J N$ in section 3, the normal Jacobi operator \bar{R}_{N} is given by

$$
\begin{align*}
\bar{R}_{N}(Y)= & -Y-3 \eta(Y) \xi-g(A N, N) A Y \tag{4.1}\\
& +g(A Y, N) A N+g(A Y, \xi) A \xi
\end{align*}
$$

for any $Y \in T_{z} M, z \in M$. Then the derivative of \bar{R}_{N} is given by

$$
\begin{align*}
\left(\nabla_{X} \bar{R}_{N}\right) Y= & \nabla_{X}\left(\bar{R}_{N}(Y)\right)-\bar{R}_{N}\left(\nabla_{X} Y\right) \tag{4.2}\\
= & -3\left(\nabla_{X} \eta\right)(Y) \xi-3 \eta(Y) \nabla_{X} \xi \\
& -\left\{g\left(\bar{\nabla}_{X}(A N), N\right)+g\left(A N, \bar{\nabla}_{X} N\right)\right\} A Y \\
& -g(A N, N)\left\{\bar{\nabla}_{X}(A Y)-A \nabla_{X} Y\right\} \\
& +\left\{g\left(\bar{\nabla}_{X}(A Y)-A \nabla_{X} Y, N\right)+g\left(A Y, \bar{\nabla}_{X} N\right)\right\} A N \\
& +g(A Y, N) \bar{\nabla}_{X}(A N) \\
& +\left\{g\left(\bar{\nabla}_{X}(A Y)-A \nabla_{X} Y, \xi\right) A \xi+g\left(A Y, \bar{\nabla}_{X} \xi\right)\right\} A \xi \\
& +g(A Y, \xi) \bar{\nabla}_{X}(A \xi),
\end{align*}
$$

where the connection $\bar{\nabla}$ on the complex hyperbolic quadric $Q^{m *}$ is given by

$$
\begin{aligned}
\bar{\nabla}_{X}(A Y)-A \nabla_{X} Y & =\left(\bar{\nabla}_{X} A\right) Y+A \bar{\nabla}_{X} Y-A \nabla_{X} Y \\
& =q(X) J A Y+A \sigma(X, Y) \\
& =q(X) J A Y+g(S X, Y) A N
\end{aligned}
$$

From this, together with the invariance of $\mathcal{L}_{X} \bar{R}_{N}=0$ in (1.1), it follows that

$$
\begin{align*}
\nabla_{\bar{R}_{N}(Y)} X- & \bar{R}_{N}\left(\nabla_{Y} X\right) \tag{4.3}\\
= & \left(\nabla_{X} \bar{R}_{N}\right) Y \\
=- & 3 g(\phi S X, Y) \xi-3 \eta(Y) \phi S X \\
& -\{q(X) g(J A N, N)-g(A S X, N)-g(A N, S X)\} A Y \\
& -g(A N, N)\{q(X) J A Y+g(S X, Y) A N\} \\
& +\{q(X) g(J A Y, N)+g(S X, Y) g(A N, N)\} A N \\
& -g(A Y, S X) A N+g(A Y, N)\left\{\left(\bar{\nabla}_{X} A\right) N+A \bar{\nabla}_{X} N\right\} \\
& +g\left(\left(\bar{\nabla}_{X} A\right) Y, \xi\right) A \xi+g(A Y, \phi S X+\sigma(X, \xi)) A \xi \\
& +g(A Y, \xi) \bar{\nabla}_{X}(A \xi),
\end{align*}
$$

where we have used the equation of Gauss $\bar{\nabla}_{X} \xi=\nabla_{X} \xi+\sigma(X, \xi), \sigma(X, \xi)$ denotes the normal bundle $T^{\perp} M$ valued second fundament tensor on M in $Q^{m *}$. From this, putting $Y=\xi$ and using $\left(\bar{\nabla}_{X} A\right) Y=q(X) J A Y$, and $\bar{\nabla}_{X} N=-S X$ we have

$$
\begin{align*}
\nabla_{\bar{R}_{N}(\xi)} X & -\bar{R}_{N}\left(\nabla_{\xi} X\right) \tag{4.4}\\
= & \left(\nabla_{X} \bar{R}_{N}\right) \xi=-3 \phi S X \\
& -\{q(X) g(J A N, N)-g(A S X, N)-g(A N, S X)\} A \xi \\
& -g(A N, N)\{q(X) J A \xi+g(S X, \xi) A N\} \\
& +\{q(X) g(J A \xi, N)+g(S X, \xi) g(A N, N)\} A N \\
& -g(A \xi, S X) A N+g(q(X) J A \xi, \xi) A \xi \\
& +g(A \xi, \phi S X+\sigma(X, \xi)) A \xi \\
& +g(A \xi, \xi)\{q(X) J A \xi+A \phi S X+g(S X, \xi)\} A N
\end{align*}
$$

From this, by taking the inner product with the unit normal N, we have

$$
\begin{align*}
& -g(A \xi, S X) g(A N, N)+g(A \xi, \xi)\{q(X) g(J A \xi, N) \tag{4.5}\\
& \quad+g(A \phi S X, N)+g(S X, \xi) g(A N, N)\}=0
\end{align*}
$$

Then by putting $X=\xi$ and using the assumption of Hopf, we have

$$
\begin{equation*}
q(\xi) g(A \xi, \xi)^{2}=0 \tag{4.6}
\end{equation*}
$$

This gives that $q(\xi)=0$ or $g(A \xi, \xi)=0$. The latter case implies that the unit normal N is \mathfrak{A}-isotropic. Now we only consider the case $q(\xi)=0$.

We put $Y=\xi$ in (4.1). Then it follows that

$$
\bar{R}_{N}(\xi)=-4 \xi-\{g(A N, N)-g(A \xi, \xi)\} A \xi=-4 \xi-2 g(A N, N) A \xi
$$

where we have used that $g(A \xi, \xi)=g(A J N, J N)=-g(J A N, J N)=-g(A N, N)$.

Differentiating this one, it follows that

$$
\begin{align*}
\nabla_{\bar{R}_{N}(\xi)} X- & \bar{R}_{N}\left(\nabla_{\xi} X\right) \tag{4.7}\\
= & \left(\nabla_{X} \bar{R}_{N}\right) \xi \\
= & -4 \nabla_{X} \xi-2\left\{g\left(\bar{\nabla}_{X}(A N), N\right) A \xi+g\left(A N, \bar{\nabla}_{X} N\right) A \xi\right\} \\
& -2 g(A N, N) \bar{\nabla}_{X}(A \xi) .
\end{align*}
$$

Then, by putting $Y=\xi$, and taking the inner product of (4.7) with the unit normal N, we have

$$
g(A N, N)\{q(\xi) g(A \xi, \xi)-\alpha g(A \xi, \xi)\}=0
$$

From this, together with $q(\xi)=0$, it follows that

$$
\begin{equation*}
\alpha g(A \xi, \xi) g(A N, N)=0 . \tag{4.8}
\end{equation*}
$$

Then from (4.8) we can assert the following lemma.
Lemma 4.1. Let M be a Hopf real hypersurface in the complex hyperbolic quadric $Q^{m *}, m \geq 3$, with parallel normal Jacobi operator. Then the unit normal vector field N is \mathfrak{A}-principal or \mathfrak{A}-isotropic.
Proof. When the Reeb function α is non-vanishing, the unit normal N is \mathfrak{A}-isotropic. When the Reeb function α identically vanishes, let us show that N is \mathfrak{A}-isotropic or \mathfrak{A}-principal. In order to do this, from the condition of Hopf, we can differentiate $S \xi=\alpha \xi$ and use the equation of Codazzi (3.1) in section 3, then we get the formula

$$
Y \alpha=(\xi \alpha) \eta(Y)-2 g(\xi, A N) g(Y, A \xi)+2 g(Y, A N) g(\xi, A \xi) .
$$

From this, if we put $\alpha=0$, together with the fact $g(\xi, A N)=0$ in section 3, we know $g(Y, A N) g(\xi, A \xi)=0$ for any $Y \in T_{z} M, z \in M$. This gives that the vector $A N$ is normal, that is, $A N=g(A N, N) N$ or $g(A \xi, \xi)=0$, which implies respectively the unit normal N is \mathfrak{A}-principal or \mathfrak{A}-isotropic. This completes the proof of our Lemma.

By virtue of this Lemma, we distinguish between two classes of real hypersurfaces in the complex hyperbolic quadric $Q^{m *}$ with invariant normal Jacobi operator : those that have \mathfrak{A}-principal unit normal, and those that have \mathfrak{A}-isotropic unit normal vector field N. We treat the respective cases in sections 5 and 6 .

5. Invariant Normal Jacobi Operator with \mathfrak{A}-principal Normal

In this section let us consider a real hypersurface M in the complex hyperbolic quadric $Q^{m *}$ with \mathfrak{A}-principal unit normal vector field. Then the unit normal vector field N satisfies $A N=N$ for a complex conjugation $A \in \mathfrak{A}$. This also implies that $A \xi=-\xi$ for the Reeb vector field $\xi=-J N$.

Then the normal Jacobi operator \bar{R}_{N} in section 4 becomes

$$
\begin{equation*}
\bar{R}_{N}(X)=-X-3 \eta(X) \xi-A X+\eta(X) \xi=-X-2 \eta(X) \xi-A X, \tag{5.1}
\end{equation*}
$$

where we have used that $A N=N$ and

$$
\begin{aligned}
g(A X, \xi) A \xi & =g(A X, J N) A J N=g(X, A J N) A J N \\
& =g(X, J A N) J A N=g(X, J N) J N \\
& =\eta(X) \xi .
\end{aligned}
$$

On the other hand, we can put

$$
A Y=B Y+\rho(Y) N,
$$

where $B Y$ denotes the tangential component of $A Y$ and $\rho(Y)=g(A Y, N)=$ $g(Y, A N)=g(Y, N)=0$. So it becomes always $A Y=B Y$ for any vector field Y on M in $Q^{m *}$. Then by differentiating (5.1) along any direction X, we have

$$
\begin{gather*}
\left(\nabla_{X} \bar{R}_{N}\right) Y=\nabla_{X}\left(\bar{R}_{N}(Y)\right)-\bar{R}_{N}\left(\nabla_{X} Y\right) \tag{5.2}\\
=-2\left(\nabla_{X} \eta\right)(Y)-2 \eta(Y) \nabla_{X} \xi-\left(\nabla_{X} B\right) Y .
\end{gather*}
$$

Now let us consider that the normal Jacobi operator \bar{R}_{N} is invariant, that is, $\mathcal{L}_{X} \bar{R}_{N}=0$. This is given by

$$
\begin{aligned}
0 & =\left(\mathcal{L}_{X} \bar{R}_{N}\right) Y \\
& =\mathcal{L}_{X}\left(\bar{R}_{N} Y\right)-\bar{R}_{N}\left(\mathcal{L}_{X} Y\right) \\
& =\left[X, \bar{R}_{N} Y\right]-\bar{R}_{N}[X, Y] \\
& =\nabla_{X}\left(\bar{R}_{N} Y\right)-\nabla_{\bar{R}_{N}(Y)} X-\bar{R}_{N}\left(\nabla_{X} Y-\nabla_{Y} X\right) \\
& =\nabla_{X}\left(\bar{R}_{N} Y\right)-\nabla_{\bar{R}_{N}(Y)} X+\bar{R}_{N}\left(\nabla_{Y} X\right) .
\end{aligned}
$$

Then it follows that

$$
\begin{aligned}
-2 g(\phi S X, Y) \xi-2 \eta(Y) \phi S X-\left(\nabla_{X} B\right) Y= & \left\{\nabla_{Y} X+2 \eta\left(\nabla_{Y} X\right) \xi+A \nabla_{Y} X\right\} \\
& -\left\{\nabla_{Y} X+2 \eta(Y) \nabla_{\xi} X+\nabla_{A Y} X\right\} .
\end{aligned}
$$

From this putting $Y=\xi$ and using $A \xi=-\xi$, it follows that

$$
\begin{align*}
-2 \phi S X-\left(\nabla_{X} B\right) \xi & =2 \eta\left(\nabla_{\xi} X\right) \xi+A \nabla_{\xi} X+\nabla_{\xi} X \tag{5.3}\\
& =-2 \phi S X-\{q(X) J A \xi-\sigma(X, A \xi)+\eta(S X) N\} .
\end{align*}
$$

where we have used the following

$$
\begin{aligned}
\left(\nabla_{X} A\right) \xi & =\nabla_{X}(A \xi)-A \nabla_{X} \xi \\
& =\bar{\nabla}_{X}(A \xi)-A \nabla_{X} \xi \\
& =\left\{\left(\bar{\nabla}_{X} A\right) \xi+A \bar{\nabla}_{X} \xi\right\}-A \phi S X \\
& =q(X) J A \xi+A \phi S X-\sigma(X, A \xi)+g(S X, \xi) A N-A \phi S X \\
& =q(X) J A \xi-\sigma(X, A \xi)+\alpha \eta(X) N .
\end{aligned}
$$

Then by taking the inner product of (5.3) with the unit normal N, we have

$$
q(X)=2 \alpha \eta(X)
$$

This implies $q(\xi)=2 \alpha$, and the 1 -form q is given by

$$
\begin{equation*}
q(X)=q(\xi) \eta(X) \tag{5.4}
\end{equation*}
$$

On the other hand, in section 4 from the Lie invariance of the normal Jacobi operator we have calculated the following

$$
\begin{align*}
\nabla_{\bar{R}_{N}(\xi)} X- & \bar{R}_{N}\left(\nabla_{\xi} X\right) \tag{5.5}\\
= & \left(\nabla_{X} \bar{R}_{N}\right) \xi=-3 \phi S X \\
& -\{q(X) g(J A N, N)-g(A S X, N)-g(A N, S X)\} A \xi \\
& -g(A N, N)\{q(X) J A \xi+g(S X, \xi) A N\} \\
& +\{q(X) g(J A \xi, N)+g(S X, \xi) g(A N, N)\} A N \\
& -g(A \xi, S X) A N+g(q(X) J A \xi, \xi) A \xi \\
& +g(A \xi, \phi S X+\sigma(X, \xi)) A \xi \\
& +g(A \xi, \xi)\{q(X) J A \xi+A \phi S X+g(S X, \xi) A N\}
\end{align*}
$$

From this, by taking the inner product with the unit normal N, we have

$$
\begin{align*}
& -g(A \xi, S X) g(A N, N)+g(A \xi, \xi)\{q(X) g(J A \xi, N) \tag{5.6}\\
& \quad+g(A \xi, \xi)\{g(J A \xi, N)+g(A \phi S X, N)+g(S X, \xi) g(A N, N)\}=0
\end{align*}
$$

Then by putting $X=\xi$ and using the assumption of Hopf, we have

$$
\begin{equation*}
q(\xi) g(A \xi, \xi)^{2}=0 \tag{5.7}
\end{equation*}
$$

From this, together with (5.4) and $A \xi=-\xi$, it follows that the 1-form q vanishes identically on M.

On the other hand, we know that the complex hyperbolic quadric $Q^{m *}$ can be immersed into the indefinite complex hyperbolic space $C H_{1}^{m+1}$ in C_{2}^{m+2} (see Montiel and Romero [12], and Kobayashi and Nomizu [11]). Then the same 1-form q appears in the Weingarten formula

$$
\tilde{\nabla}_{X} \bar{z}=-A_{\bar{z}} X+q(X) J \bar{z}
$$

for unit normal vector fields $\{\bar{z}, J \bar{z}\}$ on the complex hyperbolic quadric $Q^{m *}$ which can be immersed in indefinite complex hyperbolic space $C H_{1}^{m+1}$ as a space-like complex hypersurface, where $\tilde{\nabla}$ denotes the Riemannian connection on CH_{1}^{m+1} induced from the Euclidean connection on C_{2}^{m+2} (see Smyth [19] and [20]). But the 1-form q never vanishes on $Q^{m *}$. This gives a contradiction (see Smyth [19]). This means that there do not exist any real hypersurfaces in the complex hyperbolic
quadric $Q^{m *}$ with invariant normal Jacobi operator, that is, $\mathcal{L}_{X} \bar{R}_{N}=0$ for the \mathfrak{A}-principal unit normal vector field N.

6. Invariant Normal Jacobi Operator with \mathfrak{A}-isotropic Normal

In this section let us assume that the unit normal vector field N is \mathfrak{A}-isotropic. Then the normal vector field N can be put

$$
N=\frac{1}{\sqrt{2}}\left(Z_{1}+J Z_{2}\right)
$$

for $Z_{1}, Z_{2} \in V(A)$, where $V(A)$ denotes a $(+1)$-eigenspace of the complex conjugation $A \in \mathfrak{A}$. Then it follows that

$$
A N=\frac{1}{\sqrt{2}}\left(Z_{1}-J Z_{2}\right), A J N=-\frac{1}{\sqrt{2}}\left(J Z_{1}+Z_{2}\right), \text { and } J N=\frac{1}{\sqrt{2}}\left(J Z_{1}-Z_{2}\right)
$$

From this, together with (2.2) and the anti-commuting $A J=-J A$, it follows that

$$
g(\xi, A \xi)=g(J N, A J N)=0, g(\xi, A N)=0 \text { and } g(A N, N)=0
$$

By virtue of these formulas for the \mathfrak{A}-isotropic unit normal, the normal Jacobi operator \bar{R}_{N} in section 4 is given by

$$
\bar{R}_{N}(Y)=-Y-3 \eta(Y) \xi+g(A Y, N) A N+g(A Y, \xi) A \xi
$$

Then the derivative of the normal Jacobi operator \bar{R}_{N} on M is given as follows:

$$
\begin{align*}
& \left(\nabla_{X} \bar{R}_{N}\right) Y \tag{6.1}\\
& \quad=-3\left(\nabla_{X} \eta\right)(Y) \xi-3 \eta(Y) \nabla_{X} \xi+g\left(\nabla_{X}(A N), Y\right) A N \\
& \quad+g(A N, Y) \nabla_{X}(A N)+g\left(Y, \nabla_{X}(A \xi)\right) A \xi+g(A \xi, Y) \nabla_{X}(A \xi)
\end{align*}
$$

On the other hand, the Lie invariance (4.1) gives that

$$
\begin{align*}
\left(\nabla_{X} \bar{R}_{N}\right) Y & =\nabla_{X}\left(\bar{R}_{N}(Y)\right)-\bar{R}_{N}\left(\nabla_{X} Y\right) \tag{6.2}\\
& =\nabla_{\bar{R}_{N}(Y)} X-\bar{R}_{N}\left(\nabla_{Y} X\right)
\end{align*}
$$

Then by putting $Y=\xi$ in (6.1) and (6.2), and using $\bar{R}_{N}(\xi)=4 \xi$, we have

$$
\begin{align*}
& -3 \phi S X-g(A N, \phi S X) A N-g(\phi S X, A \xi) A \xi \tag{6.3}\\
& =-4 \nabla_{\xi} X+\left\{\nabla_{\xi} X+3 \eta\left(\nabla_{\xi} X\right) \xi\right. \\
& \left.\quad-g\left(A \nabla_{\xi} X, N\right) A N-g\left(A \nabla_{\xi} X, \xi\right) A \xi\right\}
\end{align*}
$$

From this, taking the inner product (6.3) with the vector field $A N$, it follows that

$$
4 g(\phi S X, A N)=4 g\left(\nabla_{\xi} X, A N\right)
$$

Then from this, together with (6.3), we get

$$
\begin{equation*}
\phi S X=\nabla_{\xi} X-\eta\left(\nabla_{\xi} X\right) \xi \tag{6.4}
\end{equation*}
$$

For any $X \in \xi^{\perp}$, where ξ^{\perp} denotes the orthogonal complement of the Reeb vector field ξ in the tangent space $T_{z} M, z \in M$, we know that $\nabla_{\xi} X$ is orthogonal to the Reeb vector field ξ, that is, $\eta\left(\nabla_{\xi} X\right)=-g\left(\nabla_{\xi} \xi, X\right)=0$. Then the formula (6.4) becomes for any tangent vector field $X \in \xi^{\perp}$

$$
\begin{equation*}
\phi S X=\nabla_{\xi} X \tag{6.5}
\end{equation*}
$$

When we consider the \mathfrak{A}-isotropic unit normal, the vector fields $A \xi$ and $A N$ belong to the distribution $\mathcal{C}-\mathcal{Q}$ in section 3 .

On the other hand, by virtue of Lemma 3.1, we prove the following for a Hopf hypersurface in $Q^{m *}$ with \mathfrak{A}-isotropic unit normal vector field as follows:

Lemma 6.1. Let M be a Hopf real hypersurface in the complex hyperbolic quadric $Q^{m *}, m \geq 3$, with \mathfrak{A}-isotropic unit normal vector field. Then

$$
\begin{equation*}
S A N=0, \quad \text { and } \quad S A \xi=0 \tag{6.6}
\end{equation*}
$$

Proof. Let us denote by $\mathcal{C}-\mathcal{Q}=\operatorname{Span}[A \xi, A N]$. Since N is isotropic, $g(A N, N)=$ 0 and $g(A \xi, \xi)=0$. By differentiating $g(A N, N)=0$, and using $\left(\bar{\nabla}_{X} A\right) Y=$ $q(X) J A Y$ in the introduction and the equation of Weingarten, we know that

$$
\begin{aligned}
0 & =g\left(\bar{\nabla}_{X}(A N), N\right)+g\left(A N, \bar{\nabla}_{X} N\right) \\
& =g(q(X) J A N-A S X, N)-g(A N, S X) \\
& =-2 g(A S X, N)
\end{aligned}
$$

Then $S A N=0$. Moreover, by differentiating $g(A \xi, N)=0$, and using $g(A N, N)=$ 0 and $g(A \xi, \xi)=0$, we have the following formula

$$
\begin{aligned}
0 & =g\left(\bar{\nabla}_{X}(A \xi), N\right)+g\left(A \xi, \bar{\nabla}_{X} N\right) \\
& =g(q(X) J A \xi+A(\phi S X+g(S X, \xi) N), N)-g(S A \xi, X) \\
& =-2 g(S A \xi, X)
\end{aligned}
$$

for any $X \in T_{z} M, z \in M$, where in the third equality we have used $\phi A N=J A N=$ $-A J N=A \xi$. Then it follows that

$$
S A \xi=0
$$

It completes the proof of our assertion.

References

[1] J. Berndt and Y. J. Suh, Real hypersurfaces with isometric Reeb flow in complex quadrics, Internat. J. Math., 24(7)(2013), 1350050, 18 pp.
[2] A. L. Besse, Einstein manifolds, Springer-Verlag, Berlin, 2008.
[3] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Graduate Studies in Mathematics 34, American Mathematical Society, 2001.
[4] I. Jeong, H. J. Kim and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator, Publ. Math. Debrecen., 76(1-2)(2010), 203-218.
[5] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296(1)(1986), 137-149.
[6] M. Kimura, Some real hypersurfaces of a complex projective space, Saitama Math. J., 5(1987), 1-5.
[7] S. Klein, Totally geodesic submanifolds of the complex quadric, Differential Geom. Appl., 26(1)(2008), 79-96.
[8] S. Klein, Totally geodesic submanifolds of the complex and the quaternionic 2Grassmannians, Trans. Amer. Math. Soc., 361(9)(2009), 4927-4967.
[9] S. Klein and Y. J. Suh, Contact real hypersurfaces in the complex hyperbolic quadric, Ann. Mat. Pura Appl., 198(4)(2019), 1481-1494
[10] A. W. Knapp, Lie Groups beyond an introduction, Second edition, Progress in Mathematics 140, Birkhäuser, 2002.
[11] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, A WileyInterscience Publication, Wiley Classics Library Ed., 1996.
[12] S. Montiel and A. Romero, Complex Einstein hypersurfaces of indefinite complex space forms, Math. Proc. Cambridge Philos. Soc., 94(3)(1983), 495-508.
[13] J. D. Pérez, Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space, Ann. Mat. Pura Appl., 194(6)(2015), 1781-1794.
[14] J. D. Pérez and Y. J. Suh, Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_{i}} R=0$, Differential Geom. Appl., 7(3)(1997), 211-217.
[15] J. D. Pérez and Y. J. Suh, Certain conditions on the Ricci tensor of real hypersurfaces in quaternionic projective spaces, Acta Math. Hungar., 91(4)(2001), 343-356.
[16] H. Reckziegel, On the geometry of the complex quadric, Geometry and Topology of Submanifolds VIII(Brussels/Nordfjordeid 1995), 302-315, World Sci. Publ., River Edge, NJ, 1996.
[17] A. Romero, Some examples of indefinite complete complex Einstein hypersurfaces not locally symmetric, Proc. Amer. Math. Soc., 98(2)(1986), 283-286.
[18] A. Romero, On a certain class of complex Einstein hypersurfaces in indefinite complex space forms, Math. Z., 192(4)(1986), 627-635.
[19] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math., 85(1967), 246-266.
[20] B. Smyth, Homogeneous complex hypersurfaces, J. Math. Soc. Japan, 20(1968), 643647.
[21] Y. J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians, Monatsh. Math., 147(4)(2006), 337-355.
[22] Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor, Proc. Roy. Soc. Edinburgh Sect. A., 142(6)(2012), 1309-1324.
[23] Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature, J. Math. Pures Appl., 100(1) (2013), 16-33.
[24] Y. J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel shape operator, Internat. J. Math., 25(6)(2014), 1450059, 17 pp.
[25] Y. J. Suh, Real hypersurfaces in the complex quadric with parallel Ricci tensor, Adv. Math., 281(2015), 886-905.
[26] Y. J. Suh, Real hypersurfaces in the complex quadric with harmonic curvature, J. Math. Pures Appl., 106(3) (2016), 393-410.
[27] Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadrics with isometric Reeb Flow, Commun. Contemp. Math., 20(2)(2018), 1750031, 20 pp.
[28] Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadric with parallel normal Jacobi operator, Mediterr. J. Math., 15(4)(2018), Paper No. 159, 14 pp.
[29] Y. J. Suh and D. H. Hwang, Real hypersurfaces in the complex quadric with commuting Ricci tensor, Sci. China Math., 59(11)(2016), 2185-2198.
[30] Y. J. Suh and D. H. Hwang, Real hypersurfaces in the complex hyperbolic quadric with Reeb parallel shape operator, Ann. Mat. Pura Appl., 196(4)(2017), 1307-1326.
[31] Y. J. Suh, J. D. Pérez and C. Woo, Real hypersurfaces in the complex hyperbolic quadric with parallel structure Jacobi operator, Publ. Math. Debrecen, 94(1-2)(2019), 75-107.

