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Abstract

The conditional autoregressive value at risk (CAViaR) model is useful for risk man-
agement, which does not require the assumption that the conditional distribution does
not vary over time but the volatility does. But it does not provide volatility forecasts,
which are needed for several important applications such as option pricing and portfo-
lio management. For a variety of probability distributions, it is known that there is a
constant relationship between the standard deviation and the distance between sym-
metric quantiles in the tails of the distribution. This inspires us to use a support vector
quantile regression (SVQR) for volatility forecasts with the distance between CAViaR
forecasts of symmetric quantiles. Simulated example and real example are provided to
indicate the usefulness of proposed forecasting method for volatility.

Keywords: Conditional autoregressive value at risk model, cross validation, support
vector quantile regression, volatility.

1. Introduction

Volatility forecasting is important for many financial market applications, including option
pricing and investment decisions. The empirical finding that series of returns often exhibit
volatility clustering has led to the development of a variety of univariate time series meth-
ods for volatility forecasting. The generalized autoregressive conditional heteroscedasticity
(GARCH) model and the stochastic volatility model rely on the assumption that the condi-
tional distribution does not vary over time but the volatility does. Parameters in GARCH
model are usually estimated by maximum likelihood procedures which are optimal when the
data set is drawn from a Gaussian distribution. If there is a variation of the distribution
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over time, this may produce errors for the volatility forecasts produced by GARCH model.
Perez-Cruz et al. (2003) proposed a volatility forecasting procedure by applying the support
vector machine (SVM; Vapnik, 1998) to GARCH(1,1) model. The applications of SVM can
be found in Hwang (2007), Hwang (2008), Kim et al. (2008), Shim and Lee (2010). CAViaR
model proposed by Engle and Manganelli (2004) requires no distributional assumptions,
which allow quantiles to be modelled directly in the autoregressive framework. The θ th
quantile of a financial return rt, is known as the value at risk (VaR), and is defined as qt(θ)
with θ = P (rt ≤ qt(θ)). As VaR is a risk management tool, the quantiles of interest are in
the tails of the distribution.

Pearson and Tukey (1965) showed that, for a variety of probability distributions, there
is a constancy of the ratio of the standard deviation to the distance between symmetric
tail quantiles, q(θ) and q(1− θ). For example, they showed that a simple approximation to
the standard deviation is provided by the distance between q(0.025) and q(0.975) divided
by 3.92 if the distribution is Gaussian. From this, we can see that even though conditional
volatility and distribution of financial returns may vary over time, the conditional volatility
can be approximated by a linear or nonlinear function of the distance between symmetric
conditional quantiles. This provides us with a basis for constructing volatility forecasting
from quantile forecasts produced by CAViaR model. GARCH model uses only an autore-
gressive model for the variance. For the case that the left and right tails of the conditional
distribution are driven differently over time, our method can capture the evolution of the
variance better than GARCH model.

In Sections 2 and 3, we briefly review CAViaR model and SVQR, respectively. Section 4
describes the volatility forecasting method by SVQR. In Section 5 we perform the numer-
ical studies through the simulated example and the real example, and provides concluding
remarks.

2. CAViaR model

In this paper, we denote the conditional variance of the log return rt, at time t given
Dt−1 which is a set of informations gathered up to time t by σ2

t = V ar(rt|Dt−1). Error
term εt is denoted by εt = rt − E(rt|Dt−1), where E(rt|Dt−1) is the conditional mean of
rt given Dt−1. CAViaR model involves direct autoregressive modelling of the conditional
quantiles and thus does not involve distributional assumptions. Engle and Manganelli (2004)
presented the following four CAViaR models:

Adaptive CAViaR : qt(θ) = qt−1(θ) + α(θ − I(εt−1 ≤ qt(θ))) (2.1)

Asymmetric slope CAViaR : qt(θ) = ω + αqt−1(θ) + β1(εt−1)+ + β2(εt−1)− (2.2)

Indirect GARCH(1,1) CAViaR : qt(θ) = (1− 2I(θ < 0.5))
√
ω + αq2t−1(θ) + βε2t−1 (2.3)

Symmetric absolute value CAViaR : qt(θ) = ω + αqt−1(θ) + β|εt−1| (2.4)

where qt(θ) is the θ th conditional quantile, I(·) is the indicator function, (x)+ = max(x, 0)
and (x)− = min(x, 0). Parameters involved in CAViaR models are estimated by minimizing
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the sum of check functions introduced by Koenker and Bassett (1978),

min

n∑
t=1

ρθ(rt − qt(θ)), (2.5)

where 0 < θ < 1 and ρθ(e) = θeI(e ≥ 0) + (1− θ)eI(e < 0).

3. Support vector quantile regression

Let the training data set denoted by {xt,yt}nt=1, with each input xt ∈ Rd and the response
yt ∈ R, where the output variable yt is related to the input vector xt. Here the feature
mapping function φ(·) : Rd → Rdf maps the input space to the higher dimensional feature
space where the dimension df is defined in an implicit way. An inner product in feature
space has an equivalent kernel in input space, φ(xs)′φ(xt) = K(xs,xt) (Mercer, 1909).
Several choices of the kernel K(·, ·) are possible. We consider the nonlinear regression case,
in which the quantile regression function q(x) of the response given x can be regarded as a
nonlinear function of input vector x.

With a check function ρθ(·), the estimator of the θ th quantile regression function can be
defined as any solution to the optimization problem,

min
1

2
w′w + C

n∑
t=1

ρθ(yt − q(xt)) (3.1)

where ρθ(e) = θeI(e ≥ 0) + (1 − θ)eI(e < 0). We can express the regression problem by
formulation for SVQR as follows,

min
1

2
w′w + C

n∑
t=1

(θξt + (1− θ)ξ∗t ) (3.2)

subject to

yt −w′φ(xt)− b ≤ ξt, w′φ(xt) + b− yt ≤ ξ∗t , ξt, ξ∗t ≥ 0,

where C is a regularization parameter penalizing the training errors.We construct a Lagrange
function as follows:

L =
1

2
w′w + C

n∑
t=1

(θξt + (1− θ)ξ∗t )−
n∑
t=1

αi(ξt − yt +w′φ(xt) + b) (3.3)

−
n∑
t=1

α∗t (ξ
∗
t + yt −w′φ(xt)− b)−

n∑
t=1

(ηtξt + η∗t ξ
∗
t ).

We notice that the nonnegativity constraints αt, α
∗
t , ηt, η

∗
t ≥ 0 should be satisfied. After

taking partial derivatives of equation (3.3) with regard to the primal variables (w, ξi, ξ
∗
i )

and plugging them into equation (3.3), we have the optimization problem below,

max−
1

2

n∑
s,t=1

βsβtK(xs,xt) +

n∑
t=1

βtyt (3.4)
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with constraints

βt = αt − α∗t ∈ [(θ − 1)C, θC], t = 1, · · · , n.

Solving the above equation with the constraints determines the optimal Lagrange multipliers,
βt. The bias b0 is obtained from

b0 =
1

ns

∑
t∈Is

(yt − ktβ), (3.5)

where Is = {t = 1, · · · , n|(θ − 1)C < βt < θC and βt 6= 0}, ns is the size of Is and kt is the
tth row of the n× n kernel matrix K with the (i, j)th elements K(xi,xj) = φ(xi)

′φ(xj).
The estimator of the θth quantile given the input vector x0 are obtained as follows:

q̂0(θ) = k0β + b0, (3.6)

where k0 = (K(x0,x1),K(x0,x2), · · · ,K(x0,xn)). In the nonlinear case, w is no longer
explicitly given. However, it is uniquely defined in the weak sense by the dot products. Here
the linear regression model can be regarded as the special case of the nonlinear regression
model by using identity feature mapping function, that is, φ(x) = x which implies the linear
kernel such that K(x1,x2) = x1

′x2. Note that SVQR is called support vector median
regression (SVMR) when θ = 0.5.

The functional structures of SVQR is characterized by the hyperparameters consisting
of the penalty parameter C and the kernel parameters. To select the hyperparameters of
SVQR we consider the cross validation (CV) function as follows:

CV (λ) =

n∑
t=1

ρθ(yt − q̂(−t)t (θ)), (3.7)

where λ is the set of parameters and q̂
(−t)
t (θ) is the quantile function estimated without the

t th observation. Since for each candidates of parameters, q̂
(−t)
t (θ) for t = 1, · · · , n, should

be evaluated, selecting parameters using CV function is computationally formidable. Yuan
(2006) proposed GACV function to select the set of parameters λ for SVQR as follows:

GACV (λ) =

∑n
t=1 ρθ

(
yt − q̂(−t)t (θ)

)
n− trace(H)

, (3.8)

where H is the hat matrix such that q̂(θ) = Hy with the ( i, j )th element hij = ∂q̂i(θ)/∂yj .
From Li et al. (2007) we have that the trace of the hat matrix H equals to the size of
Is = {t = 1, · · · , n|(θ − 1)C < αt < θC and αt 6= 0}.

4. Volatility forecasting via CAViaR based on SVQR

Pearson and Tukey (1965) found that the ratio of the standard deviation to the distance
between symmetric quantiles in the tails of the distribution is constant for a variety of
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distributions. They considered 98%, 95% and 90% intervals, and proposed the following
simple approximations for the standard deviation in terms of estimated symmetric quantiles,

σ̂ =
q(0.975)− q(0.025)

3.92
, σ̂ =

q(0.95)− q(0.05)

3.29

For a Gaussian distribution, the denominators above become 2 × 1.960 = 3.92 and 2 ×
1.645 = 3.29, respectively. Pearson and Tukey (1965) showed that the accuracy of these
approximations depends on the values of skewness and kurtosis of the given distribution.
They found that the approximation based on the 90% interval was the most robust to
different values of skewness and kurtosis.

Pearson and Tukey (1965) inspires us to consider that the squared volatility σ2
t can be

obtained as a function of (qt(θ)− qt(1− θ))2 if we have found qt(θ) and qt(1− θ). Thus the
forecasting procedure of volatility by SVQR consists of two stages - forecasting conditional
quantiles and forecasting volatility from obtained conditional quantiles.

First, we assume that conditional quantile qt(θ) is an unknown nonlinear function of rt−1
and qt−1(θ) such as qt(θ) = f(rt−1, qt−1(θ)), which is similar to CAViaR model. Here rt
denotes the log return of a portfolio at time t. But the estimate of conditional quantile q̂t(θ)
is obtained as q̂t(θ) = ktβ + b by the iteration method using SVQR is given as follows,

(i) Find q̂
(0)
t (θ) = K(xt,x)β + b from y = {rt}nt=1 and x = {rt−1}nt=1.

(ii) Find q̂
(l+1)
t (θ) = K(xt,x)β + b from y = {rt}nt=1 and x = {rt−1, q̂(l)t−1(θ)}nt=1.

(iii) Iterate until
∑
t |q̂

(l+1)
t (θ)− q̂(l)t (θ)| < tolerance.

The estimate of conditional quantile q̂t(1− θ) also can be obtained by the procedure above.
Next, we assume that σ2

t is a nonlinear function of e2t−1 and (qt−1(θ) − qt−1(1 − θ))2

such as σ2
t = f(e2t−1, (qt−1(θ) − qt−1(1 − θ))2) where et−1 = rt−1 − q̂t−1(0.5). Here the

estimate of volatility is obtained by SVQR as σ̂t = (K(xt,x)β + b))1/2 where the response

σ̃2
t =

1

5

∑4
k=0(et−k)2 and xt = (e2t−1, (qt−1(θ)− qt−1(1− θ))2).

5. Numerical studies and conclusions

We illustrate the performance of the volatility forecasting method based on SVQR through
one simulated data set and one real data set by comparing with Perez-Cruz et al. (2003)
and GARCH(1,1) model.

Example 5.1. For the simulated example, we consider the autoregressive heteroscedastic
model,

y1 = −σ1Φ−1(θ) + e1, yt = qt(θ)− σtΦ−1(θ) + et, t = 2, · · · , 100

where σ1 is generated from U(0, 1), et is generated fromN(0, σ2
t ), σt = exp(0.5 sin(yt−1σt−1)),

qt(θ) = sin(πyt−1) + cos(πqt−1(θ)). We can see that qt(0.5) = qt(θ) − σtΦ
−1(θ) and

qt(θ)− qt(1− θ) = σtΦ
−1(θ). We set θ = 0.1 and utilize the RBF kernel functions in this

example. Optimal values of penalty constant and kernel parameter are chosen by GACV
function (3.8). The plot on the left panel of Figure 5.1 illustrates the true volatilities (solid
line) and the estimated volatilities (dotted line) by the proposed method. The plot on the
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right panel of Figure 5.1 illustrates the estimated volatilities (solid line) by Perez-Cruz et
al. (2003) and the estimated volatilities (dotted line) by GARCH(1,1), both of which are
imposed on the scatter plots of 100 data points of yt’s in a data set. Note that since E(yt)
is not constant, yt − q̂t(0.5) is used as the log return rt and the response for Perez-Cruz et
al. (2003) and GARCH(1,1) model. In Figure 5.1 we can see that the estimated volatilities
by the proposed method seem to represent better the behavior of volatilities of given data
than other methods.

We repeated the above procedure 100 times to obtain the root mean squared errors
(RMSE) for the performance metric as follows,

RMSE =

√√√√ 1

100

100∑
t=1

(σ̂t − σt)2.

For the proposed method we obtained the average of 100 RMSE ’s and their standard error
as 0.5849 and 0.0095, respectively. For Perez-Cruz et al. (2003) we obtained the average of
100 RMSE ’s and their standard error as 0.7329 and 0.0098, respectively. For GARCH(1,1)
we obtained the average of 100 RMSE ’s and their standard error as 0.6220 and 0.0109,
respectively. The smaller value of average of RMSE ’s indicates that the proposed method
works better than other methods in this example.

Figure 5.1 (Left): True volatilities (solid) and their estimates by the proposed method (dotted). (Right):
volatility estimates by Perez-Cruz et al. (2003) (solid) and GARCH(1,1) model (dotted) for a data set in

Example 5.1.

Example 5.2. We consider 372 daily log-returns (in percentages) from the US S&P500
index between January 1990 and June 1991. We set θ = 0.05 and utilize the RBF kernel
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function in this example. In forecasting quantiles, the optimal values of hyperparameters
are chosen by GACV function (3.8) such as (C, s) = (100, 1) for SVQR( θ = 0.05 ), (C, s) =
(100, 0.5) for SVQR( θ = 0.95 ), and (C, s) = (100, 1) for SVMR. In forecasting the squared
volatility the optimal values of hyperparameters are chosen by GACV function (3.8) such
as (C, s) = (100, 1) for SVMR. The plot on the left panel of Figure 5.2 illustrates the true
volatilities (solid line) and the estimated volatilities (dotted line) by the proposed method.
The plot on the right panel of Figure 5.2 illustrates the estimated volatilities (solid line) by
Perez-Cruz et al. (2003) and the estimated volatilities (dotted line) by GARCH(1,1), both
of which are imposed on the scatter plots of 372 data points of rt’s in a data set. We use
the root mean squared errors (RMSE) for the performance metric follows,

RMSE =

√√√√1

3
72

372∑
t=1

(σ̂t − σt)2.

For the proposed method we obtained RMSE as 4.3577. For Perez-Cruz et al. (2003) and
GARCH(1,1) we obtained RMSE ’s as 5.1134 and 4.4316, respectively. The smaller value
RMSE indicates that the proposed method works better than other methods in this example.

Figure 5.2 (Left): True volatilities (solid) and their estimates by the proposed method (dotted). (Right):
volatility estimates by Perez-Cruz et al. (2003) (solid) and GARCH(1,1) model (dotted) for a data set in

Example 5.2.

In this paper we dealt with forecasting the volatility based on SVQR. Through the exam-
ples we showed that the proposed method derives more satisfying results on forecasting the
volatility than other methods. We also found that the optimal values of hyperparmeters in
the proposed method can be obtained by model selection method such as GACV function.
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