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FUZZY RISK MEASURES AND ITS APPLICATION TO
PORTFOLIO OPTIMIZATION

XTAOXIAN MA*, QINGZHEN ZHAO AND FANGAI LIU

ABSTRACT. In possibility framework, we propose two risk measures named
Fuzzy Value-at-Risk and Fuzzy Conditional Value-at-Risk, based on Cred-
ibility measure. Two portfolio optimization models for fuzzy portfolio se-
lection problems are formulated. Then a chaos genetic algorithm based
on fuzzy simulation is designed, and finally computational results show
that the two risk measures can play a role in possibility space similar to
Value-at-Risk and Conditional Value-at-Risk in probability space.
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1. Introduction

Risk measurement is essentially important factor in financial decision making
under uncertainty which is generally understood to have two aspects: probabil-
ity uncertainty and fuzzy uncertainty. Most of the existing risk measures are
based on the probability theory. Variance was first proposed by Markowitz to
measure the risk associated with the return of assets in probability framework.
Since the middle of 1990s, Value-at-Risk (VaR), a measure of downside risk, has
become popular in financial risk management. It has even been recommended
as a standard on banking supervision by Basel Committee[17]. One can find
plenty of materials on the theory, modeling, algorithms, and applications re-
lated to VaR at http://www.gloriamundi.org which is updated on-line. As an
alternative measure of risk, Conditional Value-at-Risk (CVaR), a coherent risk
measure[15], defined as the mean of the tail distribution exceeding VaR, has been
proposed as a natural remedy for the deficiencies of VaR which is not a coherent
risk measure in general in the sense of Artzner et al.[3]. Moreover, minimizing
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CVaR can be achieved by minimizing a more tractable auxiliary function without
predetermining the corresponding VaR first, and at the same time, VaR can be
calculated as a by-product[18, 19]. Up to now, VaR and CVaR are investigated
and applied extensively in financial management[1, 2, 8, 14].

Though probability theory is one of the main tools used for analyzing uncer-
tainty in finance, it cannot describe uncertainty completely since there are some
other uncertain factors that differ from the random ones found in financial mar-
kets. In reality, many events with fuzziness are characterized by probabilistic
approaches although they are not random events [22]. Some other techniques
have also been applied to handle the uncertainty of the financial markets, for in-
stance, fuzzy set theory [25]. Fuzzy set theory provides a framework to deal with
problems in which the source of imprecision is the absence of sharply defined
criteria of class membership rather than the presence of random variables and
provides an excellent framework for analysis. Fuzzy set theory has been widely
used to solve many practical problems including financial risk management. By
using fuzzy approaches, quantitative analysis, qualitative analysis, the experts’
knowledge and the investors’ subjective opinions can be better integrated in
a financial optimization model. Recently, a few authors, such as Ramaswamy
[16], Tanaka and Guo [20] and Carlsson and Fuller[5] studied fuzzy financial
optimization problem. Inuiguchi and Ramik [9] surveyed the advantages and
disadvantages of such mathematical programming approaches compared with
stochastic programming and reviewed the newly developed ideas and techniques
in fuzzy mathematical programming. Wang and Zhu [22] summarized on fuzzy
portfolio selection. Yu er al.[23, 24] investigated a nonlinear ensemble forecasting
model and optimal portfolio problems with artificial neural networks. One can
refer to Bellman and Zadeh [4] and Zimmermann [27] for a detailed discussion
on the fuzzy decision theory.

Possibility theory was proposed by Zadeh [26] and advanced by Dubois and
Prade [7] where fuzzy variables are associated with possibility distributions in a
similar way that random variables are associated with probability distributions
in the probability theory. The possibility distribution function of a fuzzy vari-
able is usually defined by the membership function of the corresponding fuzzy
set. Possibility and necessity measures play a key role in possibility theory and
are used to model financial optimization problems. However, it is clear, a fuzzy
event may fail even though its possibility achieves 1, and hold even though its
necessity is 0. The credibility measure, defined by the average of the possibility
measure and necessity measure, might deserve to be used in financial optimiza-
tion modelling. A fuzzy event must hold if its credibility achieves 1, and fail if
its credibility is 0. One can refer to [10] for details.

Cherubini and Lunga [6] presented a VaR measure which accounts for mar-
ket liquidity and showed that taking into account market liquidity implies a
decoupling of valuation of long and short positions. Zmeskal [28] described an
approach to model uncertainty of the international index portfolio by a VaR
methodology under soft conditions by fuzzy-stochastic methodology. Vercher et
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al. [21] presented two fuzzy portfolio selection models where the objective is to
minimize the downside risk constrained by a given expected return. However,
few papers are reported on VaR and CVaR defined in fuzzy environments and
solved portfolio optimization with them.

Possibility, necessity or credibility distributions can use to characterize ex-
perts’ knowledge, historical data, and prediction results. In this paper, we
propose two novel risk measures named Fuzzy Value-at-Risk(FVaR) and Fuzzy
Conditional Value-at-Risk(FCVaR), based on credibility measure introduced by
Liu and coauthors [11, 13], and apply the two fuzzy risk measures to portfolio
optimization problems in a fuzzy financial environment. The rest of the paper
is organized as follows. In Section 2, we give some related symbols and con-
cepts of F'VaR and FCVaR. In Sections 3, two portfolio optimization models for
fuzzy portfolio selection problems are formulated, a Chaos Genetic Algorithm
based on Fuzzy Simulation(CGAFS) is designed, and a practical case is given to
demonstrate the effectiveness of CGAFS. Conclusions are discussed in section 4.

2. Some symbols and concepts

Let © be a nonempty set, and P(0) the power set of ©. Then Pos is called
a possibility measure if it satisfies the following three axioms.

Axiom 1. P(©) =1;

Axiom 2. P(0) = 0;

Axiom 3. Pos{U;A;} = Sup; Pos{A;}, for any collection A; in P(©).
Then the triplet (@, P(©), Pos) is called a possibility space.

A fuzzy variable £ is defined as a function from a space (6, P(©), Pos) to
the set of real numbers. For a fuzzy variable £, its membership function can be
derived from the possibility measure by the expression

p(x) =Pos{8 €©|£(0) =z}, €R.

Dubois and Prade[7] developed the possibility measure and necessity measure
as follows. Let r be a real number and £ be a fuzzy variable. The possibility
and necessity measure of {£ < r} are respectively defined as:

Pos{¢& < r} = supp(x),
z<r

Nec{¢ <r}=1-supp(z).

>r

Remark 1. The possibility measure is a conjugate or dual of the necessity
measure.

A n— dimensional fuzzy vector £ is defined as a function from the possibility
space (O, P(©), Pos) to the set of n— dimensional real vectors. It can be proved
that the vector & = (&,8&,---,&)7T is a fuzzy vector if and only if &(i =
1,2,---,n) are fuzzy variables. Throughout, vectors will be denoted in bold, to
be distinguished from variables.
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Let f : R® — R be a function and & = (£1,&,---,&,)7 be a fuzzy vector
on the possibility space (©, P(©), Pos). Then 1 = f(&1,62,--+,&n) is a fuzzy
variable defined as n(6) = f(£,(0),&2(6),- - ,&n(8)) for any 0 € ©.

A fuzzy variable is said to be normal if there exists a real number r such that
u{r) = 1. We always assume that the fuzzy variables are normal in this paper.

The definitions of credibility measure and its expected value of a fuzzy variable
were introduced in [13]. The credibility measure has self-duality property which
is not possessed of possibility measure or necessary measure.

Definition 1.[13] The credibility measure of {¢ < r} is defined as:
1
Or{g<r}=g(Pos{{ <r}+Nec{f <r}).

Remark 2. The credibility measure is a monotone, self dual and sub-additive
measure.

Definition 2. [13] Let £ be a fuzzy variable. Then the expected value of a fuzzy
variable £ is defined by

E{51=/0°°Cr{§zr}dr-/_ Cr e < r}dr,

provided that at least one of the two integrals is finite.

The expected value of a fuzzy variable is a Choqute Integeral since the cred-
ibility measure is self dual.

There are n securities i = 1,--- ,n to be invested in a financial market that
we consider. The return rate of each security is assumed to be a fuzzy variable.
The fuzzy return rate of security 1 is §;,i=1,---,n.

Let f(x,&): R* x R™ — R be the loss associated with the decision vector x,
to be chosen from a certain subset X C R". The vector x can be interpreted
as representing a portfolio, with X as the set of available portfolios subject to
various constraints. The vector £ stands for the uncertainties that can affect the
loss. The portfolio x is optimal to portfolio y, i.e., x > y means f(x,&) < f(y,¢).

For each x, the loss function f(x,€) is a fuzzy variable. The expected value
of f(x,¢) for any x € X is

E[f(x,6)] = /:o Cri{f(x,§) = ridr — /_Om Cr{f(x,§) <r}dr.
The credibility of f(x,£) not exceeding a threshold r is given by
P(x,r) = COr {f(x,§) <r}.
Definition 3. Let £ be a fuzzy vector. FVaR is defined by
FVaRg(x) = inf {r € R¢(x,7) > B}.

It values for the loss associated with x and any prescribed confidence level
B € (0,1), commonly, 8 is close to one. FVaRg(x) is an increasing and left-
continuous function of 3.
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Definition 4. Let £ be a fuzzy vector. FCVaR is defined by

FCVaRg(x) = FVaRs(x) + (1 - 3)! " Cr{f(x,€) — FVaRg(x) > r}dr,
0

provided the integral is finite.

It values for the conditional expectation of losses above that amount FVaRg(x)
associated with x and any prescribed confidence level 3 € (0,1).

Remark 3. If the possibility and necessity of f(x,£) not exceeding a threshold
r are given by
P(x,7) = Pos {f(x,§) <r},
and ¥(x,r) = Nec{f(x,&) <r},
we can obtain the different definitions of FVaRg(x) and FCVaRg(x).

3. Portfolio optimization with fuzzy risk measures

We consider the situation that problems space is a possibility space, and
formulate a portfolio management problem utilizing or as the measure of risk.
Then, we give a hybrid intelligent algorithm for these models and a numerical
example.

3.1. Portfolio selection models

Suppose there exits n risk securities that can be chosen by the investor in
the financial market. Let x = (zy,---,z,)7 € R" denote the amount of the
investments in the n risk securities decided by the investor, and fuzzy vector
€= (&,---,8)T € R™ denote the uncertain returns of the n risk securities,

&1, -+, &, are fuzzy variables. The loss function in Section 2 is concretely defined
as

f(x,6) = —x"¢.

Portfolio optimization tries to find an optimal trade-off between the risk and
the return according to the investor’s preference, while the portfolio selection
is performed through the analysis of risk and return. Thus the fuzzy portfolio
selection problem using FVaR as a risk measure can be represented as

min FVaRg(x).

The fuzzy portfolio selection problem using FCVaR as a risk measure can be
represented as

min FCVaRg(x).

xeX
Where X denotes the constraints on the portfolio position, which usually includes
the requirement such as initial wealth, bound and short-selling constraints, etc.

We specify the constraints set X below.
Suppose the investor has an initial wealth unit 1. Thus the portfolio satisfies

Z; 2 = 1. (1)
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To ensure diversification and satisfy the regulations, we impose the bound
constraints on the portfolio

liSIiSUi, i:1,"‘,TL, (2)
where 1 = (ly,---,1,)7 and u = (u1,---,u,)T are the given lower and upper
bounds on the portfolios. Suppose short position of each security is not allowed

z; >0, i=1,---,n. (3)

Let o be the minimum expected by the investor, m; = E[{;], and m = (my,---,
my,)T. Then, we have

x'm > 0. (4)
Generally, the model for minimizing FVeaR is the problem

min  FVaRg(x)

st. x'm> o,
I<x<u (5)
Yo mi=1
x>0

The model for minimizing FCVaR is the problem

min FCVaRg(x)

st. x'm>o,
I<x<u (6)
Yimwi=1
x>0

3.2. Chaos genetic algorithm based on fuzzy simulation(CGAFS)

In this section, a novel hybrid intelligent algorithm, the chaos genetic algo-
rithm based on fuzzy simulation developed by Liu and Iwamura[12], is designed
to solve the afore mentioned models. The chaos genetic algorithm is employed to
search the optimal portfolio. Firstly, it selects randomly a set of initial feasible
portfolio strategies as the initial population and codes them into chromosomes.
Secondly, it calculates the objective function of each chromosome by using fuzzy
simulation and converts it to the value of fitness function. Thirdly, it selects and
crosses the chromosomes according to certain probabilities. Finally, it mutates
chaotically the chromosomes according to a well-known logistic map. This pro-
cess is iterated population after population until an optimal portfolio strategy
is obtained. This CGAFS procedure can be described in detail as follows:

Step 1: Input the parameters of CGAFS, such as population size, cross probabil-
ity, chaos mutate probability, chaos factor, and confident level.

Step 2: Initialize population size chromosomes randomly x7, and satisfy the for-
mulas (1),(2), and (3).

Step 3: Compute the xTm wvalue in formulas (4) for all chromosomes by the
fuzzy simulation:
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Substep 1: e=0. N is a sufficiently large number.
Substep 2: Randomly generate Oy from © such that v, = Pos {f(x,£(0x))} > ¢

fork=1,--- N, where ¢ is a sufficiently small number.
Substep 3: Set a = f(x,£(01)) A -+ A f(x,E(0N)), b = F(x, 1)) V-V
f(X, g(aN))

Substep 4: Randomly generate r from [a, b].
Substep 5: If r > 0, then e — e+ Cr{f(x,£) > r}, where the credibility can
be estimated by

! ( max (0l (5, E00) 2 )+ min, (1w lf(xE00)) < r})

1<k<N

Substep 6: If r < 0, then e « e — Cr{f(x,£&) <r}, where the credibility can
be estimated by

5 (s, oG 0) < 1)+ min (1~ o7 8000) > 1)

1<k<N 1<k<N

Substep 7: Repeat Substep 4 to Substep 6 for N times.

Substep 8: x’m=—(aVO+bA0+e x (b—a)/N).
Step 4: Check {xj} satisfy the formulas (4) and go to Step 2 until j = pop—size.
Step 5: Compute the objective values for all chromosomes by the fuzzy simulation

for model (5):
Substep 1: Randomly generate 0y from © such that vy = Pos{f(x,&(6k))} > ¢,
k=1,---N.
Substep 2: L(r) =

7 (s, e €00) < 1)+ i, (1w liGeg@) > 1)) (@)

1<k<N <k<

Substep 3: Find the minimal value v such that L(r) > 3 holds.
Substep 4: Let the objective value be equal to r.

Step 6: Calculate the fitness of each chromosome according to the objective value
by indez.

Step T: Select the chromosomes by steady-state selection operation. Update the
chromosomes by crossover and chaos mutation operations, and check the
feasibility.

Step 8: Repeat the third to sizth steps for a given number of cycles.

Step 9: Return the best chromosome as the approzimate optimal portfolio strat-
€qy.

The procedure above is for solving the problem (5). To solve problem (6), the
Step 5 needs to be modified as follows, with other steps remain unchanged.
Step 5: Compute the objective values for all chromosomes by the fuzzy simulation

for model (6):
Substep 1: Set e = 0.
Substep 2: Randomly generate 0y from © such that vy, = Pos {f(x,£(0x))} > ¢,
k=1,---N.
Substep 3: L(r) is definite in formulas (7).
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TABLE 1. Stocks

Stocks Code Company Stocks Code Company
1 600000 Pudong Dev Bank 2 600001 Handan Steel
3 600004 Baiyun Airport 4 600009 ShanghaiAirport
5 600016 Minsheng Banking 6 600019 Baoshan Steel
7 600026 China Ship Dev 8 600028 Sinopec Corp
9 600029 Southern Airline 10 600050 China unicom
11 600058 Minmetals Dev 12 600085 Tongrentang
13 600098 Guangzhou Devel 14 600205 Shandong Alumini
15 600583 Offshore Oil 16 600649 Raw Water Sup
17 600688 Shanghai Pechem 18 600832 Oriental Pearl
19 600887 Yili Company 20 600895 Zhangjiang Hi-Te

Substep 4: Find the minimal value r* such that L(r*) > 8 holds.

Substep 5: Set a =71*, b= f(x,£(01))V---V f(x,€(0n)).

Substep 6: Randomly generate v from [0,b — a].

Substep 7: e «— e+Cr {f(x,£) — r* > r}, where the credibility can be estimated

by

1 * . *
7 (e, 017, €00 — 7 2 1)+ min, (1 = e i €(00) — < 7})
Substep 8: Repeat the Substep 6 and Substep 7 for N times.

Substep 9: Let objective value be equal to r*VO+bA0+ex (b—a)/(N(1—3)).

3.3. Computational results

In this section, we give a numerical example applying CGAFS to models (5)
and (6). All the computations were performed using the program for CGAFS
designed by ourselves within Matlab7.0R14 on a Dell Dimension 5150 running
Microsoft Windows XP. The rate of transaction costs and tax for stocks is 0.0075
in the two securities markets on the Chinese mainland. Assume that an investor
chooses 20 different stocks from the Shanghai Stock Exchange for his investment.
The exchange codes and names of companies of the 20 stocks are given in Table
1.

Now we use the model (5) or (6) to reallocate the investor’s assets. Because
the Shanghai Stock Exchange is very young, the arithmetic means are not good
estimates of the actual returns that the investor will receive in the future. In
the situation, the expected return of stocks is regarded as fuzzy number may be
better than as crisp number. The expected return of stocks denote by triangular
fuzzy variables that their centre value, left spread value and right spread value
can be estimated as follows.

First, we collect historical data on the 20 stocks from January, 2002 to August,
2006. The data are downloaded from the web-site www.gw.com.cn. Then we use
one month as a period to obtain the historical rates of returns for 56 periods.
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Second, compute the average of historical rates of returns for 56 periods of
each stock and subtract transaction cost and tax from the average. And the
difference is denoted as the history arithmetic mean R, of each stock.

Third, the number N}, of latest periods that represents the trend of stock
in future is provided by experts’ knowledge. Compute the average of historical
trend rates of returns for IV}, periods of each stock and subtract transaction cost
and tax from the average. And the difference is denoted as the history trend
mean Rj, of each stock.

Fourth, based on the corporations’ financial reports, the predicted rate of re-
turn Ry of a period in future is estimated by experts of investment corporations.

Finally, the left spread, the center and the right spread of triangular fuzzy
number of each stock are minimum, middle and maximum of R,, Ry and Ry
respectively.

In the following, we give the estimation example for the triangular fuzzy
numbers of rates of returns for stock of Sinopec Corp in detail. First, we use
historical data (month price at the open and at the close from January, 2002 to
August, 2006) to calculate the historical rates of returns. These data are listed
in Table 2. The average of historical rates of returns from January, 2002 to
August, 2006 of Sinopec Corp is 0.0123, the transaction cost and tax is 0.0075,
and then the history arithmetic mean R, is 0.0048.

In this example, we choose Nj = 6. The average of historical rates of returns
from March, 2006 to August, 2006 of Sinopec Corp is 0.0235, the transaction cost
and tax is 0.0075, and then the history trend mean Ry, is 0.0160. The predicted
rate of return Ry of Sinopec Corp in a period in future estimated by experts of
investment corporations is 0.0096. Thus, the left spread is 0.0048, the center is
0.0096 and the right spread is 0.0160. Using a similar method, we obtain the
triangular fuzzy rates of all 20 stocks. These are listed in Table 3.

The parameters of CGAFS are set as follows: the population size is 60,
cross probability is 0.3, chaos mutate probability is 0.04, ¢ = 0.0001, N =
10000. The values of I;,u;,0 are given by investors. They are as follows:

l,=00,4,=10,i=1,---,n,0 = 0.0020.
Giving different value of confident level 3, we obtain expected return, FVaR and
an optimal portfolio strategy by solving (5). The corresponding computational
results are listed in Table 4 and Table 5.

Giving different value of confident level 3, we obtain expected return, FCVaR
and an optimal portfolio strategy by solving model (6). The corresponding
computational results are listed in Table 6 and Table 7.

From the above results, we find that we can obtain the different portfolio
strategies by solving (5) or (6) in which the different confident level are given.
Through choosing the values of the confident level according to the investor’s
frame of mind, the investor may achieve a favorite portfolio strategy. Through
choosing different expected return constraint, the investor may also achieve al-
ternative portfolio strategy.
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TABLE 2. The Rates of Returns of Sinopec Corp from January,
2002 to August, 2006

Month Open Close Rate Month Open Close Rate

200608 5.78 6.14 0.0623 200404 553 5.24 -0.0524
200607 6.26 5.78 -0.0767 200403 5.08 5.50 0.0827
200606 6.45 6.25 -0.0310 200402 530 5.08 -0.0415
200605 6.08 6.46 0.0625 200401 496 505 0.0181
200604 5.20 6.07 0.1673 200312 3.92 495 0.2628
200603 5.28 5.05 -0.0436 200311 3.72 392 0.0538
200602 5.01 5.29 0.0559 200310 3.43 3.72 0.0845
200601 4.66  4.98 0.0687 200309 3.61 344 -0.0471
200512 410 466 0.1366 200308 3.70 3.60 -0.0270
200511 3.91 4.11 0.0512 200307 3.74 3.71 -0.0080
200510 4.08 3.92 -0.0392 200306 3.83 3.74 -0.0235
200509 441 4.13 -0.0635 200305 3.75 3.80 0.0133
200508 4.08 4.41 0.0809 200304 3.61 3.73  0.0332
200507 3.50 4.08 0.1657 200303 3.52 3.60 0.0227
200506 3.55  3.53 -0.0056 200302 3.52 3.53 0.0028
200565 4.15  3.55 -0.1446 200301 3.01 3.50 0.1628
200504 4.18 4.15 -0.0072 200212 3.23 3.01 -0.0681
200503 4.49 4.18 -0.0690 200211 3.27 3.25 -0.0061
200502 4.00 449 0.1225 200210 3.43 3.27 -0.0467
200501 4.35 4.00 -0.0805 200209 3.67 344 -0.0627
200412 444 436 -0.0180 200208 3.47  3.67 0.0576
200411  4.46 4.44 -0.0045 200207 3.90 3.47 -0.1103
200410 470 447 -0.048% 200206 3.15 3.90 02381
200409 4.67 4.71 0.0086 200205 3.37 3.15 -0.0653
200408 4.58 4.67 0.0196 200204 3.2  3.36 0.0500
200407 4.80 4.60 -0.0417 200203 3.19 3.21  0.0063
200406 5.03 4.79 -0.0477 200202 3.16 3.19  0.0095
200405 5.28 5.03 -0.0474 200201 3.45 3.16 -0.0841

TABLE 3. The triangular fuzzy numbers of the expected rates of returns

Stock L.Spread Center R.Spread Stock L.Spread Center R.Spread

1 0.0024 0.0158  0.0337 2 -0.0076  0.0098  0.0484
3 -0.0039 0.0081  0.0109 4 -0.0039  0.0081 0.0109
5 0.0090  0.0127  0.0384 6 -0.0114  0.0004  0.0096
7 0.0128  0.0284  0.0498 8 0.0048 0.0096  0.0160
9 -0.0102  0.0227  0.0352 10 -0.0008 0.0063  0.0571
11 0.0096  0.0519  0.1292 12 0.0031  0.0203  0.0217
13 -0.0081  0.0134  0.0182 14 0.0118  0.0183  0.0215
15 0.0193  0.0351  0.0747 16 -0.0046  0.0031  0.0377
17 0.0021  0.0072  0.0121 18 0.0081  0.0257  0.0337
19 0.0236  0.0286  0.0327 20 0.0081  0.0296  0.0451
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TABLE 4. Expected Return and FVaR when o = 0.0020

Confident level Expected Return FVaR

8 =0.90 0.0302 -0.0215
8 =0.95 0.0299 -0.0208
8 =0.99 0.0296 -0.0187

TABLE 5. The optimal portfolio strategy

Stock Ratio(3 =0.90) Ratio(8 =0.95) Ratio(8 = 0.99)

1 0.0201 0.0160 0.0313
2 0.0238 0.0173 0.0205
3 0.0158 0.0038 0.0134
4 0.0168 0.0102 0.0216
5 0.0167 0.0319 0.0233
6 0.0171 0.0123 0.0269
7 0.0279 0.0233 0.0309
8 0.0207 0.0116 0.0193
9 0.0239 0.0107 0.0196
10 0.0249 0.0241 0.0131
11 0.0187 0.0199 0.0329
12 0.0230 0.0193 0.0213
13 0.0134 0.0051 0.0096
14 0.0237 0.0160 0.0148
15 0.1592 0.1980 0.2562
16 0.0137 0.0063 0.0093
17 0.0205 0.0194 0.0148
18 0.0218 0.0251 0.0319
19 0.4740 0.5091 0.3524
20 0.0244 0.0207 0.0369

TABLE 6. Expected Return and FCVaR when o = 0.0020

Confident level Expected Return FCVaR

8 =090 0.0281 -0.0193
8 =10.95 0.0279 -0.0187
£ =099 0.0262 -0.0186

In fact, the process in this example describes a method which is combination
of quantitative analysis with history data and qualitative analysis with experts’
knowledge can obtain robust solution and decrease turnover ratio when statisti-
cal parameters have estimating error or history data lack.

4. Conclusions
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TABLE 7. The optimal portfolio strategy

Stock Ratio(8 =0.90) Ratio(3 =0.95) Ratio(3 = 0.99)

1 0.0256 0.0242 0.0133
2 0.0227 0.0219 0.0113
3 0.0228 0.0115 0.0148
4 0.0247 0.0194 0.0130
5 0.0227 0.0441 0.0349
6 0.0091 0.0282 0.0145
7 0.0295 0.0275 0.0579
8 0.0158 0.0124 0.0323
9 0.0138 0.0103 0.0218
10 0.0223 0.0170 0.0369
11 0.0267 0.0324 0.0320
12 0.0082 0.0140 0.0380
13 0.0170 0.0284 0.0062
14 0.0367 0.0433 0.0460
15 0.1560 0.1955 0.0409
16 0.0196 0.0324 0.0074
17 0.0145 0.0202 0.0117
18 0.0262 0.0405 0.0347
19 0.4463 0.3277 0.5040
20 0.0395 0.0490 0.0285

In probability framework, both VaR and CVaR are important instruments
in risk management and portfolio selection. In possibility framework, we pro-
pose two risk measures FVaR and FCVaR, formulat two portfolio optimization
programming models for fuzzy portfolio selection problems, and design a chaos
genetic algorithm based on fuzzy simulation. Computational results show that
FVaR and FCVaR can play a role in possibility space similar to VaR and CVaR
in probability space and that robust solutions can be obtained when they are
applied to portfolio selection problems.
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