• 제목/요약/키워드: Composition operator

검색결과 93건 처리시간 0.032초

WEIGHTED COMPOSITION OPERATORS BETWEEN LP-SPACES

  • JABBARZADEH, M.R.
    • 대한수학회보
    • /
    • 제42권2호
    • /
    • pp.369-378
    • /
    • 2005
  • In this paper we will consider the weighted composition operator $W=uC_{\varphi}$ between two different $L^p(X,\;\Sigma,\;\mu)$ spaces, generated by measurable and non-singular transformations $\varphi$ from X into itself and measurable functions u on X. We characterize the functions u and transformations $\varphi$ that induce weighted composition operators between $L^p-spaces$ by using some properties of conditional expectation operator, pair $(u,\;\varphi)$ and the measure space $(X,\;\Sigma,\;\mu)$. Also, Fredholmness of these type operators will be investigated.

WEIGHTED COMPOSITION OPERATORS FROM BERGMAN SPACES INTO WEIGHTED BLOCH SPACES

  • LI SONGXIAO
    • 대한수학회논문집
    • /
    • 제20권1호
    • /
    • pp.63-70
    • /
    • 2005
  • In this paper we study bounded and compact weighted composition operator, induced by a fixed analytic function and an analytic self-map of the open unit disk, from Bergman space into weighted Bloch space. As a corollary, obtain the characterization of composition operator from Bergman space into weighted Bloch space.

A WEIGHTED COMPOSITION OPERATOR ON THE LOGARITHMIC BLOCH SPACE

  • Ye, Shanli
    • 대한수학회보
    • /
    • 제47권3호
    • /
    • pp.527-540
    • /
    • 2010
  • We characterize the boundedness and compactness of the weighted composition operator on the logarithmic Bloch space $\mathcal{L}\ss=\{f{\in}H(D):sup_D(1-|z|^2)ln(\frac{2}{1-|z|})|f'(z)|$<+$\infty$ and the little logarithmic Bloch space ${\mathcal{L}\ss_0$. The results generalize the known corresponding results on the composition operator and the pointwise multiplier on the logarithmic Bloch space ${\mathcal{L}\ss$ and the little logarithmic Bloch space ${\mathcal{L}\ss_0$.

NORMAL, COHYPONORMAL AND NORMALOID WEIGHTED COMPOSITION OPERATORS ON THE HARDY AND WEIGHTED BERGMAN SPACES

  • Fatehi, Mahsa;Shaabani, Mahmood Haji
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.599-612
    • /
    • 2017
  • If ${\psi}$ is analytic on the open unit disk $\mathbb{D}$ and ${\varphi}$ is an analytic self-map of $\mathbb{D}$, the weighted composition operator $C_{{\psi},{\varphi}}$ is defined by $C_{{\psi},{\varphi}}f(z)={\psi}(z)f({\varphi}(z))$, when f is analytic on $\mathbb{D}$. In this paper, we study normal, cohyponormal, hyponormal and normaloid weighted composition operators on the Hardy and weighted Bergman spaces. First, for some weighted Hardy spaces $H^2({\beta})$, we prove that if $C_{{\psi},{\varphi}}$ is cohyponormal on $H^2({\beta})$, then ${\psi}$ never vanishes on $\mathbb{D}$ and ${\varphi}$ is univalent, when ${\psi}{\not\equiv}0$ and ${\varphi}$ is not a constant function. Moreover, for ${\psi}=K_a$, where |a| < 1, we investigate normal, cohyponormal and hyponormal weighted composition operators $C_{{\psi},{\varphi}}$. After that, for ${\varphi}$ which is a hyperbolic or parabolic automorphism, we characterize all normal weighted composition operators $C_{{\psi},{\varphi}}$, when ${\psi}{\not\equiv}0$ and ${\psi}$ is analytic on $\bar{\mathbb{D}}$. Finally, we find all normal weighted composition operators which are bounded below.