KYUNGPOOK Math. J. 60(2020), 551-570 https://doi.org/10.5666/KMJ.2020.60.3.551 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Real Hypersurfaces with Invariant Normal Jacobi Operator in the Complex Hyperbolic Quadric

IMSOON JEONG Department of Mathematics Education, Cheongju University, Cheongju 28503, Republic of Korea e-mail: isjeong@cju.ac.kr

GYU JONG KIM* Department of Mathematics Education, Woosuk University, Wanju, Jeonbuk 55338, Republic of Korea e-mail: hb2107@naver.com

ABSTRACT. We introduce the notion of Lie invariant normal Jacobi operators for real hypersurfaces in the complex hyperbolic quadric $Q^{m*} = SO_{m,2}^{\circ}/SO_mSO_2$. The invariant normal Jacobi operator implies that the unit normal vector field N becomes \mathfrak{A} -principal or \mathfrak{A} -isotropic. Then in each case, we give a complete classification of real hypersurfaces in $Q^{m*} = SO_{m,2}^{\circ}/SO_mSO_2$ with Lie invariant normal Jacobi operators.

1. Introduction

When we consider Hermitian symmetric spaces of rank 2, we can usually give examples of Riemannian symmetric spaces $SU_{m+2}/S(U_2U_m)$ and $SU_{2,m}/S(U_2U_m)$, which are said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grassmannians respectively (see [21, 22, 23]). These are viewed as Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure J and the quaternionic Kähler structure \mathfrak{J} .

In the complex projective space $\mathbb{C}P^{m+1}$ and the quaternionic projective space $\mathbb{Q}P^{m+1}$ some classifications related to commuting Ricci tensor were investigated by Kimura [5, 6], Pérez [13] and Pérez and Suh [14, 15] respectively. The classification

^{*} Corresponding Author.

Received March 5, 2019; revised May 20, 2019; accepted June 10, 2019.

²⁰²⁰ Mathematics Subject Classification: primary 53C40, secondary 53C55.

Key words and phrases: invariant normal Jacobi operator, α-isotropic, α-principal, Kähler structure, complex conjugation, complex hyperbolic quadric.

The first author was supported by grant Proj. No. NRF-2020-R1H1A2014198 and the second author by grant Proj. No. NRF-2020-R1G1A1A01003570 from National Reearch Foundation.

problems of the complex 2-plane Grassmannian $G_2(\mathbb{C}^{m+2}) = SU_{m+2}/S(U_2U_m)$ with various geometric conditions were discussed in Jeong, Kim and Suh [4], Pérez [13], and Suh [21, 22, 29], where the classification of *contact hypersurfaces*, *parallel Ricci tensor*, *harmonic curvature* and *Jacobi operator* of a real hypersurface in $G_2(\mathbb{C}^{m+2})$ were extensively studied.

Another example of Hermitian symmetric space with rank 2 having noncompact type different from the above ones, is the complex hyperbolic quadric $SO_{2,m}^0/SO_2SO_m$. It is a simply connected Riemannian manifold whose curvature tensor is the negative of the curvature tensor of the complex quadric Q^m (see Besse [2], Helgason [3], and Knapp [10]). The complex hyperbolic quadric also can be regarded as a kind of real Grassmann manifolds of non-compact type with rank 2 . Accordingly, the complex hyperbolic quadric Q^{m*} admits two important geometric structures, a complex conjugation structure A and a Kähler structure J, which anti-commute with each other, that is, AJ = -JA. For $m \ge 2$ the triple (Q^{m*}, J, g) is a Hermitian symmetric space of non-compact type and its maximal sectional curvature is equal to -4 (see Klein [7], Kobayashi and Nomizu [11], and Reckziegel [16]).

Two last examples of different Hermitian symmetric spaces with rank 2 in the class of compact type or non-compact type, are the complex quadric $Q^m = SO_{m+2}^2/SO_mSO_2$ or the complex hyperbolic quadric $Q^{m*} = SO_{2,m}^2/SO_mSO_2$, which are a complex hypersurface in complex projective space CP^{m+1} or in complex hyperbolic space respectively(see Romero [17, 18], Suh [24, 25], and Smyth [19]). The complex quadric Q^m or the complex hyperbolic quadric Q^{m*} can be regarded as a kind of real Grassmann manifold of compact or non-compact type with rank 2 respectively(see Helgason [3], Kobayashi and Nomizu [11]). Accordingly, the complex quadric Q^m and the complex hyperbolic quadric Q^{m*} both admit two important geometric structures, a complex conjugation structure A and a Kähler structure J, which anti-commute with each other, that is, AJ = -JA (see Klein [7] and Reckziegel [16]).

Now let us introduce a complex hyperbolic quadric $Q^{m^*} = SO_{m,2}^o/SO_2SO_m$, which can be regarded as a Hermitian symmetric space with rank 2 of noncompact type. Montiel and Romero [12] proved that the complex hyperbolic quadric Q^{m^*} can be immersed in the indefinite complex hyperbolic space $CH_1^{m+1}(-c)$, c > 0, by interchanging the Kähler metric with its opposite. Changing the Kähler metric of CP_{n-s}^{n+1} with its opposite, we have that Q_{n-s}^n endowed with its opposite metric g' = -g is also an Einstein hypersurface of $CH_{s+1}^{n+1}(-c)$. When s = 0, we know that $(Q_n^n, g' = -g)$ can be regarded as the complex hyperbolic quadric $Q^{m^*} =$ $SO_{m,2}^o/SO_2SO_m$, which is immersed in the indefinite complex hyperbolic quadric $CH_1^{m+1}(-c)$, c > 0 as a space-like complex Einstein hypersurface.

Apart from the complex structure J there is another distinguished geometric structure on Q^{m*} , namely a parallel rank two vector bundle \mathfrak{A} which contains a S^1 -bundle of real structures. Note that these real structures are complex conjugations A on the tangent spaces of the complex hyperbolic quadric Q^{m*} . This geometric

structure determines a maximal \mathfrak{A} -invariant subbundle \mathfrak{Q} of the tangent bundle TM of a real hypersurface M in the complex hyperbolic quadric Q^{m^*} .

Recall that a nonzero tangent vector $W \in T_{[z]}Q^{m*}$ is called singular if it is tangent to more than one maximal flat in Q^{m*} . There are two types of singular tangent vectors for the complex hyperbolic quadric Q^{m*} as follows:

- 1. If there exists a conjugation $A \in \mathfrak{A}$ such that $W \in V(A)$, then W is singular. Such a singular tangent vector is called \mathfrak{A} -principal.
- 2. If there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $W/||W|| = (X + JY)/\sqrt{2}$, then W is singular. Such a singular tangent vector is called \mathfrak{A} -isotropic.

Here $V(A) = \{X \in T_{[z]}Q^{m*} : AX = X\}$ and $JV(A) = \{X \in T_{[z]}Q^{m*} : AX = -X\}, [z] \in Q^{m*}$, are the (+1)-eigenspace and (-1)-eigenspace for the involution A on $T_{[z]}Q^{m*}, [z] \in Q^{m*}$.

When we consider a hypersurface M in the complex hyperbolic quadric Q^{m*} , under the assumption of some geometric properties the unit normal vector field Nof M in Q^{m*} can be divided into two cases depending on whether N is \mathfrak{A} -isotropic or \mathfrak{A} -principal (see [27, 28, 30, 31]). In the first case where N is \mathfrak{A} -isotropic, we have shown in [27] that M is locally congruent to a tube over a totally geodesic complex hyperbolic space $\mathbb{C}H^k$ in the complex hyperbolic quadric Q^{2k*} . In the second case, when the unit normal N is \mathfrak{A} -principal, we proved that a contact hypersurface Min the complex hyperbolic quadric Q^{m*} is locally congruent to a tube over a totally geodesic and totally real submanifold $\mathbb{R}H^m$ in Q^{m*} or a horosphere (see Suh [9], and Suh and Hwang [30]).

Usually, Jacobi fields along geodesics of a given Riemannian manifold \overline{M} satisfy a well known differential equation. Naturally the classical differential equation inspires the so-called *Jacobi operator*. That is, if \overline{R} is the curvature operator of \overline{M} , the Jacobi operator with respect to X at $z \in M$, is defined by

$$(\bar{R}_X Y)(z) = (\bar{R}(Y, X)X)(z)$$

for any $Y \in T_z \overline{M}$. Then $\overline{R}_X \in \text{End}(T_z \overline{M})$ becomes a symmetric endomorphism of the tangent bundle $T\overline{M}$ of \overline{M} . Clearly, each tangent vector field X to \overline{M} provides a Jacobi operator with respect to X.

From such a view point, in the complex hyperbolic quadric Q^{m^*} the normal Jacobi operator \bar{R}_N is defined by

$$\bar{R}_N = \bar{R}(\cdot, N)N \in End(T_zM), \quad z \in M$$

for a real hypersurface M in the complex hyperbolic quadric Q^{m^*} with unit normal vector field N, where \bar{R} denotes the curvature tensor of the complex hyperbolic quadric Q^{m^*} . Of course, the normal Jacobi opeartor \bar{R}_N is a symmetric endomorphism of M in the complex hyperbolic quadric Q^{m^*} .

I. Jeong and G. J. Kim

The normal Jacobi operator \bar{R}_N of M in the complex hyperbolic quadric Q^{m^*} is said to be *Lie invariant* if the operator \bar{R}_N satisfies

$$0 = (\mathfrak{L}_X \bar{R}_N) Y$$

for any $X, Y \in T_z M$, $z \in M$, where the Lie derivative $(\mathfrak{L}_X \overline{R}_N) Y$ is defined by

(1.1)
$$(\mathfrak{L}_X \bar{R}_N) Y = [X, \bar{R}_N(Y)] - \bar{R}_N([X, Y])$$
$$= \nabla_X (\bar{R}_N(Y)) - \nabla_{\bar{R}_N(Y)} X - \bar{R}_N (\nabla_X Y - \nabla_Y X)$$
$$= (\nabla_X \bar{R}_N) Y - \nabla_{\bar{R}_N(Y)} X + \bar{R}_N (\nabla_Y X).$$

For real hypersurfaces in the complex quadric Q^m we investigated the notions of parallel Ricci tensor, harmonic curvature and commuting Ricci tensor, which are respectively given by $\nabla \text{Ric} = 0$, $\delta \text{Ric} = 0$ and $\text{Ric} \cdot \phi = \phi \cdot \text{Ric}$ (see Suh [25], [26], and Suh and Hwang [29]). But from the assumption of Ricci parallel or harmonic curvature, it was difficult for us to derive the fact that either the unit normal vector field N is \mathfrak{A} -isotropic or \mathfrak{A} -principal. So in [25] and [26] we gave a classification with the further assumption of \mathfrak{A} -isotropic. Also in the study of complex hyperbolic quadric Q^{m*} we also have some obstructions to get the fact that the unit normal N is singular.

In the paper due to Suh [27] we investigate this problem of isometric Reeb flow for the complex hyperbolic quadric $Q^{m*} = SO_{2,m}^o/SO_mSO_2$. In view of the previous results, naturally, we expected that the classification might include at least the totally geodesic $Q^{m-1*} \subset Q^{m*}$. But, the results are quite different from our expectations. The totally geodesic submanifolds of the above type are not included. Now we introduce the classification as follows:

Theorem 1.1. Let M be a real hypersurface of the complex hyperbolic quadric $Q^{m*} = SO_{2,m}^o/SO_mSO_2, m \ge 3$. The Reeb flow on M is isometric if and only if m is even, say m = 2k, and M is an open part of a tube around a totally geodesic $\mathbb{C}H^k \subset Q^{2k^*}$ or a horosphere whose center at infinity is \mathfrak{A} -isotropic singular.

But fortunately, when we consider Lie invariant normal Jacobi operator, that is., $\mathcal{L}_X \bar{R}_N = 0$ for any tangent vector field X on M in Q^{m*} , we can assert that the unit normal vector field N becomes either \mathfrak{A} -isotropic or \mathfrak{A} -principal as follows:

Theorem 1.2. Let M be a Hopf real hypersurface in the complex hyperbolic quadric $Q^{m*}, m \ge 3$, with Lie invariant normal Jacobi operator. Then the unit normal vector field N is singular, that is, N is \mathfrak{A} -isotropic or \mathfrak{A} -principal.

Then motivated by Theorem 1.1 and Theorem 1.2, we can give a complete classification for real hypersurfaces in Q^{m*} with invariant normal Jacobi operator as follows:

Theorem 1.3. Let M be a Hopf real hypersurface in the complex hyperbolic quadric Q^{m*} , $m \ge 3$ with Lie invariant normal normal Jacobi operator. Then M is locally congruent to a tube of radius r over a totally geodesic CH^k in Q^{2k^*} or a horosphere

whose center at infinity is \mathfrak{A} -isotropic singular.

2. The Complex Hyperbolic Quadric

In this section, let us introduce a new known result of the complex hyperbolic quadric Q^{m*} different from the complex quadric Q^m . This section is due to Klein and Suh [9], and Suh [28].

The *m*-dimensional complex hyperbolic quadric Q^{m*} is the non-compact dual of the *m*-dimensional complex quadric Q^m , which is a kind of Hermitian symmetric space of non-compact type with rank 2 (see Besse [2], and Helgason [3]).

The complex hyperbolic quadric Q^{m*} cannot be realized as a homogeneous complex hypersurface of the complex hyperbolic space $\mathbb{C}H^{m+1}$. In fact, Smyth [20, Theorem 3(ii)] has shown that every homogeneous complex hypersurface in $\mathbb{C}H^{m+1}$ is totally geodesic. This is in marked contrast to the situation for the complex quadric Q^m , which can be realized as a homogeneous complex hypersurface of the complex projective space $\mathbb{C}P^{m+1}$ in such a way that the shape operator for any unit normal vector to Q^m is a real structure on the corresponding tangent space of Q^m , see [7] and [16]. Another related result by Smyth, [20, Theorem 1], which states that any complex hypersurface $\mathbb{C}H^{m+1}$ for which the square of the shape operator has constant eigenvalues (counted with multiplicity) is totally geodesic, also precludes the possibility of a model of Q^{m*} as a complex hypersurface of $\mathbb{C}H^{m+1}$ with the analogous property for the shape operator.

Therefore we realize the complex hyperbolic quadric Q^{m^*} as the quotient manifold $SO_{2,m}^0/SO_2SO_m$. As Q^{1^*} is isomorphic to the real hyperbolic space $\mathbb{R}H^2 = SO_{1,2}^0/SO_2$, and Q^{2^*} is isomorphic to the Hermitian product of complex hyperbolic spaces $\mathbb{C}H^1 \times \mathbb{C}H^1$, we suppose $m \geq 3$ in the sequel and throughout this paper. Let $G := SO_{2,m}^0$ be the transvection group of Q^{m^*} and $K := SO_2SO_m$ be the isotropy group of Q^{m^*} at the "origin" $p_0 := eK \in Q^{m^*}$. Then

$$\sigma: G \to G, \ g \mapsto sgs^{-1} \quad \text{with} \quad s := \begin{pmatrix} -1 & & \\ & -1 & & \\ & & 1 & \\ & & \ddots & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}$$

is an involutive Lie group automorphism of G with $Fix(\sigma)_0 = K$, and therefore $Q^{m^*} = G/K$ is a Riemannian symmetric space. The center of the isotropy group K is isomorphic to SO_2 , and therefore Q^{m^*} is in fact a Hermitian symmetric space.

The Lie algebra $\mathfrak{g} := \mathfrak{so}_{2,m}$ of G is given by

$$\mathfrak{g} = \left\{ X \in \mathfrak{gl}(m+2,\mathbb{R}) : X^t \cdot s = -s \cdot X \right\}$$

(see [10, p. 59]). In the sequel we will write members of \mathfrak{g} as block matrices with respect to the decomposition $\mathbb{R}^{m+2} = \mathbb{R}^2 \oplus \mathbb{R}^m$, i.e. in the form

$$X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} ,$$

where X_{11} , X_{12} , X_{21} , X_{22} are real matrices of the dimension 2×2 , $2 \times m$, $m \times 2$ and $m \times m$, respectively. Then

$$\mathfrak{g} = \left\{ \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} : X_{11}^t = -X_{11}, X_{12}^t = X_{21}, X_{22}^t = -X_{22} \right\}$$

The linearisation $\sigma_L = \operatorname{Ad}(s) : \mathfrak{g} \to \mathfrak{g}$ of the involutive Lie group automorphism σ induces the Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$, where the Lie subalgebra

$$\begin{aligned} \mathbf{\mathfrak{k}} &= \operatorname{Eig}(\sigma_*, 1) = \{ X \in \mathbf{\mathfrak{g}} : sXs^{-1} = X \} \\ &= \{ \begin{pmatrix} X_{11} & 0 \\ 0 & X_{22} \end{pmatrix} : X_{11}^t = -X_{11}, \ X_{22}^t = -X_{22} \} \\ &\cong \mathbf{\mathfrak{so}}_2 \oplus \mathbf{\mathfrak{so}}_m \end{aligned}$$

is the Lie algebra of the isotropy group K, and the 2m-dimensional linear subspace

$$\mathfrak{m} = \operatorname{Eig}(\sigma_*, -1) = \{ X \in \mathfrak{g} : sXs^{-1} = -X \} = \{ \begin{pmatrix} 0 & X_{12} \\ X_{21} & 0 \end{pmatrix} : X_{12}^t = X_{21} \}$$

is canonically isomorphic to the tangent space $T_{p_0}Q^{m^*}$. Under the identification $T_{p_0}Q^{m^*} \cong \mathfrak{m}$, the Riemannian metric g of Q^{m^*} (where the constant factor of the metric is chosen so that the formulae become as simple as possible) is given by

$$g(X,Y) = \frac{1}{2}\operatorname{tr}(Y^t \cdot X) = \operatorname{tr}(Y_{12} \cdot X_{21}) \quad \text{for} \quad X, Y \in \mathfrak{m}$$

g is clearly $\operatorname{Ad}(K)$ -invariant, and therefore corresponds to an $\operatorname{Ad}(G)$ -invariant Riemannian metric on Q^{m*} . The complex structure J of the Hermitian symmetric space is given by

$$JX = \operatorname{Ad}(j)X$$
 for $X \in \mathfrak{m}$, where $j := \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ & & 1 \\ & & \ddots & 1 \end{pmatrix} \in K$.

Because j is in the center of K, the orthogonal linear map J is $\operatorname{Ad}(K)$ -invariant, and thus defines an $\operatorname{Ad}(G)$ -invariant Hermitian structure on Q^{m^*} . By identifying the multiplication with the unit complex number i with the application of the linear map J, the tangent spaces of Q^{m^*} thus become m-dimensional complex linear spaces, and we will adopt this point of view in the sequel.

Like for the complex quadric (again compare [7, 8, 16]), there is another important structure on the tangent bundle of the complex quadric besides the Riemannian metric and the complex structure, namely an S^1 -bundle \mathfrak{A} of real structures. The situation here differs from that of the complex quadric in that for Q^{m*} , the real structures in \mathfrak{A} cannot be interpreted as the shape operator of a complex hypersurface in a complex space form, but as the following considerations will show, \mathfrak{A} still plays an important role in the description of the geometry of Q^{m*} .

Let

$$a_0 := \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \ .$$

Note that we have $a_0 \notin K$, but only $a_0 \in O_2 SO_m$. However, $\operatorname{Ad}(a_0)$ still leaves \mathfrak{m} invariant, and therefore defines an \mathbb{R} -linear map A_0 on the tangent space $\mathfrak{m} \cong T_{p_0}Q^{m*}$. A_0 turns out to be an involutive orthogonal map with $A_0 \circ J = -J \circ A_0$ (i.e. A_0 is anti-linear with respect to the complex structure of $T_{p_0}Q^{m*}$), and hence a real structure on $T_{p_0}Q^{m*}$. But A_0 commutes with $\operatorname{Ad}(g)$ not for all $g \in K$, but only for $g \in SO_m \subset K$. More specifically, for $g = (g_1, g_2) \in K$ with $g_1 \in SO_2$ and $g_2 \in SO_m$, say $g_1 = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}$ with $t \in \mathbb{R}$ (so that $\operatorname{Ad}(g_1)$ corresponds to multiplication with the complex number $\mu := e^{it}$), we have

$$A_0 \circ \operatorname{Ad}(g) = \mu^{-2} \cdot \operatorname{Ad}(g) \circ A_0$$
.

This equation shows that the object which is $\operatorname{Ad}(K)$ -invariant and therefore geometrically relevant is not the real structure A_0 by itself, but rather the "circle of real structures"

$$\mathfrak{A}_{p_0} := \{\lambda A_0 | \lambda \in S^1\} .$$

 \mathfrak{A}_{p_0} is $\operatorname{Ad}(K)$ -invariant, and therefore generates an $\operatorname{Ad}(G)$ -invariant S^1 -subbundle \mathfrak{A} of the endomorphism bundle $\operatorname{End}(TQ^{m^*})$, consisting of real structures on the tangent spaces of Q^{m^*} . For any $A \in \mathfrak{A}$, the tangent line to the fibre of \mathfrak{A} through A is spanned by JA.

For any $p \in Q^{m^*}$ and $A \in \mathfrak{A}_p$, the real structure A induces a splitting

$$T_p Q^{m*} = V(A) \oplus JV(A)$$

into two orthogonal, maximal totally real subspaces of the tangent space T_pQ^{m*} . Here V(A) resp. JV(A) are the (+1)-eigenspace resp. the (-1)-eigenspace of A. For every unit vector $Z \in T_pQ^{m*}$ there exist $t \in [0, \frac{\pi}{4}]$, $A \in \mathfrak{A}_p$ and orthonormal vectors $X, Y \in V(A)$ so that

$$Z = \cos(t) \cdot X + \sin(t) \cdot JY$$

holds; see [16, Proposition 3]. Here t is uniquely determined by Z. The vector Z is singular, i.e. contained in more than one Cartan subalgebra of \mathfrak{m} , if and only if either t = 0 or $t = \frac{\pi}{4}$ holds. The vectors with t = 0 are called \mathfrak{A} -principal, whereas the vectors with $t = \frac{\pi}{4}$ are called \mathfrak{A} -isotropic. If Z is regular, i.e. $0 < t < \frac{\pi}{4}$ holds, then also A and X, Y are uniquely determined by Z.

Like for the complex quadric, the Riemannian curvature tensor \overline{R} of Q^{m*} can be fully described in terms of the "fundamental geometric structures" g, J and \mathfrak{A} . In fact, under the correspondence $T_{p_0}Q^{m*} \cong \mathfrak{m}$, the curvature $\overline{R}(X,Y)Z$ corresponds to -[[X,Y],Z] for $X, Y, Z \in \mathfrak{m}$, see [11, Chapter XI, Theorem 3.2(1)]. By evaluating the latter expression explicitly, one can show that one has

$$(2.1) R(X,Y)Z = -g(Y,Z)X + g(X,Z)Y -g(JY,Z)JX + g(JX,Z)JY + 2g(JX,Y)JZ -g(AY,Z)AX + g(AX,Z)AY -g(JAY,Z)JAX + g(JAX,Z)JAY$$

for arbitrary $A \in \mathfrak{A}_{p_0}$. Therefore the curvature of Q^{m^*} is the negative of that of the complex quadric Q^m , compare [16, Theorem 1]. This confirms that the symmetric space Q^{m^*} which we have constructed here is indeed the non-compact dual of the complex quadric.

Let M be a real hypersurface in complex hyperbolic quadric Q^{m*} and denote by (ϕ, ξ, η, g) the induced almost contact metric structure on M and by ∇ the induced Riemannian connection on M. Note that $\xi = -JN$, where N is a (local) unit normal vector field of M. The vector field ξ is known as the Reeb vector field of M. If the integral curves of ξ are geodesics in M, the hypersurface M is called a Hopf hypersurface. The integral curves of ξ are geodesics in M if and only if ξ is a principal curvature vector of M everywhere. The tangent bundle TM of M splits orthogonally into $TM = \mathcal{C} \oplus \mathcal{F}$, where $\mathcal{C} = \ker(\eta)$ is the maximal complex subbundle of TM and $\mathcal{F} = \mathbb{R}\xi$. The structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure J restricted to \mathcal{C} , and we have $\phi\xi = 0$. We denote by νM the normal bundle of M.

We first introduce some notations. For a fixed real structure $A \in \mathfrak{A}_{[z]}$ and $X \in T_{[z]}M$ we decompose AX into its tangential and normal component, that is,

$$AX = BX + \rho(X)N$$

where BX is the tangential component of AX and

$$\rho(X) = g(AX, N) = g(X, AN) = g(X, AJ\xi) = g(JX, A\xi).$$

Since $JX = \phi X + \eta(X)N$ and $A\xi = B\xi + \rho(\xi)N$ we also have

$$\rho(X) = g(\phi X, B\xi) + \eta(X)\rho(\xi) = \eta(B\phi X) + \eta(X)\rho(\xi).$$

We also define

$$\delta = g(N, AN) = g(JN, JAN) = -g(JN, AJN) = -g(\xi, A\xi).$$

At each point $[z] \in M$ we define

$$\mathcal{Q}_{[z]} = \{ X \in T_{[z]}M : AX \in T_{[z]}M \text{ for all } A \in \mathfrak{A}_{[z]} \},\$$

which is the maximal $\mathfrak{A}_{[z]}$ -invariant subspace of $T_{[z]}M$. Then by using the same method for real hypersurfaces in complex hyperbolic quadric Q^{m*} as in Berndt and Suh [1] we get the following

Lemma 2.1. Let M be a real hypersurface in complex hyperbolic quadric Q^{m*} . Then the following statements are equivalent:

- (i) The normal vector $N_{[z]}$ of M is \mathfrak{A} -principal,
- (ii) $Q_{[z]} = \mathcal{C}_{[z]},$
- (iii) There exists a real structure $A \in \mathfrak{A}_{[z]}$ such that $AN_{[z]} \in \mathbb{C}\nu_{[z]}M$.

Assume now that the normal vector $N_{[z]}$ of M is not \mathfrak{A} -principal. Then there exists a real structure $A \in \mathfrak{A}_{[z]}$ such that

$$N_{[z]} = \cos(t)Z_1 + \sin(t)JZ_2$$

for some orthonormal vectors $Z_1, Z_2 \in V(A)$ and $0 < t \le \frac{\pi}{4}$. This implies

(2.2)
$$AN_{[z]} = \cos(t)Z_1 - \sin(t)JZ_2, \\ \xi_{[z]} = \sin(t)Z_2 - \cos(t)JZ_1, \\ A\xi_{[z]} = \sin(t)Z_2 + \cos(t)JZ_1,$$

and therefore $\mathfrak{Q}_{[z]} = T_{[z]}Q^m \ominus ([Z_1] \oplus [Z_2])$ is strictly contained in $\mathfrak{C}_{[z]}$. Moreover, we have

$$A\xi_{[z]} = B\xi_{[z]}$$
 and $\rho(\xi_{[z]}) = 0$.

We have

$$g(B\xi_{[z]} + \delta\xi_{[z]}, N_{[z]}) = 0,$$

$$g(B\xi_{[z]} + \delta\xi_{[z]}, \xi_{[z]}) = 0,$$

$$g(B\xi_{[z]} + \delta\xi_{[z]}, B\xi_{[z]} + \delta\xi_{[z]}) = \sin^2(2t),$$

where the function δ denotes $\delta = -g(\xi, A\xi) = -(\sin^2 t - \cos^2 t) = \cos 2t$. Therefore

$$U_{[z]} = \frac{1}{\sin(2t)} (B\xi_{[z]} + \delta\xi_{[z]})$$

is a unit vector in $\mathcal{C}_{[z]}$ and

$$\mathcal{C}_{[z]} = \mathcal{Q}_{[z]} \oplus [U_{[z]}]$$
 (orthogonal direct sum).

If $N_{[z]}$ is not \mathfrak{A} -principal at [z], then N is not \mathfrak{A} -principal in an open neighborhood of [z], and therefore U is a well-defined unit vector field on that open neighborhood. We summarize this in the following

Lemma 2.2. Let M be a real hypersurface in complex hyperbolic quadric Q^{m*} whose unit normal $N_{[z]}$ is not \mathfrak{A} -principal at [z]. Then there exists an open neighborhood of [z] in M and a section A in \mathfrak{A} on that neighborhood consisting of real structures such that

- (i) $A\xi = B\xi \text{ and } \rho(\xi) = 0$,
- (ii) $U = (B\xi + \delta\xi)/||B\xi + \delta\xi||$ is a unit vector field tangent to \mathcal{C} ,
- (iii) $\mathcal{C} = \mathcal{Q} \oplus [U].$

3. Some General Equations

Let M be a real hypersurface in the complex hyperbolic quadric Q^{m*} and denote by (ϕ, ξ, η, g) the induced almost contact metric structure. Note that $\xi = -JN$, where N is a (local) unit normal vector field of M and η the corresponding 1-form defined by $\eta(X) = g(\xi, X)$ for any tangent vector field X on M. The tangent bundle TM of M splits orthogonally into $TM = \mathcal{C} \oplus \mathbb{R}\xi$, where $\mathcal{C} = \ker(\eta)$ is the maximal complex subbundle of TM. The structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure J restricted to \mathcal{C} , and $\phi\xi = 0$.

At each point $z \in M$ we define a maximal \mathfrak{A} -invariant subspace of T_zM , $z \in M$ as follows:

$$\mathcal{Q}_z = \{ X \in T_z M : AX \in T_z M \text{ for all } A \in \mathfrak{A}_z \}.$$

Then we want to introduce an important lemma which will be used in the proof of our main Theorem in the introduction.

Lemma 3.1.([24]) For each $z \in M$ we have

- (i) If N_z is \mathfrak{A} -principal, then $\mathfrak{Q}_z = \mathfrak{C}_z$.
- (ii) If N_z is not \mathfrak{A} -principal, there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $N_z = \cos(t)X + \sin(t)JY$ for some $t \in (0, \pi/4]$. Then we have $\mathfrak{Q}_z = \mathfrak{C}_z \ominus \mathbb{C}(JX + Y)$.

From the explicit expression of the Riemannian curvature tensor of the complex hyperbolic quadric Q^{m*} we can easily derive the Codazzi equation for a real hypersurface M in Q^{m*} :

(3.1)
$$g((\nabla_X S)Y - (\nabla_Y S)X, Z)$$
$$= -\eta(X)g(\phi Y, Z) + \eta(Y)g(\phi X, Z) + 2\eta(Z)g(\phi X, Y)$$
$$-\rho(X)g(BY, Z) + \rho(Y)g(BX, Z)$$
$$+\eta(BX)g(BY, \phi Z) + \eta(BX)\rho(Y)\eta(Z)$$
$$-\eta(BY)g(BX, \phi Z) - \eta(BY)\rho(X)\eta(Z).$$

We now assume that M is a Hopf hypersurface. Then the shape operator S of M in $Q^{m\,*}$ satisfies

$$S\xi = \alpha\xi$$

with the smooth function $\alpha = g(S\xi, \xi)$ on M. Inserting $Z = \xi$ into the Codazzi equation leads to

$$g((\nabla_X S)Y - (\nabla_Y S)X, \xi) = 2g(\phi X, Y) - 2\rho(X)\eta(BY) + 2\rho(Y)\eta(BX).$$

On the other hand, we have

(3.2)
$$g((\nabla_X S)Y - (\nabla_Y S)X, \xi)$$
$$=g((\nabla_X S)\xi, Y) - g((\nabla_Y S)\xi, X)$$
$$=d\alpha(X)\eta(Y) - d\alpha(Y)\eta(X) + \alpha g((S\phi + \phi S)X, Y) - 2g(S\phi SX, Y).$$

Comparing the previous two equations and putting $X = \xi$ yields

$$d\alpha(Y) = d\alpha(\xi)\eta(Y) + 2\delta\rho(Y),$$

where the function $\delta = -g(A\xi,\xi)$ and $\rho(Y) = g(AN,Y)$ for any vector field Y on M in Q^{m*} .

Reinserting this into the previous equation yields

$$g((\nabla_X S)Y - (\nabla_Y S)X, \xi) = -2\delta\eta(X)\rho(Y) + 2\delta\rho(X)\eta(Y) + \alpha g((\phi S + S\phi)X, Y) - 2g(S\phi SX, Y).$$

Altogether this implies

$$(3.3) \qquad 0 = 2g(S\phi SX, Y) - \alpha g((\phi S + S\phi)X, Y) + 2g(\phi X, Y) - 2\delta\rho(X)\eta(Y) - 2\rho(X)\eta(BY) + 2\rho(Y)\eta(BX) + 2\delta\eta(X)\rho(Y) = g((2S\phi S - \alpha(\phi S + S\phi) + 2\phi)X, Y) - 2\rho(X)\eta(BY + \delta Y) + 2\rho(Y)\eta(BX + \delta X) = g((2S\phi S - \alpha(\phi S + S\phi) + 2\phi)X, Y) - 2\rho(X)g(Y, B\xi + \delta\xi) + 2g(X, B\xi + \delta\xi)\rho(Y).$$

If AN = N we have $\rho = 0$, otherwise we can use Lemma 2.2 to calculate $\rho(Y) = g(Y, AN) = g(Y, AJ\xi) = -g(Y, JA\xi) = -g(Y, JB\xi) = -g(Y, \phi B\xi)$. Thus we have proved

Lemma 3.2. Let M be a Hopf hypersurface in Q^{m*} , $m \ge 3$. Then we have

$$(2S\phi S - \alpha(\phi S + S\phi) + 2\phi)X = 2\rho(X)(B\xi + \delta\xi) + 2g(X, B\xi + \delta\xi)\phi B\xi.$$

If the unit normal vector field N is \mathfrak{A} -principal, we can choose a real structure $A \in \mathfrak{A}$ such that AN = N. Then we have $\rho = 0$ and $\phi B\xi = -\phi\xi = 0$, and therefore

$$2S\phi S - \alpha(\phi S + S\phi) = -2\phi.$$

If N is not \mathfrak{A} -principal, we can choose a real structure $A \in \mathfrak{A}$ as in Lemma 2.2 and get

$$\rho(X)(B\xi + \delta\xi) + g(X, B\xi + \delta\xi)\phi B\xi$$

= $-g(X, \phi(B\xi + \delta\xi))(B\xi + \delta\xi) + g(X, B\xi + \delta\xi)\phi(B\xi + \delta\xi)$
= $||B\xi + \delta\xi||^2(g(X, U)\phi U - g(X, \phi U)U)$
= $\sin^2(2t)(g(X, U)\phi U - g(X, \phi U)U),$

which is equal to 0 on Ω and equal to $\sin^2(2t)\phi X$ on $\mathcal{C} \ominus \Omega$. Altogether we have proved:

Lemma 3.3. Let M be a Hopf hypersurface in Q^{*m} , $m \ge 3$. Then the tensor field

$$2S\phi S - \alpha(\phi S + S\phi)$$

leaves ${\tt Q}$ and ${\tt C} \ominus {\tt Q}$ invariant and we have

$$2S\phi S - \alpha(\phi S + S\phi) = -2\phi$$
 on Q

and

$$2S\phi S - \alpha(\phi S + S\phi) = -2\delta^2\phi \text{ on } \mathcal{C} \ominus \mathcal{Q},$$

where $\delta = \cos 2t$ as in section 3.

4. Invariant Normal Jacobi Operator and a Key Lemma

By the curvature tensor \overline{R} of (2.1) for a real hypersurface in the complex hyperbolic quadric Q^{m*} in section 2, the normal Jacobi operator \overline{R}_N is defined in such a way that

$$R_N(X) = R(X, N)N$$

= $-X - g(JN, N)JX + g(JX, N)JN + 2g(JX, N)JN$
 $- g(AN, N)AX + g(AX, N)AN - g(JAN, N)JAX + g(JAX, N)JAN$

for any tangent vector field X in $T_z M$ and the unit normal N of M in $T_z Q^{m^*}$, $z \in Q^{m^*}$. Then the normal Jacobi operator \bar{R}_N becomes a symmetric operator on the tangent space $T_z M$, $z \in M$, of Q^{m^*} . From this, by the complex structure J and the complex conjugations $A \in \mathfrak{A}$, together with the fact that $g(A\xi, N) = 0$ and $\xi = -JN$ in section 3, the normal Jacobi operator \bar{R}_N is given by

(4.1)
$$\bar{R}_N(Y) = -Y - 3\eta(Y)\xi - g(AN, N)AY + g(AY, N)AN + g(AY, \xi)A\xi$$

for any $Y \in T_z M$, $z \in M$. Then the derivative of \overline{R}_N is given by

$$(4.2) \qquad (\nabla_X R_N)Y = \nabla_X (R_N(Y)) - R_N (\nabla_X Y) \\ = -3(\nabla_X \eta)(Y)\xi - 3\eta(Y)\nabla_X \xi \\ - \{g(\bar{\nabla}_X(AN), N) + g(AN, \bar{\nabla}_X N)\}AY \\ - g(AN, N)\{\bar{\nabla}_X(AY) - A\nabla_X Y\} \\ + \{g(\bar{\nabla}_X(AY) - A\nabla_X Y, N) + g(AY, \bar{\nabla}_X N)\}AN \\ + g(AY, N)\bar{\nabla}_X(AN) \\ + \{g(\bar{\nabla}_X(AY) - A\nabla_X Y, \xi)A\xi + g(AY, \bar{\nabla}_X \xi)\}A\xi \\ + g(AY, \xi)\bar{\nabla}_X(A\xi), \end{cases}$$

where the connection $\overline{\nabla}$ on the complex hyperbolic quadric Q^{m^*} is given by

$$\bar{\nabla}_X(AY) - A\nabla_X Y = (\bar{\nabla}_X A)Y + A\bar{\nabla}_X Y - A\nabla_X Y$$
$$= q(X)JAY + A\sigma(X,Y)$$
$$= q(X)JAY + g(SX,Y)AN.$$

From this, together with the invariance of $\mathcal{L}_X \bar{R}_N = 0$ in (1.1), it follows that

$$\begin{array}{ll} (4.3) & \nabla_{\bar{R}_{N}(Y)}X - \bar{R}_{N}(\nabla_{Y}X) \\ &= (\nabla_{X}\bar{R}_{N})Y \\ &= -3g(\phi SX,Y)\xi - 3\eta(Y)\phi SX \\ &- \{q(X)g(JAN,N) - g(ASX,N) - g(AN,SX)\}AY \\ &- g(AN,N)\{q(X)JAY + g(SX,Y)AN\} \\ &+ \{q(X)g(JAY,N) + g(SX,Y)g(AN,N)\}AN \\ &- g(AY,SX)AN + g(AY,N)\{(\bar{\nabla}_{X}A)N + A\bar{\nabla}_{X}N\} \\ &+ g((\bar{\nabla}_{X}A)Y,\xi)A\xi + g(AY,\phi SX + \sigma(X,\xi))A\xi \\ &+ g(AY,\xi)\bar{\nabla}_{X}(A\xi), \end{array}$$

where we have used the equation of Gauss $\overline{\nabla}_X \xi = \nabla_X \xi + \sigma(X,\xi)$, $\sigma(X,\xi)$ denotes the normal bundle $T^{\perp}M$ valued second fundament tensor on M in Q^{m*} . From this, putting $Y = \xi$ and using $(\overline{\nabla}_X A)Y = q(X)JAY$, and $\overline{\nabla}_X N = -SX$ we have

$$(4.4) \qquad \nabla_{\bar{R}_{N}(\xi)}X - R_{N}(\nabla_{\xi}X) \\ = (\nabla_{X}\bar{R}_{N})\xi = -3\phi SX \\ - \{q(X)g(JAN,N) - g(ASX,N) - g(AN,SX)\}A\xi \\ - g(AN,N)\{q(X)JA\xi + g(SX,\xi)AN\} \\ + \{q(X)g(JA\xi,N) + g(SX,\xi)g(AN,N)\}AN \\ - g(A\xi,SX)AN + g(q(X)JA\xi,\xi)A\xi \\ + g(A\xi,\phi SX + \sigma(X,\xi))A\xi \\ + g(A\xi,\xi)\{q(X)JA\xi + A\phi SX + g(SX,\xi)\}AN.$$

From this, by taking the inner product with the unit normal N, we have

(4.5)
$$-g(A\xi, SX)g(AN, N) + g(A\xi, \xi)\{q(X)g(JA\xi, N) + g(A\phi SX, N) + g(SX, \xi)g(AN, N)\} = 0.$$

Then by putting $X = \xi$ and using the assumption of Hopf, we have

(4.6)
$$q(\xi)g(A\xi,\xi)^2 = 0.$$

This gives that $q(\xi) = 0$ or $g(A\xi, \xi) = 0$. The latter case implies that the unit normal N is \mathfrak{A} -isotropic. Now we only consider the case $q(\xi) = 0$.

We put $Y = \xi$ in (4.1). Then it follows that

$$\bar{R}_N(\xi) = -4\xi - \{g(AN, N) - g(A\xi, \xi)\}A\xi = -4\xi - 2g(AN, N)A\xi,$$

where we have used that $g(A\xi,\xi) = g(AJN,JN) = -g(JAN,JN) = -g(AN,N)$.

Differentiating this one, it follows that

$$(4.7) \qquad \nabla_{\bar{R}_{N}(\xi)} X - R_{N}(\nabla_{\xi} X) \\ = (\nabla_{X} \bar{R}_{N})\xi \\ = -4\nabla_{X}\xi - 2\{g(\bar{\nabla}_{X}(AN), N)A\xi + g(AN, \bar{\nabla}_{X}N)A\xi\} \\ - 2g(AN, N)\bar{\nabla}_{X}(A\xi).$$

Then, by putting $Y = \xi$, and taking the inner product of (4.7) with the unit normal N, we have

$$g(AN, N)\{q(\xi)g(A\xi, \xi) - \alpha g(A\xi, \xi)\} = 0.$$

From this, together with $q(\xi) = 0$, it follows that

(4.8)
$$\alpha g(A\xi,\xi)g(AN,N) = 0.$$

Then from (4.8) we can assert the following lemma.

Lemma 4.1. Let M be a Hopf real hypersurface in the complex hyperbolic quadric $Q^{m*}, m \ge 3$, with parallel normal Jacobi operator. Then the unit normal vector field N is \mathfrak{A} -principal or \mathfrak{A} -isotropic.

Proof. When the Reeb function α is non-vanishing, the unit normal N is \mathfrak{A} -isotropic. When the Reeb function α identically vanishes, let us show that N is \mathfrak{A} -isotropic or \mathfrak{A} -principal. In order to do this, from the condition of Hopf, we can differentiate $S\xi = \alpha\xi$ and use the equation of Codazzi (3.1) in section 3, then we get the formula

$$Y\alpha = (\xi\alpha)\eta(Y) - 2g(\xi, AN)g(Y, A\xi) + 2g(Y, AN)g(\xi, A\xi).$$

From this, if we put $\alpha = 0$, together with the fact $g(\xi, AN) = 0$ in section 3, we know $g(Y, AN)g(\xi, A\xi) = 0$ for any $Y \in T_z M$, $z \in M$. This gives that the vector AN is normal, that is, AN = g(AN, N)N or $g(A\xi, \xi) = 0$, which implies respectively the unit normal N is \mathfrak{A} -principal or \mathfrak{A} -isotropic. This completes the proof of our Lemma. \Box

By virtue of this Lemma, we distinguish between two classes of real hypersurfaces in the complex hyperbolic quadric Q^{m^*} with invariant normal Jacobi operator : those that have \mathfrak{A} -principal unit normal, and those that have \mathfrak{A} -isotropic unit normal vector field N. We treat the respective cases in sections 5 and 6.

5. Invariant Normal Jacobi Operator with *A*-principal Normal

In this section let us consider a real hypersurface M in the complex hyperbolic quadric Q^{m*} with \mathfrak{A} -principal unit normal vector field. Then the unit normal vector field N satisfies AN = N for a complex conjugation $A \in \mathfrak{A}$. This also implies that $A\xi = -\xi$ for the Reeb vector field $\xi = -JN$.

Then the normal Jacobi operator \bar{R}_N in section 4 becomes

(5.1)
$$\bar{R}_N(X) = -X - 3\eta(X)\xi - AX + \eta(X)\xi = -X - 2\eta(X)\xi - AX,$$

where we have used that AN = N and

$$g(AX,\xi)A\xi = g(AX,JN)AJN = g(X,AJN)AJN$$
$$= g(X,JAN)JAN = g(X,JN)JN$$
$$= \eta(X)\xi.$$

On the other hand, we can put

$$AY = BY + \rho(Y)N,$$

where BY denotes the tangential component of AY and $\rho(Y) = g(AY, N) = g(Y, AN) = g(Y, N) = 0$. So it becomes always AY = BY for any vector field Y on M in Q^{m*} . Then by differentiating (5.1) along any direction X, we have

(5.2)
$$(\nabla_X \bar{R}_N)Y = \nabla_X (\bar{R}_N(Y)) - \bar{R}_N (\nabla_X Y)$$
$$= -2(\nabla_X \eta)(Y) - 2\eta(Y)\nabla_X \xi - (\nabla_X B)Y.$$

Now let us consider that the normal Jacobi operator \bar{R}_N is invariant, that is, $\mathcal{L}_X \bar{R}_N = 0$. This is given by

$$0 = (\mathcal{L}_X \bar{R}_N)Y$$

= $\mathcal{L}_X(\bar{R}_N Y) - \bar{R}_N(\mathcal{L}_X Y)$
= $[X, \bar{R}_N Y] - \bar{R}_N[X, Y]$
= $\nabla_X(\bar{R}_N Y) - \nabla_{\bar{R}_N(Y)}X - \bar{R}_N(\nabla_X Y - \nabla_Y X)$
= $\nabla_X(\bar{R}_N Y) - \nabla_{\bar{R}_N(Y)}X + \bar{R}_N(\nabla_Y X).$

Then it follows that

$$-2g(\phi SX, Y)\xi - 2\eta(Y)\phi SX - (\nabla_X B)Y = \{\nabla_Y X + 2\eta(\nabla_Y X)\xi + A\nabla_Y X\} - \{\nabla_Y X + 2\eta(Y)\nabla_\xi X + \nabla_{AY} X\}.$$

From this putting $Y = \xi$ and using $A\xi = -\xi$, it follows that

(5.3)
$$-2\phi SX - (\nabla_X B)\xi = 2\eta (\nabla_\xi X)\xi + A\nabla_\xi X + \nabla_\xi X$$
$$= -2\phi SX - \{q(X)JA\xi - \sigma(X,A\xi) + \eta(SX)N\}.$$

where we have used the following

$$\begin{aligned} (\nabla_X A)\xi &= \nabla_X (A\xi) - A\nabla_X \xi \\ &= \bar{\nabla}_X (A\xi) - A\nabla_X \xi \\ &= \left\{ (\bar{\nabla}_X A)\xi + A\bar{\nabla}_X \xi \right\} - A\phi SX \\ &= q(X)JA\xi + A\phi SX - \sigma(X, A\xi) + g(SX,\xi)AN - A\phi SX \\ &= q(X)JA\xi - \sigma(X, A\xi) + \alpha\eta(X)N. \end{aligned}$$

Then by taking the inner product of (5.3) with the unit normal N, we have

$$q(X) = 2\alpha\eta(X).$$

This implies $q(\xi) = 2\alpha$, and the 1-form q is given by

(5.4)
$$q(X) = q(\xi)\eta(X).$$

On the other hand, in section 4 from the Lie invariance of the normal Jacobi operator we have calculated the following

$$(5.5) \qquad \nabla_{\bar{R}_{N}(\xi)}X - \bar{R}_{N}(\nabla_{\xi}X) \\ = (\nabla_{X}\bar{R}_{N})\xi = -3\phi SX \\ - \{q(X)g(JAN,N) - g(ASX,N) - g(AN,SX)\}A\xi \\ - g(AN,N)\{q(X)JA\xi + g(SX,\xi)AN\} \\ + \{q(X)g(JA\xi,N) + g(SX,\xi)g(AN,N)\}AN \\ - g(A\xi,SX)AN + g(q(X)JA\xi,\xi)A\xi \\ + g(A\xi,\phi SX + \sigma(X,\xi))A\xi \\ + g(A\xi,\xi)\{q(X)JA\xi + A\phi SX + g(SX,\xi)AN\}.$$

From this, by taking the inner product with the unit normal N, we have

(5.6)
$$-g(A\xi, SX)g(AN, N) + g(A\xi, \xi)\{q(X)g(JA\xi, N) + g(A\xi, \xi)\{g(JA\xi, N) + g(A\phi SX, N) + g(SX, \xi)g(AN, N)\} = 0.$$

Then by putting $X = \xi$ and using the assumption of Hopf, we have

(5.7)
$$q(\xi)g(A\xi,\xi)^2 = 0.$$

From this, together with (5.4) and $A\xi = -\xi$, it follows that the 1-form q vanishes identically on M.

On the other hand, we know that the complex hyperbolic quadric Q^{m^*} can be immersed into the indefinite complex hyperbolic space CH_1^{m+1} in C_2^{m+2} (see Montiel and Romero [12], and Kobayashi and Nomizu [11]). Then the same 1-form q appears in the Weingarten formula

$$\tilde{\nabla}_X \bar{z} = -A_{\bar{z}} X + q(X) J \bar{z}$$

for unit normal vector fields $\{\bar{z}, J\bar{z}\}$ on the complex hyperbolic quadric Q^{m*} which can be immersed in indefinite complex hyperbolic space CH_1^{m+1} as a space-like complex hypersurface, where $\tilde{\nabla}$ denotes the Riemannian connection on CH_1^{m+1} induced from the Euclidean connection on C_2^{m+2} (see Smyth [19] and [20]). But the 1-form q never vanishes on Q^{m*} . This gives a contradiction (see Smyth [19]). This means that there do not exist any real hypersurfaces in the complex hyperbolic

quadric Q^{m^*} with invariant normal Jacobi operator, that is, $\mathcal{L}_X \bar{R}_N = 0$ for the \mathfrak{A} -principal unit normal vector field N.

6. Invariant Normal Jacobi Operator with A-isotropic Normal

In this section let us assume that the unit normal vector field N is $\mathfrak{A} ext{-isotropic}.$ Then the normal vector field N can be put

$$N = \frac{1}{\sqrt{2}}(Z_1 + JZ_2)$$

for $Z_1, Z_2 \in V(A)$, where V(A) denotes a (+1)-eigenspace of the complex conjugation $A \in \mathfrak{A}$. Then it follows that

$$AN = \frac{1}{\sqrt{2}}(Z_1 - JZ_2), AJN = -\frac{1}{\sqrt{2}}(JZ_1 + Z_2), \text{ and } JN = \frac{1}{\sqrt{2}}(JZ_1 - Z_2).$$

From this, together with (2.2) and the anti-commuting AJ = -JA, it follows that

$$g(\xi, A\xi) = g(JN, AJN) = 0, \ g(\xi, AN) = 0 \text{ and } g(AN, N) = 0.$$

By virtue of these formulas for the \mathfrak{A} -isotropic unit normal, the normal Jacobi operator \overline{R}_N in section 4 is given by

$$\bar{R}_N(Y) = -Y - 3\eta(Y)\xi + g(AY, N)AN + g(AY, \xi)A\xi.$$

Then the derivative of the normal Jacobi operator \bar{R}_N on M is given as follows:

(6.1)
$$(\nabla_X \bar{R}_N)Y = -3(\nabla_X \eta)(Y)\xi - 3\eta(Y)\nabla_X\xi + g(\nabla_X (AN), Y)AN + g(AN, Y)\nabla_X (AN) + g(Y, \nabla_X (A\xi))A\xi + g(A\xi, Y)\nabla_X (A\xi).$$

On the other hand, the Lie invariance (4.1) gives that

(6.2)
$$(\nabla_X \bar{R}_N)Y = \nabla_X (\bar{R}_N(Y)) - \bar{R}_N (\nabla_X Y)$$
$$= \nabla_{\bar{R}_N(Y)} X - \bar{R}_N (\nabla_Y X).$$

Then by putting $Y = \xi$ in (6.1) and (6.2), and using $\overline{R}_N(\xi) = 4\xi$, we have

(6.3)
$$-3\phi SX - g(AN, \phi SX)AN - g(\phi SX, A\xi)A\xi$$
$$= -4\nabla_{\xi}X + \{\nabla_{\xi}X + 3\eta(\nabla_{\xi}X)\xi$$
$$-g(A\nabla_{\xi}X, N)AN - g(A\nabla_{\xi}X, \xi)A\xi\}$$

From this, taking the inner product (6.3) with the vector field AN, it follows that

$$4g(\phi SX, AN) = 4g(\nabla_{\xi}X, AN).$$

I. Jeong and G. J. Kim

Then from this, together with (6.3), we get

(6.4)
$$\phi SX = \nabla_{\xi} X - \eta (\nabla_{\xi} X) \xi.$$

For any $X \in \xi^{\perp}$, where ξ^{\perp} denotes the orthogonal complement of the Reeb vector field ξ in the tangent space $T_z M$, $z \in M$, we know that $\nabla_{\xi} X$ is orthogonal to the Reeb vector field ξ , that is, $\eta(\nabla_{\xi} X) = -g(\nabla_{\xi} \xi, X) = 0$. Then the formula (6.4) becomes for any tangent vector field $X \in \xi^{\perp}$

(6.5)
$$\phi SX = \nabla_{\xi} X.$$

When we consider the \mathfrak{A} -isotropic unit normal, the vector fields $A\xi$ and AN belong to the distribution $\mathfrak{C} - \mathfrak{Q}$ in section 3.

On the other hand, by virtue of Lemma 3.1, we prove the following for a Hopf hypersurface in Q^{m*} with \mathfrak{A} -isotropic unit normal vector field as follows:

Lemma 6.1. Let M be a Hopf real hypersurface in the complex hyperbolic quadric Q^{m*} , $m \ge 3$, with \mathfrak{A} -isotropic unit normal vector field. Then

$$(6.6) \qquad \qquad SAN = 0, \quad and \quad SA\xi = 0.$$

Proof. Let us denote by $\mathcal{C} - \mathcal{Q} = \text{Span}[A\xi, AN]$. Since N is isotropic, g(AN, N) = 0 and $g(A\xi, \xi) = 0$. By differentiating g(AN, N) = 0, and using $(\overline{\nabla}_X A)Y = q(X)JAY$ in the introduction and the equation of Weingarten, we know that

$$0 = g(\nabla_X(AN), N) + g(AN, \nabla_X N)$$

= $g(q(X)JAN - ASX, N) - g(AN, SX)$
= $-2g(ASX, N).$

Then SAN = 0. Moreover, by differentiating $g(A\xi, N) = 0$, and using g(AN, N) = 0 and $g(A\xi, \xi) = 0$, we have the following formula

$$0 = g(\nabla_X(A\xi), N) + g(A\xi, \nabla_X N)$$

= $g(q(X)JA\xi + A(\phi SX + g(SX, \xi)N), N) - g(SA\xi, X)$
= $-2g(SA\xi, X)$

for any $X \in T_z M$, $z \in M$, where in the third equality we have used $\phi AN = JAN = -AJN = A\xi$. Then it follows that

$$SA\xi = 0.$$

It completes the proof of our assertion.

References

- J. Berndt and Y. J. Suh, Real hypersurfaces with isometric Reeb flow in complex quadrics, Internat. J. Math., 24(7)(2013), 1350050, 18 pp.
- [2] A. L. Besse, *Einstein manifolds*, Springer-Verlag, Berlin, 2008.
- [3] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Graduate Studies in Mathematics 34, American Mathematical Society, 2001.
- [4] I. Jeong, H. J. Kim and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator, Publ. Math. Debrecen., 76(1-2)(2010), 203–218.
- [5] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296(1)(1986), 137–149.
- [6] M. Kimura, Some real hypersurfaces of a complex projective space, Saitama Math. J., 5(1987), 1–5.
- [7] S. Klein, Totally geodesic submanifolds of the complex quadric, Differential Geom. Appl., 26(1)(2008), 79–96.
- [8] S. Klein, Totally geodesic submanifolds of the complex and the quaternionic 2-Grassmannians, Trans. Amer. Math. Soc., 361(9)(2009), 4927–4967.
- S. Klein and Y. J. Suh, Contact real hypersurfaces in the complex hyperbolic quadric, Ann. Mat. Pura Appl., 198(4)(2019), 1481–1494
- [10] A. W. Knapp, *Lie Groups beyond an introduction*, Second edition, Progress in Mathematics 140, Birkhäuser, 2002.
- [11] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, A Wiley-Interscience Publication, Wiley Classics Library Ed., 1996.
- [12] S. Montiel and A. Romero, Complex Einstein hypersurfaces of indefinite complex space forms, Math. Proc. Cambridge Philos. Soc., 94(3)(1983), 495–508.
- [13] J. D. Pérez, Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space, Ann. Mat. Pura Appl., 194(6)(2015), 1781–1794.
- [14] J. D. Pérez and Y. J. Suh, Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_i} R = 0$, Differential Geom. Appl., **7(3)**(1997), 211–217.
- [15] J. D. Pérez and Y. J. Suh, Certain conditions on the Ricci tensor of real hypersurfaces in quaternionic projective spaces, Acta Math. Hungar., 91(4)(2001), 343–356.
- [16] H. Reckziegel, On the geometry of the complex quadric, Geometry and Topology of Submanifolds VIII(Brussels/Nordfjordeid 1995), 302–315, World Sci. Publ., River Edge, NJ, 1996.
- [17] A. Romero, Some examples of indefinite complete complex Einstein hypersurfaces not locally symmetric, Proc. Amer. Math. Soc., 98(2)(1986), 283–286.
- [18] A. Romero, On a certain class of complex Einstein hypersurfaces in indefinite complex space forms, Math. Z., 192(4)(1986), 627–635.
- [19] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math., 85(1967), 246–266.

I. Jeong and G. J. Kim

- [20] B. Smyth, Homogeneous complex hypersurfaces, J. Math. Soc. Japan, 20(1968), 643– 647.
- [21] Y. J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians, Monatsh. Math., 147(4)(2006), 337–355.
- [22] Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor, Proc. Roy. Soc. Edinburgh Sect. A., 142(6)(2012), 1309–1324.
- [23] Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature, J. Math. Pures Appl., 100(1) (2013), 16–33.
- [24] Y. J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel shape operator, Internat. J. Math., 25(6)(2014), 1450059, 17 pp.
- [25] Y. J. Suh, Real hypersurfaces in the complex quadric with parallel Ricci tensor, Adv. Math., 281(2015), 886–905.
- [26] Y. J. Suh, Real hypersurfaces in the complex quadric with harmonic curvature, J. Math. Pures Appl., 106(3) (2016), 393–410.
- [27] Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadrics with isometric Reeb Flow, Commun. Contemp. Math., 20(2)(2018), 1750031, 20 pp.
- [28] Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadric with parallel normal Jacobi operator, Mediterr. J. Math., 15(4)(2018), Paper No. 159, 14 pp.
- [29] Y. J. Suh and D. H. Hwang, Real hypersurfaces in the complex quadric with commuting Ricci tensor, Sci. China Math., 59(11)(2016), 2185–2198.
- [30] Y. J. Suh and D. H. Hwang, Real hypersurfaces in the complex hyperbolic quadric with Reeb parallel shape operator, Ann. Mat. Pura Appl., 196(4)(2017), 1307-1326.
- [31] Y. J. Suh, J. D. Pérez and C. Woo, Real hypersurfaces in the complex hyperbolic quadric with parallel structure Jacobi operator, Publ. Math. Debrecen, 94(1-2)(2019), 75–107.