• 제목/요약/키워드: Conditional Value-at-Risk

검색결과 27건 처리시간 0.017초

조건부 Value-at-Risk와 Expected Shortfall 추정을 위한 준모수적 방법들의 비교 연구 (Comparison of semiparametric methods to estimate VaR and ES)

  • 김민조;이상열
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.171-180
    • /
    • 2016
  • 바젤 위원회는 시장위험의 측정 도구로 Value-at-Risk(VaR)와 expected shortfall(ES)을 사용할 것을 제안하였다. 여러 문헌에서 VaR와 ES의 다양한 추정 방법들이 연구 되었다. 본 연구에서는 준모수적인 방법인 conditional autoregressive value at risk(CAViaR), conditional autoregressive expectile(CARE) 방법들, 그리고 Gaussian 준최대가능도 추정량(QMLE)를 이용한 방법을 사후 검정을 통해서 비교하고자 한다. 각 방법의 타당성을 확인하기 위해서, VaR에 대한 사후 검정은 unconditional coverage(UC)와 conditional coverage(CC) 검정을 사용하고 ES에 대한 검정은 붓스트랩 방법을 사용한다. S&P500 지수와 현대 자동차 주식가격 지수에 대하여 실증 자료 분석이 수행되었다.

전환사채 주식전환을 위한 조건부 VaR 최적화 (Conditional Value-at-Risk Optimization for Conversion of Convertible Bonds)

  • 박구현;심은택
    • 경영과학
    • /
    • 제28권2호
    • /
    • pp.1-16
    • /
    • 2011
  • In this study we suggested two optimization models to answer a question from an investor standpoint : how many convertible bonds should one convert, and how many keep? One model minimizes certain risk to the minimum required expected return, the other maximizes the expected return subject to the maximum acceptable risk. In comparison with Markowitz portfolio models, which use the variance of return, our models used Conditional Value-at-Risk(CVaR) for risk measurement. As a coherent measurement, CVaR overcomes the shortcomings of Value-at-Risk(VaR). But there are still difficulties in solving CVaR including optimization models. For this reason, we adopted Rockafellar and Uryasev's[18, 19] approach. Then we could approximate the models as linear programming problems with scenarios. We also suggested to extend the models with credit risk, and applied examples of our models to Hynix 207CB, a convertible bond issued by the global semiconductor company Hynix.

Risk-Based Allocation of Demand Response Resources Using Conditional Value-at Risk (CVaR) Assessment

  • Kim, Ji-Hui;Lee, Jaehee;Joo, Sung-Kwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.789-795
    • /
    • 2014
  • In a demand response (DR) market run by independent system operators (ISOs), load aggregators are important market participants who aggregate small retail customers through various DR programs. A load aggregator can minimize the allocation cost by efficiently allocating its demand response resources (DRRs) considering retail customers' characteristics. However, the uncertain response behaviors of retail customers can influence the allocation strategy of its DRRs, increasing the economic risk of DRR allocation. This paper presents a risk-based DRR allocation method for the load aggregator that takes into account not only the physical characteristics of retail customers but also the risk due to the associated response uncertainties. In the paper, a conditional value-at-risk (CVaR) is applied to deal with the risk due to response uncertainties. Numerical results are presented to illustrate the effectiveness of the proposed method.

Forecasting volatility via conditional autoregressive value at risk model based on support vector quantile regression

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권3호
    • /
    • pp.589-596
    • /
    • 2011
  • The conditional autoregressive value at risk (CAViaR) model is useful for risk management, which does not require the assumption that the conditional distribution does not vary over time but the volatility does. But it does not provide volatility forecasts, which are needed for several important applications such as option pricing and portfolio management. For a variety of probability distributions, it is known that there is a constant relationship between the standard deviation and the distance between symmetric quantiles in the tails of the distribution. This inspires us to use a support vector quantile regression (SVQR) for volatility forecasts with the distance between CAViaR forecasts of symmetric quantiles. Simulated example and real example are provided to indicate the usefulness of proposed forecasting method for volatility.

FUZZY RISK MEASURES AND ITS APPLICATION TO PORTFOLIO OPTIMIZATION

  • Ma, Xiaoxian;Zhao, Qingzhen;Liu, Fangai
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.843-856
    • /
    • 2009
  • In possibility framework, we propose two risk measures named Fuzzy Value-at-Risk and Fuzzy Conditional Value-at-Risk, based on Credibility measure. Two portfolio optimization models for fuzzy portfolio selection problems are formulated. Then a chaos genetic algorithm based on fuzzy simulation is designed, and finally computational results show that the two risk measures can play a role in possibility space similar to Value-at-Risk and Conditional Value-at-Risk in probability space.

  • PDF

Value at Risk Forecasting Based on Quantile Regression for GARCH Models

  • Lee, Sang-Yeol;Noh, Jung-Sik
    • 응용통계연구
    • /
    • 제23권4호
    • /
    • pp.669-681
    • /
    • 2010
  • Value-at-Risk(VaR) is an important part of risk management in the financial industry. This paper present a VaR forecasting for financial time series based on the quantile regression for GARCH models recently developed by Lee and Noh (2009). The proposed VaR forecasting features the direct conditional quantile estimation for GARCH models that is well connected with the model parameters. Empirical performance is measured by several backtesting procedures, and is reported in comparison with existing methods using sample quantiles.

평균/VaR 최적화 모형에 의한 전환사채 주식전환 비중 결정 (Determination Conversion Weight of Convertible Bonds Using Mean/Value-at-Risk Optimization Models)

  • 박구현
    • 경영과학
    • /
    • 제30권3호
    • /
    • pp.55-70
    • /
    • 2013
  • In this study we suggested two optimization models to determine conversion weight of convertible bonds. The problem of this study is same as that of Park and Shim [1]. But this study used Value-at-Risk (VaR) for risk measurement instead of CVaR, Conditional-Value-at-Risk. In comparison with conventional Markowitz portfolio models, which use the variance of return, our models used VaR. In 1996, Basel Committee on Banking Supervision recommended VaR for portfolio risk measurement. But there are difficulties in solving optimization models including VaR. Benati and Rizzi [5] proved NP-hardness of general portfolio optimization problems including VaR. We adopted their approach. But we developed efficient algorithms with time complexity O(nlogn) or less for our models. We applied examples of our models to the convertible bond issued by a semiconductor company Hynix.

조건부 코퓰라를 이용한 포트폴리오 위험 예측에 대한 실증 분석 (A numerical study on portfolio VaR forecasting based on conditional copula)

  • 김은정;이태욱
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권6호
    • /
    • pp.1065-1074
    • /
    • 2011
  • 1990년대 중반 이후 금융 분야에서 가장 많은 관심을 받는 연구 주제 중의 하나는 대표적인 위험측정 방법인 VaR (Value at risk)이다. VaR는 주어진 신뢰수준에서 정상적인 시장조건을 가정할 때 선택한 목표기간 동안 발생할 수 있는 포트폴리오의 최대손실액으로 정의된다. 본 논문에서는 국내 주가지수 자료를 이용한 포트폴리오에 다변량 정규분포를 이용하는 VaR 예측 방법인 단순이동평균법과 지수가중이동평균법을 고려하여 VaR를 예측한 결과와 t 분포 및 조건부 코퓰라 (Copula) 함수를 이용하여 VaR를 예측한 결과를 비교 평가하였다. 자료 분석 결과에 의하면 포트폴리오 구성 종목 간에 종속성구조와 비정규성이 존재하는 경우에 t 분포와 조건부 코퓰라 방식을 이용하여 VaR 추정의 정확도를 높일 수 있다는 결론을 얻을 수 있었다.

주식수익률의 VaR와 ES 추정: GARCH 모형과 GPD를 이용한 방법을 중심으로 (Estimation of VaR and Expected Shortfall for Stock Returns)

  • 김지현;박화영
    • 응용통계연구
    • /
    • 제23권4호
    • /
    • pp.651-668
    • /
    • 2010
  • 금융 포트폴리오의 두 위험측도인 VaR와 ES에 대한 여러 추정방법을 1일 후와 10일 후의 경우로 나누어 각각 비교하였다. 2008년 미국발 세계 금융위기 기간을 포함한 KOSPI 자료와 해외 5개국의 종합주가지수 자료를 이용하여 실증적으로 비교하였다. 손실 분포의 두터운 꼬리와 조건부 이분산성을 동시에 고려하는 방법을 중심으로 여러 방법을 추가적으로 고려하였고, 국내 자료에 어떤 방법이 적절하며 종합적인 성능은 어떤가를 살펴보았다.