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Abstract. We introduce the notion of Lie invariant normal Jacobi operators for real

hypersurfaces in the complex hyperbolic quadric Qm∗ = SOo
m,2/SOmSO2 . The invariant

normal Jacobi operator implies that the unit normal vector field N becomes A-principal

or A-isotropic. Then in each case, we give a complete classification of real hypersurfaces

in Qm∗ = SOo
m,2/SOmSO2 with Lie invariant normal Jacobi operators.

1. Introduction

When we consider Hermitian symmetric spaces of rank 2, we can usually give
examples of Riemannian symmetric spaces SUm+2/S(U2Um) and SU2,m/S(U2Um),
which are said to be complex two-plane Grassmannians and complex hyperbolic
two-plane Grassmannians respectively (see [21, 22, 23] ). These are viewed as Her-
mitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with
the Kähler structure J and the quaternionic Kähler structure J.

In the complex projective space CPm+1 and the quaternionic projective space
QPm+1 some classifications related to commuting Ricci tensor were investigated by
Kimura [5, 6], Pérez [13] and Pérez and Suh [14, 15] respectively. The classification
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problems of the complex 2-plane GrassmannianG2(Cm+2) = SUm+2/S(U2Um) with
various geometric conditions were discussed in Jeong, Kim and Suh [4], Pérez [13],
and Suh [21, 22, 29], where the classification of contact hypersurfaces, parallel Ricci
tensor, harmonic curvature and Jacobi operator of a real hypersurface in G2(Cm+2)
were extensively studied.

Another example of Hermitian symmetric space with rank 2 having non-
compact type different from the above ones, is the complex hyperbolic quadric
SO0

2,m/SO2SOm. It is a simply connected Riemannian manifold whose curvature
tensor is the negative of the curvature tensor of the complex quadric Qm (see Besse
[2], Helgason [3], and Knapp [10]). The complex hyperbolic quadric also can be
regarded as a kind of real Grassmann manifolds of non-compact type with rank 2
. Accordingly, the complex hyperbolic quadric Qm∗ admits two important geomet-
ric structures, a complex conjugation structure A and a Kähler structure J , which
anti-commute with each other, that is, AJ = −JA. For m≥2 the triple (Qm∗, J, g)
is a Hermitian symmetric space of non-compact type and its maximal sectional cur-
vature is equal to −4 (see Klein [7], Kobayashi and Nomizu [11], and Reckziegel
[16]).

Two last examples of different Hermitian symmetric spaces with rank 2 in
the class of compact type or non-compact type, are the complex quadric Qm =
SOm+2/SOmSO2 or the complex hyperbolic quadric Qm∗ = SOo2,m/SOmSO2,
which are a complex hypersurface in complex projective space CPm+1 or in com-
plex hyperbolic space respectively(see Romero [17, 18], Suh [24, 25], and Smyth
[19]). The complex quadric Qm or the complex hyperbolic quadric Qm∗ can be re-
garded as a kind of real Grassmann manifold of compact or non-compact type with
rank 2 respectively(see Helgason [3], Kobayashi and Nomizu [11]). Accordingly,
the complex quadric Qm and the complex hyperbolic quadric Qm∗ both admit two
important geometric structures, a complex conjugation structure A and a Kähler
structure J , which anti-commute with each other, that is, AJ = −JA (see Klein [7]
and Reckziegel [16]).

Now let us introduce a complex hyperbolic quadric Qm∗ = SOom,2/SO2SOm,
which can be regarded as a Hermitian symmetric space with rank 2 of noncompact
type. Montiel and Romero [12] proved that the complex hyperbolic quadric Qm∗

can be immersed in the indefinite complex hyperbolic space CHm+1
1 (−c), c > 0,

by interchanging the Kähler metric with its opposite. Changing the Kähler metric
of CPn+1

n−s with its opposite, we have that Qnn−s endowed with its opposite metric

g′ = −g is also an Einstein hypersurface of CHn+1
s+1 (−c). When s = 0, we know

that (Qnn, g
′ = −g) can be regarded as the complex hyperbolic quadric Qm∗ =

SOom,2/SO2SOm, which is immersed in the indefinite complex hyperbolic quadric

CHm+1
1 (−c), c > 0 as a space-like complex Einstein hypersurface.

Apart from the complex structure J there is another distinguished geometric
structure on Qm∗, namely a parallel rank two vector bundle A which contains a S1-
bundle of real structures. Note that these real structures are complex conjugations
A on the tangent spaces of the complex hyperbolic quadric Qm∗. This geometric
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structure determines a maximal A-invariant subbundle Q of the tangent bundle TM
of a real hypersurface M in the complex hyperbolic quadric Qm∗.

Recall that a nonzero tangent vector W ∈ T[z]Q
m∗ is called singular if it is

tangent to more than one maximal flat in Qm∗. There are two types of singular
tangent vectors for the complex hyperbolic quadric Qm∗ as follows:

1. If there exists a conjugation A ∈ A such that W ∈ V (A), then W is singular.
Such a singular tangent vector is called A-principal.

2. If there exist a conjugation A ∈ A and orthonormal vectors X,Y ∈ V (A)
such that W/||W || = (X + JY )/

√
2, then W is singular. Such a singular

tangent vector is called A-isotropic.

Here V (A) = {X ∈ T[z]Q
m∗ : AX = X} and JV (A) = {X ∈ T[z]Q

m∗ : AX =
−X}, [z] ∈ Qm∗, are the (+1)-eigenspace and (−1)-eigenspace for the involution A
on T[z]Q

m∗, [z] ∈ Qm∗.
When we consider a hypersurface M in the complex hyperbolic quadric Qm∗,

under the assumption of some geometric properties the unit normal vector field N
of M in Qm∗ can be divided into two cases depending on whether N is A-isotropic
or A-principal (see [27, 28, 30, 31]). In the first case where N is A-isotropic, we have
shown in [27] that M is locally congruent to a tube over a totally geodesic complex
hyperbolic space CHk in the complex hyperbolic quadric Q2k∗. In the second case,
when the unit normal N is A-principal, we proved that a contact hypersurface M
in the complex hyperbolic quadric Qm∗ is locally congruent to a tube over a totally
geodesic and totally real submanifold RHm in Qm∗ or a horosphere (see Suh [9],
and Suh and Hwang [30]).

Usually, Jacobi fields along geodesics of a given Riemannian manifold M̄ satisfy
a well known differential equation. Naturally the classical differential equation
inspires the so-called Jacobi operator. That is, if R̄ is the curvature operator of M̄ ,
the Jacobi operator with respect to X at z∈M , is defined by

(R̄XY )(z) = (R̄(Y,X)X)(z)

for any Y ∈TzM̄ . Then R̄X∈End(TzM̄) becomes a symmetric endomorphism of the
tangent bundle TM̄ of M̄ . Clearly, each tangent vector field X to M̄ provides a
Jacobi operator with respect to X.

From such a view point, in the complex hyperbolic quadric Qm∗ the normal
Jacobi operator R̄N is defined by

R̄N = R̄(·, N)N∈End (TzM), z∈M

for a real hypersurface M in the complex hyperbolic quadric Qm∗ with unit normal
vector field N , where R̄ denotes the curvature tensor of the complex hyperbolic
quadric Qm∗. Of course, the normal Jacobi opeartor R̄N is a symmetric endomor-
phism of M in the complex hyperbolic quadric Qm∗.



554 I. Jeong and G. J. Kim

The normal Jacobi operator R̄N of M in the complex hyperbolic quadric Qm∗

is said to be Lie invariant if the operator R̄N satisfies

0 = (LXR̄N )Y

for any X,Y ∈TzM , z∈M , where the Lie derivative (LXR̄N )Y is defined by

(LXR̄N )Y =[X, R̄N (Y )]− R̄N ([X,Y ])

=∇X(R̄N (Y ))−∇R̄N (Y )X − R̄N (∇XY −∇YX)

=(∇XR̄N )Y −∇R̄N (Y )X + R̄N (∇YX).

(1.1)

For real hypersurfaces in the complex quadric Qm we investigated the notions
of parallel Ricci tensor, harmonic curvature and commuting Ricci tensor, which are
respectively given by ∇Ric = 0, δRic = 0 and Ric·φ = φ·Ric (see Suh [25], [26],
and Suh and Hwang [29]). But from the assumption of Ricci parallel or harmonic
curvature, it was difficult for us to derive the fact that either the unit normal vector
field N is A-isotropic or A-principal. So in [25] and [26] we gave a classification
with the further assumption of A-isotropic. Also in the study of complex hyperbolic
quadric Qm∗ we also have some obstructions to get the fact that the unit normal
N is singular.

In the paper due to Suh [27] we investigate this problem of isometric Reeb
flow for the complex hyperbolic quadric Qm∗ = SOo2,m/SOmSO2. In view of the
previous results, naturally, we expected that the classification might include at least
the totally geodesic Qm−1∗ ⊂ Qm∗. But, the results are quite different from our
expectations. The totally geodesic submanifolds of the above type are not included.
Now we introduce the classification as follows:

Theorem 1.1. Let M be a real hypersurface of the complex hyperbolic quadric
Qm∗ = SOo2,m/SOmSO2, m ≥ 3. The Reeb flow on M is isometric if and only if
m is even, say m = 2k, and M is an open part of a tube around a totally geodesic
CHk ⊂ Q2k∗ or a horosphere whose center at infinity is A-isotropic singular.

But fortunately, when we consider Lie invariant normal Jacobi operator, that
is., LXR̄N = 0 for any tangent vector field X on M in Qm∗, we can assert that the
unit normal vector field N becomes either A-isotropic or A-principal as follows:

Theorem 1.2. Let M be a Hopf real hypersurface in the complex hyperbolic quadric
Qm∗, m≥3, with Lie invariant normal Jacobi operator. Then the unit normal vector
field N is singular, that is, N is A-isotropic or A-principal.

Then motivated by Theorem 1.1 and Theorem 1.2, we can give a complete
classification for real hypersurfaces in Qm∗ with invariant normal Jacobi operator
as follows:

Theorem 1.3. Let M be a Hopf real hypersurface in the complex hyperbolic quadric
Qm∗, m≥3 with Lie invariant normal normal Jacobi operator. Then M is locally
congruent to a tube of radius r over a totally geodesic CHk in Q2k∗ or a horosphere
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whose center at infinity is A-isotropic singular.

2. The Complex Hyperbolic Quadric

In this section, let us introduce a new known result of the complex hyperbolic
quadric Qm∗ different from the complex quadric Qm. This section is due to Klein
and Suh [9], and Suh [28].

The m-dimensional complex hyperbolic quadric Qm∗ is the non-compact dual
of the m-dimensional complex quadric Qm, which is a kind of Hermitian symmetric
space of non-compact type with rank 2 (see Besse [2], and Helgason [3]).

The complex hyperbolic quadric Qm∗ cannot be realized as a homogeneous
complex hypersurface of the complex hyperbolic space CHm+1. In fact, Smyth [20,
Theorem 3(ii)] has shown that every homogeneous complex hypersurface in CHm+1

is totally geodesic. This is in marked contrast to the situation for the complex
quadric Qm, which can be realized as a homogeneous complex hypersurface of the
complex projective space CPm+1 in such a way that the shape operator for any unit
normal vector to Qm is a real structure on the corresponding tangent space of Qm,
see [7] and [16]. Another related result by Smyth, [20, Theorem 1], which states that
any complex hypersurface CHm+1 for which the square of the shape operator has
constant eigenvalues (counted with multiplicity) is totally geodesic, also precludes
the possibility of a model of Qm∗ as a complex hypersurface of CHm+1 with the
analogous property for the shape operator.

Therefore we realize the complex hyperbolic quadric Qm∗ as the quotient
manifold SO0

2,m/SO2SOm. As Q1∗ is isomorphic to the real hyperbolic space

RH2 = SO0
1,2/SO2, and Q2∗ is isomorphic to the Hermitian product of complex

hyperbolic spaces CH1×CH1, we suppose m ≥ 3 in the sequel and throughout this
paper. Let G := SO0

2,m be the transvection group of Qm∗ and K := SO2SOm be
the isotropy group of Qm∗ at the “origin” p0 := eK ∈ Qm∗. Then

σ : G→ G, g 7→ sgs−1 with s :=


−1
−1

1
1

. . .
1


is an involutive Lie group automorphism of G with Fix(σ)0 = K, and therefore
Qm∗ = G/K is a Riemannian symmetric space. The center of the isotropy group
K is isomorphic to SO2, and therefore Qm∗ is in fact a Hermitian symmetric space.

The Lie algebra g := so2,m of G is given by

g =
{
X ∈ gl(m+ 2,R) : Xt · s = −s ·X

}
(see [10, p. 59]). In the sequel we will write members of g as block matrices with
respect to the decomposition Rm+2 = R2 ⊕ Rm, i.e. in the form

X =
(
X11 X12

X21 X22

)
,
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where X11, X12, X21, X22 are real matrices of the dimension 2 × 2, 2 ×m, m × 2
and m×m, respectively. Then

g =
{ (

X11 X12

X21 X22

)
: Xt

11 = −X11, X
t
12 = X21, X

t
22 = −X22

}
.

The linearisation σL = Ad(s) : g→ g of the involutive Lie group automorphism σ
induces the Cartan decomposition g = k⊕m, where the Lie subalgebra

k =Eig(σ∗, 1) = {X ∈ g : sXs−1 = X}
=
{ (

X11 0
0 X22

)
: Xt

11 = −X11, X
t
22 = −X22

}
∼=so2 ⊕ som

is the Lie algebra of the isotropy group K, and the 2m-dimensional linear subspace

m = Eig(σ∗,−1) = {X ∈ g : sXs−1 = −X} =
{ (

0 X12

X21 0

)
: Xt

12 = X21

}
is canonically isomorphic to the tangent space Tp0Q

m∗. Under the identification
Tp0Q

m∗ ∼= m, the Riemannian metric g of Qm∗ (where the constant factor of the
metric is chosen so that the formulae become as simple as possible) is given by

g(X,Y ) =
1

2
tr(Y t ·X) = tr(Y12 ·X21) for X,Y ∈ m.

g is clearly Ad(K)-invariant, and therefore corresponds to an Ad(G)-invariant Rie-
mannian metric on Qm∗. The complex structure J of the Hermitian symmetric
space is given by

JX = Ad(j)X for X ∈ m, where j :=


0 1
−1 0

1
1

. . .
1

 ∈ K .

Because j is in the center of K, the orthogonal linear map J is Ad(K)-invariant, and
thus defines an Ad(G)-invariant Hermitian structure on Qm∗. By identifying the
multiplication with the unit complex number i with the application of the linear map
J , the tangent spaces of Qm∗ thus become m-dimensional complex linear spaces,
and we will adopt this point of view in the sequel.

Like for the complex quadric (again compare [7, 8, 16]), there is another impor-
tant structure on the tangent bundle of the complex quadric besides the Riemannian
metric and the complex structure, namely an S1-bundle A of real structures. The
situation here differs from that of the complex quadric in that for Qm∗, the real
structures in A cannot be interpreted as the shape operator of a complex hypersur-
face in a complex space form, but as the following considerations will show, A still
plays an important role in the description of the geometry of Qm∗.

Let

a0 :=


1
−1

1
1

. . .
1

 .
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Note that we have a0 6∈ K, but only a0 ∈ O2 SOm. However, Ad(a0) still leaves
m invariant, and therefore defines an R-linear map A0 on the tangent space m ∼=
Tp0Q

m∗. A0 turns out to be an involutive orthogonal map with A0 ◦ J = −J ◦ A0

(i.e. A0 is anti-linear with respect to the complex structure of Tp0Q
m∗), and hence

a real structure on Tp0Q
m∗. But A0 commutes with Ad(g) not for all g ∈ K, but

only for g ∈ SOm ⊂ K. More specifically, for g = (g1, g2) ∈ K with g1 ∈ SO2

and g2 ∈ SOm, say g1 =
(

cos(t) − sin(t)
sin(t) cos(t)

)
with t ∈ R (so that Ad(g1) corresponds to

multiplication with the complex number µ := eit), we have

A0 ◦Ad(g) = µ−2 ·Ad(g) ◦A0 .

This equation shows that the object which is Ad(K)-invariant and therefore geo-
metrically relevant is not the real structure A0 by itself, but rather the “circle of
real structures”

Ap0 := {λA0|λ ∈ S1} .
Ap0 is Ad(K)-invariant, and therefore generates an Ad(G)-invariant S1-subbundle
A of the endomorphism bundle End(TQm∗), consisting of real structures on the
tangent spaces of Qm∗. For any A ∈ A, the tangent line to the fibre of A through
A is spanned by JA.

For any p ∈ Qm∗ and A ∈ Ap, the real structure A induces a splitting

TpQ
m∗ = V (A)⊕ JV (A)

into two orthogonal, maximal totally real subspaces of the tangent space TpQ
m∗.

Here V (A) resp. JV (A) are the (+1)-eigenspace resp. the (−1)-eigenspace of A.
For every unit vector Z ∈ TpQm∗ there exist t ∈ [0, π4 ], A ∈ Ap and orthonormal
vectors X,Y ∈ V (A) so that

Z = cos(t) ·X + sin(t) · JY

holds; see [16, Proposition 3]. Here t is uniquely determined by Z. The vector Z
is singular, i.e. contained in more than one Cartan subalgebra of m, if and only if
either t = 0 or t = π

4 holds. The vectors with t = 0 are called A-principal, whereas
the vectors with t = π

4 are called A-isotropic. If Z is regular, i.e. 0 < t < π
4 holds,

then also A and X,Y are uniquely determined by Z.
Like for the complex quadric, the Riemannian curvature tensor R̄ of Qm∗ can be

fully described in terms of the “fundamental geometric structures” g, J and A. In
fact, under the correspondence Tp0Q

m∗ ∼= m, the curvature R̄(X,Y )Z corresponds
to −[[X,Y ], Z] for X,Y, Z ∈ m, see [11, Chapter XI, Theorem 3.2(1)]. By evaluating
the latter expression explicitly, one can show that one has

R̄(X,Y )Z =− g(Y,Z)X + g(X,Z)Y

− g(JY, Z)JX + g(JX,Z)JY + 2g(JX, Y )JZ

− g(AY,Z)AX + g(AX,Z)AY

− g(JAY,Z)JAX + g(JAX,Z)JAY

(2.1)
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for arbitrary A ∈ Ap0 . Therefore the curvature of Qm∗ is the negative of that of the
complex quadric Qm, compare [16, Theorem 1]. This confirms that the symmetric
space Qm∗ which we have constructed here is indeed the non-compact dual of the
complex quadric.

Let M be a real hypersurface in complex hyperbolic quadric Qm∗ and denote by
(φ, ξ, η, g) the induced almost contact metric structure on M and by ∇ the induced
Riemannian connection on M . Note that ξ = −JN , where N is a (local) unit
normal vector field of M . The vector field ξ is known as the Reeb vector field of
M . If the integral curves of ξ are geodesics in M , the hypersurface M is called a
Hopf hypersurface. The integral curves of ξ are geodesics in M if and only if ξ is a
principal curvature vector of M everywhere. The tangent bundle TM of M splits
orthogonally into TM = C⊕F, where C = ker(η) is the maximal complex subbundle
of TM and F = Rξ. The structure tensor field φ restricted to C coincides with the
complex structure J restricted to C, and we have φξ = 0. We denote by νM the
normal bundle of M .

We first introduce some notations. For a fixed real structure A ∈ A[z] and
X ∈ T[z]M we decompose AX into its tangential and normal component, that is,

AX = BX + ρ(X)N

where BX is the tangential component of AX and

ρ(X) = g(AX,N) = g(X,AN) = g(X,AJξ) = g(JX,Aξ).

Since JX = φX + η(X)N and Aξ = Bξ + ρ(ξ)N we also have

ρ(X) = g(φX,Bξ) + η(X)ρ(ξ) = η(BφX) + η(X)ρ(ξ).

We also define

δ = g(N,AN) = g(JN, JAN) = −g(JN,AJN) = −g(ξ, Aξ).

At each point [z] ∈M we define

Q[z] = {X ∈ T[z]M : AX ∈ T[z]M for all A ∈ A[z]},

which is the maximal A[z]-invariant subspace of T[z]M . Then by using the same
method for real hypersurfaces in complex hyperbolic quadric Qm∗ as in Berndt and
Suh [1] we get the following

Lemma 2.1. Let M be a real hypersurface in complex hyperbolic quadric Qm∗.
Then the following statements are equivalent:

(i) The normal vector N[z] of M is A-principal,

(ii) Q[z] = C[z],

(iii) There exists a real structure A ∈ A[z] such that AN[z] ∈ Cν[z]M .
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Assume now that the normal vector N[z] of M is not A-principal. Then there
exists a real structure A ∈ A[z] such that

N[z] = cos(t)Z1 + sin(t)JZ2

for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 < t ≤ π
4 . This implies

AN[z] = cos(t)Z1 − sin(t)JZ2,

ξ[z] = sin(t)Z2 − cos(t)JZ1,

Aξ[z] = sin(t)Z2 + cos(t)JZ1,

(2.2)

and therefore Q[z] = T[z]Q
m 	 ([Z1] ⊕ [Z2]) is strictly contained in C[z]. Moreover,

we have
Aξ[z] = Bξ[z] and ρ(ξ[z]) = 0.

We have

g(Bξ[z] + δξ[z], N[z]) = 0,

g(Bξ[z] + δξ[z], ξ[z]) = 0,

g(Bξ[z] + δξ[z], Bξ[z] + δξ[z]) = sin2(2t),

where the function δ denotes δ = −g(ξ, Aξ) = −(sin2 t− cos2 t) = cos 2t. Therefore

U[z] =
1

sin(2t)
(Bξ[z] + δξ[z])

is a unit vector in C[z] and

C[z] = Q[z] ⊕ [U[z]] (orthogonal direct sum).

If N[z] is not A-principal at [z], then N is not A-principal in an open neighborhood
of [z], and therefore U is a well-defined unit vector field on that open neighborhood.
We summarize this in the following

Lemma 2.2. Let M be a real hypersurface in complex hyperbolic quadric Qm∗ whose
unit normal N[z] is not A-principal at [z]. Then there exists an open neighborhood
of [z] in M and a section A in A on that neighborhood consisting of real structures
such that

(i) Aξ = Bξ and ρ(ξ) = 0,

(ii) U = (Bξ + δξ)/||Bξ + δξ|| is a unit vector field tangent to C,

(iii) C = Q⊕ [U ].
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3. Some General Equations

Let M be a real hypersurface in the complex hyperbolic quadric Qm∗ and denote
by (φ, ξ, η, g) the induced almost contact metric structure. Note that ξ = −JN ,
where N is a (local) unit normal vector field of M and η the corresponding 1-form
defined by η(X) = g(ξ,X) for any tangent vector field X on M . The tangent bundle
TM of M splits orthogonally into TM = C⊕Rξ, where C = ker(η) is the maximal
complex subbundle of TM . The structure tensor field φ restricted to C coincides
with the complex structure J restricted to C, and φξ = 0.

At each point z ∈ M we define a maximal A-invariant subspace of TzM , z∈M
as follows:

Qz = {X ∈ TzM : AX ∈ TzM for all A ∈ Az}.
Then we want to introduce an important lemma which will be used in the proof of
our main Theorem in the introduction.

Lemma 3.1.([24]) For each z ∈M we have

(i) If Nz is A-principal, then Qz = Cz.

(ii) If Nz is not A-principal, there exist a conjugation A ∈ A and orthonormal
vectors X,Y ∈ V (A) such that Nz = cos(t)X+sin(t)JY for some t ∈ (0, π/4].
Then we have Qz = Cz 	 C(JX + Y ).

From the explicit expression of the Riemannian curvature tensor of the com-
plex hyperbolic quadric Qm∗ we can easily derive the Codazzi equation for a real
hypersurface M in Qm∗:

g((∇XS)Y − (∇Y S)X,Z)

=− η(X)g(φY,Z) + η(Y )g(φX,Z) + 2η(Z)g(φX, Y )

− ρ(X)g(BY,Z) + ρ(Y )g(BX,Z)

+ η(BX)g(BY, φZ) + η(BX)ρ(Y )η(Z)

− η(BY )g(BX,φZ)− η(BY )ρ(X)η(Z).

(3.1)

We now assume that M is a Hopf hypersurface. Then the shape operator S of M
in Qm∗ satisfies

Sξ = αξ

with the smooth function α = g(Sξ, ξ) on M . Inserting Z = ξ into the Codazzi
equation leads to

g((∇XS)Y − (∇Y S)X, ξ) = 2g(φX, Y )− 2ρ(X)η(BY ) + 2ρ(Y )η(BX).

On the other hand, we have

g((∇XS)Y − (∇Y S)X, ξ)

=g((∇XS)ξ, Y )− g((∇Y S)ξ,X)

=dα(X)η(Y )− dα(Y )η(X) + αg((Sφ+ φS)X,Y )− 2g(SφSX, Y ).

(3.2)
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Comparing the previous two equations and putting X = ξ yields

dα(Y ) = dα(ξ)η(Y ) + 2δρ(Y ),

where the function δ = −g(Aξ, ξ) and ρ(Y ) = g(AN, Y ) for any vector field Y on
M in Qm∗.

Reinserting this into the previous equation yields

g((∇XS)Y − (∇Y S)X, ξ) = −2δη(X)ρ(Y ) + 2δρ(X)η(Y )

+ αg((φS + Sφ)X,Y )− 2g(SφSX, Y ).

Altogether this implies

0 =2g(SφSX, Y )− αg((φS + Sφ)X,Y ) + 2g(φX, Y )

− 2δρ(X)η(Y )− 2ρ(X)η(BY ) + 2ρ(Y )η(BX) + 2δη(X)ρ(Y )

=g((2SφS − α(φS + Sφ) + 2φ)X,Y )

− 2ρ(X)η(BY + δY ) + 2ρ(Y )η(BX + δX)

=g((2SφS − α(φS + Sφ) + 2φ)X,Y )

− 2ρ(X)g(Y,Bξ + δξ) + 2g(X,Bξ + δξ)ρ(Y ).

(3.3)

If AN = N we have ρ = 0, otherwise we can use Lemma 2.2 to calculate ρ(Y ) =
g(Y,AN) = g(Y,AJξ) = −g(Y, JAξ) = −g(Y, JBξ) = −g(Y, φBξ). Thus we have
proved

Lemma 3.2. Let M be a Hopf hypersurface in Qm∗, m ≥ 3. Then we have

(2SφS − α(φS + Sφ) + 2φ)X = 2ρ(X)(Bξ + δξ) + 2g(X,Bξ + δξ)φBξ.

If the unit normal vector field N is A-principal, we can choose a real structure
A ∈ A such that AN = N . Then we have ρ = 0 and φBξ = −φξ = 0, and therefore

2SφS − α(φS + Sφ) = −2φ.

If N is not A-principal, we can choose a real structure A ∈ A as in Lemma 2.2 and
get

ρ(X)(Bξ + δξ) + g(X,Bξ + δξ)φBξ

= −g(X,φ(Bξ + δξ))(Bξ + δξ) + g(X,Bξ + δξ)φ(Bξ + δξ)

= ||Bξ + δξ||2(g(X,U)φU − g(X,φU)U)

= sin2(2t)(g(X,U)φU − g(X,φU)U),

which is equal to 0 on Q and equal to sin2(2t)φX on C 	 Q. Altogether we have
proved:

Lemma 3.3. Let M be a Hopf hypersurface in Q∗m, m ≥ 3. Then the tensor field

2SφS − α(φS + Sφ)



562 I. Jeong and G. J. Kim

leaves Q and C	 Q invariant and we have

2SφS − α(φS + Sφ) = −2φ on Q

and
2SφS − α(φS + Sφ) = −2δ2φ on C	 Q,

where δ = cos 2t as in section 3.

4. Invariant Normal Jacobi Operator and a Key Lemma

By the curvature tensor R̄ of (2.1) for a real hypersurface in the complex hyper-
bolic quadric Qm∗ in section 2, the normal Jacobi operator R̄N is defined in such a
way that

R̄N (X) = R̄(X,N)N

= −X − g(JN,N)JX + g(JX,N)JN + 2g(JX,N)JN

− g(AN,N)AX + g(AX,N)AN − g(JAN,N)JAX + g(JAX,N)JAN

for any tangent vector field X in TzM and the unit normal N of M in TzQ
m∗,

z∈Qm∗. Then the normal Jacobi operator R̄N becomes a symmetric operator on
the tangent space TzM , z∈M , of Qm∗. From this, by the complex structure J and
the complex conjugations A ∈ A, together with the fact that g(Aξ,N) = 0 and
ξ = −JN in section 3, the normal Jacobi operator R̄N is given by

R̄N (Y ) =− Y − 3η(Y )ξ − g(AN,N)AY

+ g(AY,N)AN + g(AY, ξ)Aξ

(4.1)

for any Y ∈TzM , z∈M . Then the derivative of R̄N is given by

(∇XR̄N )Y = ∇X(R̄N (Y ))− R̄N (∇XY )

= −3(∇Xη)(Y )ξ − 3η(Y )∇Xξ
− {g(∇̄X(AN), N) + g(AN, ∇̄XN)}AY
− g(AN,N){∇̄X(AY )−A∇XY }
+ {g(∇̄X(AY )−A∇XY,N) + g(AY, ∇̄XN)}AN
+ g(AY,N)∇̄X(AN)

+ {g(∇̄X(AY )−A∇XY, ξ)Aξ + g(AY, ∇̄Xξ)}Aξ
+ g(AY, ξ)∇̄X(Aξ),

(4.2)

where the connection ∇̄ on the complex hyperbolic quadric Qm∗ is given by

∇̄X(AY )−A∇XY = (∇̄XA)Y +A∇̄XY −A∇XY
= q(X)JAY +Aσ(X,Y )

= q(X)JAY + g(SX, Y )AN.
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From this, together with the invariance of LXR̄N = 0 in (1.1), it follows that

∇R̄N (Y )X − R̄N (∇YX)

=(∇XR̄N )Y

=− 3g(φSX, Y )ξ − 3η(Y )φSX

− {q(X)g(JAN,N)− g(ASX,N)− g(AN,SX)}AY
− g(AN,N){q(X)JAY + g(SX, Y )AN}
+ {q(X)g(JAY,N) + g(SX, Y )g(AN,N)}AN
− g(AY, SX)AN + g(AY,N){(∇̄XA)N +A∇̄XN}
+ g((∇̄XA)Y, ξ)Aξ + g(AY, φSX + σ(X, ξ))Aξ

+ g(AY, ξ)∇̄X(Aξ),

(4.3)

where we have used the equation of Gauss ∇̄Xξ = ∇Xξ + σ(X, ξ), σ(X, ξ) denotes
the normal bundle T⊥M valued second fundament tensor on M in Qm∗. From this,
putting Y = ξ and using (∇̄XA)Y = q(X)JAY , and ∇̄XN = −SX we have

∇R̄N (ξ)X − R̄N (∇ξX)

= (∇XR̄N )ξ = −3φSX

− {q(X)g(JAN,N)− g(ASX,N)− g(AN,SX)}Aξ
− g(AN,N){q(X)JAξ + g(SX, ξ)AN}
+ {q(X)g(JAξ,N) + g(SX, ξ)g(AN,N)}AN
− g(Aξ, SX)AN + g(q(X)JAξ, ξ)Aξ

+ g(Aξ, φSX + σ(X, ξ))Aξ

+ g(Aξ, ξ){q(X)JAξ +AφSX + g(SX, ξ)}AN.

(4.4)

From this, by taking the inner product with the unit normal N , we have

−g(Aξ, SX)g(AN,N) + g(Aξ, ξ){q(X)g(JAξ,N)

+ g(AφSX,N) + g(SX, ξ)g(AN,N)} = 0.

(4.5)

Then by putting X = ξ and using the assumption of Hopf, we have

(4.6) q(ξ)g(Aξ, ξ)2 = 0.

This gives that q(ξ) = 0 or g(Aξ, ξ) = 0. The latter case implies that the unit
normal N is A-isotropic. Now we only consider the case q(ξ) = 0.

We put Y = ξ in (4.1). Then it follows that

R̄N (ξ) = −4ξ − {g(AN,N)− g(Aξ, ξ)}Aξ = −4ξ − 2g(AN,N)Aξ,

where we have used that g(Aξ, ξ) = g(AJN, JN) = −g(JAN, JN) = −g(AN,N).
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Differentiating this one, it follows that

∇R̄N (ξ)X − R̄N (∇ξX)

= (∇XR̄N )ξ

= −4∇Xξ − 2{g(∇̄X(AN), N)Aξ + g(AN, ∇̄XN)Aξ}
− 2g(AN,N)∇̄X(Aξ).

(4.7)

Then, by putting Y = ξ, and taking the inner product of (4.7) with the unit normal
N , we have

g(AN,N){q(ξ)g(Aξ, ξ)− αg(Aξ, ξ)} = 0.

From this, together with q(ξ) = 0, it follows that

(4.8) αg(Aξ, ξ)g(AN,N) = 0.

Then from (4.8) we can assert the following lemma.

Lemma 4.1. Let M be a Hopf real hypersurface in the complex hyperbolic quadric
Qm∗, m≥3, with parallel normal Jacobi operator. Then the unit normal vector field
N is A-principal or A-isotropic.

Proof. When the Reeb function α is non-vanishing, the unit normal N is A-isotropic.
When the Reeb function α identically vanishes, let us show that N is A-isotropic
or A-principal. In order to do this, from the condition of Hopf, we can differentiate
Sξ = αξ and use the equation of Codazzi (3.1) in section 3, then we get the formula

Y α = (ξα)η(Y )− 2g(ξ, AN)g(Y,Aξ) + 2g(Y,AN)g(ξ, Aξ).

From this, if we put α = 0, together with the fact g(ξ, AN) = 0 in section 3, we
know g(Y,AN)g(ξ, Aξ) = 0 for any Y ∈TzM , z∈M . This gives that the vector AN
is normal, that is, AN = g(AN,N)N or g(Aξ, ξ) = 0, which implies respectively
the unit normal N is A-principal or A-isotropic. This completes the proof of our
Lemma. 2

By virtue of this Lemma, we distinguish between two classes of real hypersur-
faces in the complex hyperbolic quadric Qm∗ with invariant normal Jacobi operator
: those that have A-principal unit normal, and those that have A-isotropic unit
normal vector field N . We treat the respective cases in sections 5 and 6.

5. Invariant Normal Jacobi Operator with A-principal Normal

In this section let us consider a real hypersurface M in the complex hyperbolic
quadric Qm∗ with A-principal unit normal vector field. Then the unit normal vector
field N satisfies AN = N for a complex conjugation A∈A. This also implies that
Aξ = −ξ for the Reeb vector field ξ = −JN .

Then the normal Jacobi operator R̄N in section 4 becomes

(5.1) R̄N (X) = −X − 3η(X)ξ −AX + η(X)ξ = −X − 2η(X)ξ −AX,
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where we have used that AN = N and

g(AX, ξ)Aξ = g(AX, JN)AJN = g(X,AJN)AJN

= g(X, JAN)JAN = g(X,JN)JN

= η(X)ξ.

On the other hand, we can put

AY = BY + ρ(Y )N,

where BY denotes the tangential component of AY and ρ(Y ) = g(AY,N) =
g(Y,AN) = g(Y,N) = 0. So it becomes always AY = BY for any vector field
Y on M in Qm∗. Then by differentiating (5.1) along any direction X, we have

(∇XR̄N )Y = ∇X(R̄N (Y ))− R̄N (∇XY )

=− 2(∇Xη)(Y )− 2η(Y )∇Xξ − (∇XB)Y.

(5.2)

Now let us consider that the normal Jacobi operator R̄N is invariant, that is,
LXR̄N = 0. This is given by

0 = (LXR̄N )Y

= LX(R̄NY )− R̄N (LXY )

= [X, R̄NY ]− R̄N [X,Y ]

= ∇X(R̄NY )−∇R̄N (Y )X − R̄N (∇XY −∇YX)

= ∇X(R̄NY )−∇R̄N (Y )X + R̄N (∇YX).

Then it follows that

−2g(φSX, Y )ξ − 2η(Y )φSX − (∇XB)Y = {∇YX + 2η(∇YX)ξ +A∇YX}
− {∇YX + 2η(Y )∇ξX +∇AYX}.

From this putting Y = ξ and using Aξ = −ξ, it follows that

−2φSX − (∇XB)ξ = 2η(∇ξX)ξ +A∇ξX +∇ξX
= − 2φSX − {q(X)JAξ − σ(X,Aξ) + η(SX)N}.

(5.3)

where we have used the following

(∇XA)ξ = ∇X(Aξ)−A∇Xξ
= ∇̄X(Aξ)−A∇Xξ

=
{

(∇̄XA)ξ +A∇̄Xξ
}
−AφSX

= q(X)JAξ +AφSX − σ(X,Aξ) + g(SX, ξ)AN −AφSX
= q(X)JAξ − σ(X,Aξ) + αη(X)N.
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Then by taking the inner product of (5.3) with the unit normal N , we have

q(X) = 2αη(X).

This implies q(ξ) = 2α, and the 1-form q is given by

(5.4) q(X) = q(ξ)η(X).

On the other hand, in section 4 from the Lie invariance of the normal Jacobi
operator we have calculated the following

∇R̄N (ξ)X − R̄N (∇ξX)

= (∇XR̄N )ξ = −3φSX

− {q(X)g(JAN,N)− g(ASX,N)− g(AN,SX)}Aξ
− g(AN,N){q(X)JAξ + g(SX, ξ)AN}
+ {q(X)g(JAξ,N) + g(SX, ξ)g(AN,N)}AN
− g(Aξ, SX)AN + g(q(X)JAξ, ξ)Aξ

+ g(Aξ, φSX + σ(X, ξ))Aξ

+ g(Aξ, ξ){q(X)JAξ +AφSX + g(SX, ξ)AN}.

(5.5)

From this, by taking the inner product with the unit normal N , we have

−g(Aξ, SX)g(AN,N) + g(Aξ, ξ){q(X)g(JAξ,N)

+ g(Aξ, ξ){g(JAξ,N) + g(AφSX,N) + g(SX, ξ)g(AN,N)} = 0.

(5.6)

Then by putting X = ξ and using the assumption of Hopf, we have

(5.7) q(ξ)g(Aξ, ξ)2 = 0.

From this, together with (5.4) and Aξ = −ξ, it follows that the 1-form q vanishes
identically on M .

On the other hand, we know that the complex hyperbolic quadric Qm∗ can
be immersed into the indefinite complex hyperbolic space CHm+1

1 in Cm+2
2 (see

Montiel and Romero [12], and Kobayashi and Nomizu [11]). Then the same 1-form
q appears in the Weingarten formula

∇̃X z̄ = −Az̄X + q(X)Jz̄

for unit normal vector fields {z̄, J z̄} on the complex hyperbolic quadric Qm∗ which
can be immersed in indefinite complex hyperbolic space CHm+1

1 as a space-like
complex hypersurface, where ∇̃ denotes the Riemannian connection on CHm+1

1

induced from the Euclidean connection on Cm+2
2 (see Smyth [19] and [20]). But the

1-form q never vanishes on Qm∗. This gives a contradiction (see Smyth [19]). This
means that there do not exist any real hypersurfaces in the complex hyperbolic
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quadric Qm∗ with invariant normal Jacobi operator, that is, LXR̄N = 0 for the
A-principal unit normal vector field N .

6. Invariant Normal Jacobi Operator with A-isotropic Normal

In this section let us assume that the unit normal vector field N is A-isotropic.
Then the normal vector field N can be put

N =
1√
2

(Z1 + JZ2)

for Z1, Z2∈V (A), where V (A) denotes a (+1)-eigenspace of the complex conjugation
A∈A. Then it follows that

AN =
1√
2

(Z1 − JZ2), AJN = − 1√
2

(JZ1 + Z2), and JN =
1√
2

(JZ1 − Z2).

From this, together with (2.2) and the anti-commuting AJ = −JA, it follows that

g(ξ, Aξ) = g(JN,AJN) = 0, g(ξ, AN) = 0 and g(AN,N) = 0.

By virtue of these formulas for the A-isotropic unit normal, the normal Jacobi
operator R̄N in section 4 is given by

R̄N (Y ) = −Y − 3η(Y )ξ + g(AY,N)AN + g(AY, ξ)Aξ.

Then the derivative of the normal Jacobi operator R̄N on M is given as follows:

(∇XR̄N )Y

=− 3(∇Xη)(Y )ξ − 3η(Y )∇Xξ + g(∇X(AN), Y )AN

+ g(AN, Y )∇X(AN) + g(Y,∇X(Aξ))Aξ + g(Aξ, Y )∇X(Aξ).

(6.1)

On the other hand, the Lie invariance (4.1) gives that

(∇XR̄N )Y = ∇X(R̄N (Y ))− R̄N (∇XY )

= ∇R̄N (Y )X − R̄N (∇YX).

(6.2)

Then by putting Y = ξ in (6.1) and (6.2), and using R̄N (ξ) = 4ξ, we have

−3φSX − g(AN,φSX)AN − g(φSX,Aξ)Aξ

=− 4∇ξX + {∇ξX + 3η(∇ξX)ξ

− g(A∇ξX,N)AN − g(A∇ξX, ξ)Aξ}

(6.3)

From this, taking the inner product (6.3) with the vector field AN , it follows that

4g(φSX,AN) = 4g(∇ξX,AN).
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Then from this, together with (6.3), we get

(6.4) φSX = ∇ξX − η(∇ξX)ξ.

For any X∈ξ⊥, where ξ⊥ denotes the orthogonal complement of the Reeb vector
field ξ in the tangent space TzM , z∈M , we know that ∇ξX is orthogonal to the
Reeb vector field ξ, that is, η(∇ξX) = −g(∇ξξ,X) = 0. Then the formula (6.4)
becomes for any tangent vector field X∈ξ⊥

(6.5) φSX = ∇ξX.

When we consider the A-isotropic unit normal, the vector fields Aξ and AN
belong to the distribution C− Q in section 3.

On the other hand, by virtue of Lemma 3.1, we prove the following for a Hopf
hypersurface in Qm∗ with A-isotropic unit normal vector field as follows:

Lemma 6.1. Let M be a Hopf real hypersurface in the complex hyperbolic quadric
Qm∗, m≥3, with A-isotropic unit normal vector field. Then

(6.6) SAN = 0, and SAξ = 0.

Proof. Let us denote by C− Q = Span[Aξ,AN ]. Since N is isotropic, g(AN,N) =
0 and g(Aξ, ξ) = 0. By differentiating g(AN,N) = 0, and using (∇̄XA)Y =
q(X)JAY in the introduction and the equation of Weingarten, we know that

0 = g(∇̄X(AN), N) + g(AN, ∇̄XN)

= g(q(X)JAN −ASX,N)− g(AN,SX)

= − 2g(ASX,N).

Then SAN = 0. Moreover, by differentiating g(Aξ,N) = 0, and using g(AN,N) =
0 and g(Aξ, ξ) = 0, we have the following formula

0 = g(∇̄X(Aξ), N) + g(Aξ, ∇̄XN)

= g(q(X)JAξ +A(φSX + g(SX, ξ)N), N)− g(SAξ,X)

= − 2g(SAξ,X)

for any X∈TzM , z∈M , where in the third equality we have used φAN = JAN =
−AJN = Aξ. Then it follows that

SAξ = 0.

It completes the proof of our assertion. 2
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