Bull. Korean Math. Soc. **53** (2016), No. 6, pp. 1785–1794 http://dx.doi.org/10.4134/BKMS.b150974 pISSN: 1015-8634 / eISSN: 2234-3016

ISOMETRIC WEIGHTED COMPOSITION OPERATORS ON THE FOCK SPACE OF \mathbb{C}^N

LIANKUO ZHAO

ABSTRACT. This paper gives complete characterization for isometric weighted composition operators on the Fock space of \mathbb{C}^N . The main result shows that an isometric weighted composition operator on the Fock space of \mathbb{C}^N is a unitary operator.

1. Introduction

It is generally considered that weighted composition operators derived from the characterization of isometric operators on Hardy space and Bergman space [4, 5]. So it is natural to consider the condition for a weighted composition operator on a function space to be isometric. In [6], isometric weighted composition operators on the Hardy space are characterized. In [2], Bonet et al. discussed isometric weighted composition operators on weighted Banach spaces of type H^{∞} . Compared with the characterization of isometric composition operators (see [1, 8, 9, 10] etc.), the characterization of isometric weighted composition operators seems more difficult. For example, a complete characterization of such operators on the Bergman space is still unsolved [6].

In this paper, we completely characterize isometric weighted composition operators on the Fock space of \mathbb{C}^N , which extends the corresponding result on the Fock space of complex plane in [7].

Recall that the Fock space \mathcal{F}^2 is the space of analytic functions f on \mathbb{C}^N (the N dimensional complex Euclidean space) for which

$$||f||^{2} = \frac{1}{(2\pi)^{N}} \int_{\mathbb{C}^{N}} |f(z)|^{2} \exp(-\frac{|z|^{2}}{2}) dm_{2N}(z),$$

where |z| denotes the norm for $z \in \mathbb{C}^N$ and dm_{2N} is usual Lebesgue measure on \mathbb{C}^N . It is well-known that \mathcal{F}^2 is a reproducing kernel Hilbert space with

O2016Korean Mathematical Society

Received November 26, 2015.

²⁰¹⁰ Mathematics Subject Classification. 47B32.

Key words and phrases. Fock space, weighted composition operator, isometric, unitary. The author is supported by NSFC(11201274,11471189).

L. ZHAO

inner product

$$\langle f,g\rangle = \frac{1}{(2\pi)^N} \int_{\mathbb{C}^N} f(z)\overline{g(z)} \exp(-\frac{|z|^2}{2}) dm_{2N}(z), \quad f,g \in \mathcal{F}^2$$

and reproducing kernel function

$$K_w(z) = \exp(\frac{\langle z, w \rangle}{2}), \quad w, z \in \mathbb{C}^N,$$

here $\langle z, w \rangle$ denotes the inner product for $z, w \in \mathbb{C}^N$ and $|z|^2 = \langle z, z \rangle$. Without confuse, we do not distinguish the inner product symbol in \mathcal{F}^2 from that in \mathbb{C}^N .

A weighted composition operator $C_{\psi,\varphi}$ on \mathcal{F}^2 with ψ an analytic function on \mathbb{C}^N and φ an analytic self-map of \mathbb{C}^N is defined as

$$C_{\psi,\varphi}f = \psi(f \circ \varphi), \quad f \in \mathcal{F}^2.$$

Our main result reads as follows.

Theorem 1.1. Let ψ be an analytic function on \mathbb{C}^N and φ be an analytic self-map of \mathbb{C}^N . Then $C_{\psi,\varphi}$ is an isometric operator on \mathcal{F}^2 if and only if $C_{\psi,\varphi}$ is a unitary operator.

2. Isometric weighted composition operator

In this section, we give the proof of the main result. The following two well-known lemmas are basic properties of weighted composition operators on Hilbert spaces of analytic functions with reproducing kernel functions.

Lemma 2.1. Let ψ_1, \ldots, ψ_n be analytic functions on \mathbb{C}^N and $\varphi_1, \ldots, \varphi_n$ be analytic self-map of \mathbb{C}^N . If $C_{\psi_1,\varphi_1}, \ldots, C_{\psi_n,\varphi_n}$ are bounded operators on \mathcal{F}^2 , then

 $C_{\psi_1,\varphi_1}C_{\psi_2,\varphi_2}\cdots C_{\psi_n,\varphi_n}=C_{\psi_1(\psi_2\circ\varphi_1)\cdots(\psi_n\circ\varphi_{n-1}\circ\cdots\circ\varphi_1),\ \varphi_n\circ\varphi_{n-1}\circ\cdots\circ\varphi_1}.$

Lemma 2.2. Let ψ be an analytic function on \mathbb{C}^N and φ be an analytic selfmap of \mathbb{C}^N . If $C_{\psi,\varphi}$ is a bounded operator on \mathcal{F}^2 , then for $z \in \mathbb{C}^N$,

$$C_{\psi,\varphi}^* K_z = \psi(z) K_{\varphi(z)}.$$

The following result reveals that a bounded weighted composition operator on the Fock space has a simple composite symbol, which is a key factor for complete characterization of various of weighted composition operators on the Fock space.

Lemma 2.3 ([13, Proposition 7]). Let ψ be a nonzero analytic function on \mathbb{C}^N and φ be an analytic self-map of \mathbb{C}^N . If $C_{\psi,\varphi}$ is a bounded operator on \mathcal{F}^2 , then there exists an operator A on \mathbb{C}^N , $|A| \leq 1$, $b \in \mathbb{C}^N$ such that

(2.1)
$$\begin{aligned} \varphi(z) &= Az + b, \\ \sup_{z \in \mathbb{C}^N} |\psi(z)|^2 \exp(\frac{|\varphi(z)|^2 - |z|^2}{2}) < \infty \end{aligned}$$

In particular, when A is invertible, the condition (2.1) is sufficient also. Here |A| denotes the norm of A.

Obviously, a unitary operator is isometric. In [12], unitary operators and their spectrum on the Fock space of \mathbb{C}^N are characterized completely.

For $p \in \mathbb{C}^N$, let k_p be the normalization of K_p , $\varphi_p(z) = z - p$, $z \in \mathbb{C}^N$ and $U_p = C_{k_p,\varphi_p}$.

Lemma 2.4 ([12, Proposition 2.3]). U_p is a unitary operator on \mathcal{F}^2 and $U_p^{-1} = U_{-p}$.

Lemma 2.5 ([12, Theorem 1.1]). Let ψ be an analytic function on \mathbb{C}^N and φ be an analytic self-map of \mathbb{C}^N . Then $C_{\psi,\varphi}$ is a unitary operator on \mathcal{F}^2 if and only if there exists a unitary operator A on \mathbb{C}^N , $b \in \mathbb{C}^N$ and a constant s with |s| = 1 such that $\varphi(z) = Az + b$ and $\psi(z) = sk_{-A^*b}(z), z \in \mathbb{C}^N$.

In fact, by Lemma 2.5 and Lemma 6 in [13], we have the following result.

Lemma 2.6. Let ψ be a nonzero analytic function on \mathbb{C}^N and $\varphi(z) = Az + b, z \in \mathbb{C}^N$ with A an operator on \mathbb{C}^N , $b \in \mathbb{C}^N$. Then $C_{\psi,\varphi}$ is nonzero multiples of a unitary operator on \mathcal{F}^2 if and only if A is unitary.

Since isometric operator is a nonzero bounded operator, by Lemma 2.3, we only consider weighted composition operator $C_{\psi,\varphi}$ with $\varphi(z) = Az + b$, $z \in \mathbb{C}^N$ for some operator A on \mathbb{C}^N , $|A| \leq 1$ and $b \in \mathbb{C}^N$.

The following result is adjustment of [7, Lemma 4.1].

Lemma 2.7 ([7, Lemma 4.1]). Let f be a measurable function on \mathbb{C} . If there exist positive constants ϵ and M such that

$$|f(z)| \le M e^{\frac{|z|^2 - \epsilon|z|^2}{2}}, \ z \in \mathbb{C},$$

and for any nonnegative integers m, k,

$$\int_{\mathbb{C}} f(z) z^m \bar{z}^k e^{-\frac{|z|^2}{2}} dm_2(z) = 0,$$

then f = 0 almost everywhere on \mathbb{C} .

Now we extend Lemma 2.7 to the high dimensional case.

A N multi-index refers to an ordered N-tuple $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_N)$ of nonnegative integers α_i , $i = 1, 2, \ldots, N$. For $z = (z_1, z_2, \ldots, z_N) \in \mathbb{C}^N$, $z^{\alpha} = z_1^{\alpha_1} \cdots z_N^{\alpha_N}$.

Lemma 2.8. Let f be a measurable function on \mathbb{C}^N . If there exist positive constants ϵ and M such that

$$|f(z)| \le M \exp(\frac{|z|^2 - \epsilon |z|^2}{2}), \ z \in \mathbb{C}^N,$$

and for any N multi-indexes α, β ,

$$\int_{\mathbb{C}^N} f(z) z^{\alpha} \bar{z}^{\beta} \exp(-\frac{|z|^2}{2}) dm_{2N}(z) = 0,$$

then f = 0 a.e. on \mathbb{C}^N .

Proof. Since

$$\int_{\mathbb{C}^N} |f(z)z^{\alpha}\bar{z}^{\beta}| \exp(-\frac{|z|^2}{2}) dm_{2N}(z) \le M \int_{\mathbb{C}^N} |z^{\alpha}\bar{z}^{\beta}| \exp(-\frac{\epsilon}{2}|z|^2) dm_{2N}(z)$$

< ∞ .

Fubini Theorem applies for $\int_{\mathbb{C}^N} f(z) z^{\alpha} \bar{z}^{\beta} \exp(-\frac{|z|^2}{2}) dm_{2N}(z)$. We prove the conclusion by induction on N.

We prove the conclusion by induction on N. It is Lemma 2.7 when N = 1. Assume the conclusion holds for N = j. We

consider the case N = j + 1.

For any arbitrarily fixed nonnegative m, n and any $z' \in \mathbb{C}^{j}$, let

$$F_{n,m}(z') = \int_{\mathbb{C}} f(z', z_{j+1}) z_{j+1}^n \bar{z}_{j+1}^m e^{-\frac{|z_{j+1}|^2}{2}} dm_2(z_{j+1}).$$

Then

$$\begin{aligned} |F_{n,m}(z')| &\leq \int_{\mathbb{C}} |f(z', z_{j+1})| |z_{j+1}|^{m+n} e^{-\frac{|z_{j+1}|^2}{2}} dm_2(z_{j+1}) \\ &\leq M \int_{\mathbb{C}} e^{\frac{1-\epsilon}{2} (|z'|^2 + |z_{j+1}|^2)} |z_{j+1}|^{n+m} e^{-\frac{|z_{j+1}|^2}{2}} dm_2(z_{j+1}) \\ &= M e^{\frac{1-\epsilon}{2} |z'|^2} \int_{\mathbb{C}} |z_{j+1}|^{n+m} e^{-\frac{\epsilon |z_{j+1}|^2}{2}} dm_2(z_{j+1}) \\ &\leq M' e^{\frac{1-\epsilon}{2} |z'|^2}, \end{aligned}$$

here $M' = M \int_{\mathbb{C}} |z_{j+1}|^{n+m} e^{-\frac{\epsilon |z_{j+1}|^2}{2}} dm_2(z_{j+1}) < \infty$. For any j multi-indexes $\alpha', \beta',$

$$\int_{\mathbb{C}^{j}} F_{n,m}(z') (z')^{\alpha'} (\bar{z'})^{\beta'} \exp(-\frac{|z'|^2}{2}) dm_{2j}(z')$$

$$= \int_{\mathbb{C}^{j}} \left(\int_{\mathbb{C}} f(z', z_{j+1}) z_{j+1}^n \bar{z}_{j+1}^m e^{-\frac{|z_{j+1}|^2}{2}} dm_2(z_{j+1}) \right) (z')^{\alpha'} (\bar{z'})^{\beta'} e^{-\frac{|z'|^2}{2}} dm_{2j}(z')$$

$$= \int_{\mathbb{C}^{j+1}} f(z', z_{j+1}) (z')^{\alpha'} z_{j+1}^n (\bar{z'})^{\beta'} \bar{z}_{j+1}^m \exp(-\frac{|z'|^2 + |z_{j+1}|^2}{2}) dm_{2(j+1)}(z', z_{j+1})$$

$$= \int_{\mathbb{C}^{j+1}} f(z) z^{\alpha} \bar{z}^{\beta} \exp(-\frac{|z|^2}{2}) dm_{2(j+1)}(z),$$

where $z = (z', z_{j+1}) \in \mathbb{C}^{j+1}$, $\alpha = (\alpha', n)$, $\beta = (\beta', m)$ are j + 1 multi-indexes. By the given condition,

$$\int_{\mathbb{C}^j} F_{n,m}(z') \ (z')^{\alpha'} (\bar{z'})^{\beta'} \exp(-\frac{|z'|^2}{2}) dm_{2j}(z') = 0,$$

which implies that $F_{n,m}(z')$ satisfies the condition as a function on \mathbb{C}^{j} . By assumption on N = j, $F_{n,m} = 0$ a.e. on \mathbb{C}^{j} .

For any
$$z' \in \mathbb{C}^j$$
 such that $F_{n,m}(z') = 0, n, m = 0, 1, 2, \ldots$, let

$$g_{z'}(z_{j+1}) = f(z', z_{j+1}), \ z_{j+1} \in \mathbb{C},$$

then

$$|g_{z'}(z_{j+1})| \le M_{z'} e^{\frac{1-\epsilon}{2}|z_{j+1}|^2},$$

here $M_{z'} = M e^{\frac{1-\epsilon}{2}|z'|^2}$, and for any nonnegative integer n, m

$$\int_{\mathbb{C}} g_{z'}(z_{j+1}) z_{j+1}^n \bar{z}_{j+1}^m e^{-\frac{|z_{j+1}|^2}{2}} dm_2(z_{j+1}) = F_{n,m}(z') = 0.$$

which implies $g_{z'}(z_{j+1})$ satisfies the condition in Lemma 2.7 as a function on \mathbb{C} . So $g_{z'} = 0$ a.e. on \mathbb{C} .

Hence for any $z' \in \mathbb{C}^j$ such that $F_{n,m}(z') = 0, n, m = 1, 2, \ldots, f(z', z_{j+1}) = 0$ a.e. on \mathbb{C} . So f = 0 a.e. on \mathbb{C}^{j+1} .

Now, we characterize isometric weighted composition operator $C_{\psi,\varphi}$ on \mathcal{F}^2 with $\varphi(z) = Az$, $z \in \mathbb{C}^N$ for some operator A on \mathbb{C}^N .

Lemma 2.9. Let ψ be an analytic function on \mathbb{C}^N and $\varphi(z) = Az$, $z \in \mathbb{C}^N$ with A an operator on \mathbb{C}^N . If $C_{\psi,\varphi}$ is an isometric operator on \mathcal{F}^2 , then A is invertible.

Proof. As an operator on \mathbb{C}^N , it is enough to prove that A is surjective.

Assume $b \perp \operatorname{ran}(A)$, then for any $z \in \mathbb{C}^N$, $\langle Az, b \rangle = 0$. So $(K_b \circ \varphi)(z) = 1$. Since $C_{\psi,\varphi}$ is isometric,

(2.2)
$$\|\psi\|^2 = \|\psi K_b \circ \varphi\|^2 = \|C_{\psi,\varphi}K_b\|^2 = \|K_b\|^2.$$

On the other hand, we have $\|\psi\|^2 = \|C_{\psi,\varphi}K_0\|^2 = \|K_0\|^2 = 1$. Combining with equation (2.2), we have b = 0. Therefore A is surjective.

Proposition 2.10. Let ψ be an analytic function on \mathbb{C}^N and $\varphi(z) = Az$, $z \in \mathbb{C}^N$ with A an invertible operator on \mathbb{C}^N , $|A| \leq 1$. Then $C_{\psi,\varphi}$ is an isometric operator on \mathcal{F}^2 if and only A is a unitary operator and ψ is a constant of modulus 1.

Proof. The sufficiency follows from Lemma 2.5 and Lemma 2.6.

Necessity.

For any $f, g \in \mathcal{F}^2$, put w = Az, we have

$$\begin{aligned} \langle f,g \rangle &= \frac{1}{(2\pi)^N} \int_{\mathbb{C}^N} f(w) \overline{g(w)} \exp(-\frac{|w|^2}{2}) dm_{2N}(w) \\ &= \frac{1}{(2\pi)^N} |\det A|^2 \int_{\mathbb{C}^N} f(Az) \overline{g(Az)} \exp(\frac{|z|^2 - |Az|^2}{2}) \exp(-\frac{|z|^2}{2}) dm_{2N}(z). \end{aligned}$$

On the other hand,

$$\langle C_{\psi,\varphi}f, C_{\psi,\varphi}g \rangle = \frac{1}{(2\pi)^N} \int_{\mathbb{C}^N} |\psi(z)|^2 f(Az)\overline{g(Az)} \exp(-\frac{|z|^2}{2}) dm_{2N}(z).$$

For any N multi-indexes α, β , let $f(z) = (A^{-1}z)^{\alpha}, g(z) = (A^{-1}z)^{\beta}, \ z \in \mathbb{C}^N$, it follows from

$$\langle f,g\rangle = \langle C_{\psi,\varphi}f, C_{\psi,\varphi}g\rangle$$

that

(2.3)
$$\frac{1}{(2\pi)^N} \int_{\mathbb{C}^N} (|\psi(z)|^2 - |\det A|^2 e^{\frac{|z|^2 - |Az|^2}{2}}) z^{\alpha} \overline{z}^{\beta} \exp(-\frac{|z|^2}{2}) dm_{2N}(z) = 0.$$

Since $C_{\psi,\varphi}$ is an isometric operator on \mathcal{F}^2 , it is bounded. By Lemma 2.3, there exists a positive constant M such that $|\psi(z)|^2 \leq M e^{\frac{|z|^2 - |Az|^2}{2}}, z \in \mathbb{C}^N$. So

$$\begin{aligned} &||\psi(z)|^2 - |\det A|^2 \exp(\frac{|z|^2 - |Az|^2}{2})| \\ &\leq (M + |\det A|^2) \exp(\frac{|z|^2 - |Az|^2}{2}), \ z \in \mathbb{C}^N \end{aligned}$$

Since A is invertible, there exists a positive constant δ such that for any $z \in \mathbb{C}^N$,

$$|Az| \ge \delta |z|.$$

It follows from $|A| \leq 1$ that $\delta \leq 1$.

Without loss of generality, assume $\delta < 1$. Then

(2.4)
$$\begin{aligned} ||\psi(z)|^2 - |\det A|^2 \exp(\frac{|z|^2 - |Az|^2}{2})| \\ &\leq (M + |\det A|^2) \exp(\frac{(1 - \delta^2)|z|^2}{2}), \quad z \in \mathbb{C}^N. \end{aligned}$$

By (2.3) and (2.4), it follows from Lemma 2.8 that

$$|\psi(z)|^2 = |\det A|^2 \exp(\frac{|z|^2 - |Az|^2}{2}), \ z \in \mathbb{C}^N$$

which implies that the analytic function $\psi(z)\overline{\psi(\bar{w})} - |\det A|^2 \exp(\frac{\langle z, \bar{w} \rangle - \langle Az, A\bar{w} \rangle}{2})$ with variable $(z, w), z, w \in \mathbb{C}^N$ is zero on $\{(z, \bar{z}) : z \in \mathbb{C}^N\}$. Hence

$$\psi(z)\overline{\psi(w)} = |\det A|^2 \exp(\frac{\langle z, w \rangle - \langle Az, Aw \rangle}{2}), \ z, w \in \mathbb{C}^N.$$

Let w = 0, then ψ is a constant function, hence

$$\exp(\frac{|z|^2 - |Az|^2}{2}), \ z \in \mathbb{C}^N$$

is a constant too. So there exists an integer-valued continuous function $n(\boldsymbol{z})$ such that

$$|z|^2 - |Az|^2 = 4n(z)\pi i, \ z \in \mathbb{C}^N,$$

here *i* is the imaginary unit. Let z = 0, we have n = 0, therefore $|z|^2 - |Az|^2 = 0, z \in \mathbb{C}^N.$

So A is an isometric operator, hence a unitary operator on \mathbb{C}^N . By Lemma 2.5 and Lemma 2.6, ψ is a constant function. Since $C_{\psi,\varphi}$ is isometric, $|\psi| = 1$. \Box

In the following, we characterize isometric weighted composition operators on \mathcal{F}^2 generally.

Lemma 2.11. Let ψ be an analytic function on \mathbb{C}^N and $\varphi(z) = Az+b$, $z \in \mathbb{C}^N$ with A an operator on \mathbb{C}^N , $|A| \leq 1$ and $b \in \mathbb{C}^N$. If $C_{\psi,\varphi}$ is an isometric operator on \mathcal{F}^2 , then A is invertible.

Proof. Let $b = b_1 + b_2$ with $b_1 \in \operatorname{ran}(A)$, $b_2 \in \operatorname{ran}(A)^{\perp} = \ker(A^*)$. Then there exists $p \in \mathbb{C}^N$ such that $b_1 = Ap$.

Since $C_{\psi,\varphi}$ is isometric, it follows from Lemma 2.4 that $U_p C_{\psi,\varphi} = C_{\psi_1,\varphi_1}$ is isometric also. Here

$$\varphi_1(z) = (\varphi \circ \varphi_p)(z) = Az + b_2, \ z \in \mathbb{C}^N.$$

So we have

$$\|\psi_1\|^2 = \|C_{\psi_1,\varphi_1}K_0\|^2 = \|K_0\|^2 = 1$$

and

$$\begin{aligned} \|\psi_1\|^2 \exp(|b_2|^2) &= \frac{1}{(2\pi)^N} \int_{\mathbb{C}^N} |\psi_1(z)|^2 |\exp(\frac{\langle z, A^*b_2 \rangle + \langle b_2, b_2 \rangle}{2})|^2 e^{-\frac{|z|^2}{2}} dm_{2N}(z) \\ &= \|C_{\psi_1,\varphi_1} K_{b_2}\|^2 = \|K_{b_2}\|^2 \\ &= \exp(\frac{|b_2|^2}{2}), \end{aligned}$$

which implies that $b_2 = 0$. It follows from Lemma 2.9 that A is invertible. \Box

Proof of Theorem 1.1. The sufficiency is obvious.

Necessity. Since $C_{\psi,\varphi}$ is an isometric operator on \mathcal{F}^2 , $C_{\psi,\varphi}$ is bounded. By Lemma 2.3, there exists an operator A on \mathbb{C}^N , $|A| \leq 1$ and $b \in \mathbb{C}^N$ such that

$$\varphi(z) = Az + b, \ z \in \mathbb{C}^N$$

By Lemma 2.11, A is invertible and A^{-1} exists. Let $p = A^{-1}b$, $\psi_1 = k_p(\psi \circ \varphi_p)$, $\varphi_1 = \varphi \circ \varphi_p$, then $U_p C_{\psi,\varphi} = C_{\psi_1,\varphi_1}$ and

$$\varphi_1(z) = \varphi(\varphi_p(z)) = A(z-p) + b = Az, \ z \in \mathbb{C}^N.$$

Since $C_{\psi,\varphi}$ is isometric and U_p is unitary, C_{ψ_1,φ_1} is isometric also. By Proposition 2.10 and Lemma 2.6, C_{ψ_1,φ_1} is a unitary operator on \mathcal{F}^2 , so is $C_{\psi,\varphi}$.

The main result shows that an isometric weighted composition operator on the Fock space is a unitary. In the end, we summarize some known classes of weighted composition operators on the Fock space which are essentially unitary operators.

Theorem 2.12. Let ψ be a nonzero analytic function on \mathbb{C}^N and φ be an analytic self-map of \mathbb{C}^N . If $C_{\psi,\varphi}$ is bounded on \mathcal{F}^2 , then the following statements are equivalent.

(1) $C_{\psi,\varphi}$ is nonzero multiples of a unitary operator.

(2) $C_{\psi,\varphi}$ is nonzero multiples of an isometric operator.

- (3) $C_{\psi,\varphi}$ is nonzero multiples of a co-isometric operator.
- (4) $C_{\psi,\varphi}$ is invertible.
- (5) $C_{\psi,\varphi}$ is Fredholm.
- Proof. The equivalence of (1) and (2) is the conclusion of Theorem 1.1.The equivalence of (1) and (3) is the conclusion of [14, Corollary 2.6].The equivalence of (1) and (4) is the conclusion of [14, Theorem 1.1].We only need to prove that (5) implies (4).

For N = 1, it is the conclusion of [3, Theorem 1.1]. In the following, we assume that $N \ge 2$ and $C_{\psi,\varphi}$ is a Fredholm operator on \mathcal{F}^2 .

If $\psi(z) = 0$ for $z \in \mathbb{C}^N$, then

$$C^*_{\psi,\varphi}K_z = \overline{\psi(z)}K_{\varphi(z)} = 0,$$

which implies that $K_z \in \ker(C^*_{\psi,\varphi})$. Since $C_{\psi,\varphi}$ is a Fredholm operator, $\ker(C^*_{\psi,\varphi})$ is finite-dimensional. It follows that ψ has at most finite number of zeros. Since ψ is an analytic function of N variables and $N \geq 2$, it follows from the well-known result "No analytic function of more than one complex variable has any isolated zeros" [11, Remarks 14.1.4] that ψ has no zeros.

Since ker $(C^*_{\psi,\varphi})$ is finite dimensional, φ is not a constant vector map. Let $\varphi(z) = \varphi(w)$ for $z, w \in \mathbb{C}^N, z \neq w$, then there are infinitely disjoint subsets $\{p_n\}$ and $\{q_n\}$ in \mathbb{C}^N such that $\varphi(p_n) = \varphi(q_n), n = 1, 2, \ldots$ So we have

$$C^*_{\psi,\varphi}\left(\frac{K_{p_n}}{\psi(p_n)} - \frac{K_{q_n}}{\psi(q_n)}\right) = 0,$$

which contradicts to the condition that $\ker(C^*_{\psi,\varphi})$ is finite-dimensional. It follows that φ is injective.

By the boundedness of $C_{\psi,\varphi}$ and Lemma 2.5, there exists an operator A on \mathbb{C}^N with $|A| \leq 1, b \in \mathbb{C}^N$ and a positive constant M such that

$$\begin{split} \varphi(z) &= Az + b, \\ |\psi(z)|^2 \exp(\frac{|\varphi(z)|^2 - |z|^2}{2}) \leq M, \ z \in \mathbb{C}^N. \end{split}$$

The injectiveness of φ implies that A is injective. As an injective operator on \mathbb{C}^N , A is invertible.

Since $C_{\psi,\varphi}$ is a Fredholm operator on \mathcal{F}^2 , there exist bounded operator T and compact operator S on \mathcal{F}^2 such that

$$\Gamma(C_{\psi,\varphi})^* = I + S,$$

where I is the identity on \mathcal{F}^2 . Hence

(2.5)
$$||TC^*_{\psi,\varphi}k_z|| \ge ||k_z|| - ||Sk_z|| = 1 - ||Sk_z||, \ z \in \mathbb{C}^N.$$

Since S is compact on \mathcal{F}^2 and k_z weakly converges to 0 as $|z| \to \infty$, we have

$$\lim_{|z| \to \infty} \|Sk_z\| = 0$$

So there exists a positive constant r such that

(2.6)
$$||Sk_z|| < \frac{1}{2}, |z| > r.$$

By $(C_{\psi,\varphi})^* K_z = \overline{\psi(z)} K_{\varphi(z)}$, we obtain

(2.7)
$$\|T\|^{2} |\psi(z)|^{2} \exp(\frac{|\varphi(z)|^{2} - |z|^{2}}{2}) = \|T\|^{2} |\psi(z)|^{2} \frac{\|K_{\varphi(z)}\|^{2}}{\|K_{z}\|^{2}}$$
$$= \|T\|^{2} \frac{\|C_{\psi,\varphi}^{*}K_{z}\|^{2}}{\|K_{z}\|^{2}}$$
$$\geq \|T(C_{\psi,\varphi})^{*}k_{z}\|^{2}.$$

Let $L' = \frac{1}{4||T||^2}$, it follows from (2.5)-(2.7) that

$$L' \le |\psi(z)|^2 \exp(\frac{|\varphi(z)|^2 - |z|^2}{2}), \ |z| \ge r.$$

Since ψ has no zeros, $|\psi(z)|^2 \exp(\frac{|\varphi(z)|^2 - |z|^2}{2})$ is a positive continuous function on $\{z \in \mathbb{C}^N : |z| \leq r\}$. So there exists a positive constant l such that

$$l \le |\psi(z)|^2 \exp(\frac{|\varphi(z)|^2 - |z|^2}{2}), \ |z| \le r.$$

Let $L = \min\{L', l\}$, then

$$L \le |\psi(z)|^2 \exp(\frac{|\varphi(z)|^2 - |z|^2}{2}) \le M, \ z \in \mathbb{C}^N.$$

By [13, Theorem 1], $C_{\psi,\varphi}$ is invertible.

References

- R. F. Allen and F. Colonna, On the isometric composition operators on the Bloch space in Cⁿ, J. Math. Anal. Appl. 355 (2009), no. 2, 675–688.
- [2] J. Bonet, M. Lindström, and E. Wolf, Isometric weighted composition operators on weighted Banach spaces of type H[∞], Proc. Amer. Math. Soc. **136** (2008), no. 12, 4267– 4273.
- [3] L. Feng and L. Zhao, A note on weighted composition operators on the Fock space, Commun. Math. Res. 31 (2015), no. 3, 281–284.
- [4] F. Forelli, The isometries of H^p, Canad. J. Math. 16 (1964), 721–728.
- [5] C. J. Kolaski, Isometries of weighted Bergman spaces, Canad. J. Math. 34 (1982), no. 4, 910–915.
- [6] R. Kumar and J. R. Partington, Weighted composition operators on Hardy and Bergman spaces, Recent advances in operator theory, operator algebras, and their applications, 157–167, Operator Theory: Advances and Applications 153, Birkhäuser, Basel, 2005.
- T. Le, Normal and isometric weighted composition operators on the Fock space, Bull. Lond. Math. Soc. 46 (2014), no. 4, 847–856.
- [8] M. J. Martín and D. Vukotić, Isometries of the Dirichlet space among the composition operators, Proc. Amer. Math. Soc. 134 (2006), no. 6, 1701–1705.
- [9] _____, Isometries of the Bloch space among the composition operators, Bull. Lond. Math. Soc. 39 (2007), no. 1, 151–155.

1793

- [10] _____, Isometries of some classical function spaces among the composition operators, Recent Advances in Operator-related Function Theory, 133–138, Contemporary Mathematics, 393, Amer. Math. Soc., Providence, RI, 2006.
- [11] W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^n , New-York, Springer-Verlag, 1980.
- [12] L. Zhao, Unitary weighted composition operators on the Fock space of \mathbb{C}^n , Complex Anal. Oper. Theory 8 (2014), no. 2, 581–590.
- [13] _____, Invertible weighted composition operators on the Fock space of \mathbb{C}^N , J. Funct. Spaces **2015** (2015), Art. ID 250358, 5 pp.
- [14] $\underline{\qquad}$, A note on invertible weighted composition operators on the Fock pace of \mathbb{C}^N , J. Math. Res. Appl. **36** (2016), no. 3, 359–362.

LIANKUO ZHAO SCHOOL OF MATHEMATICS AND COMPUTER SCIENCE SHANXI NORMAL UNIVERSITY LINFEN, 041004, P. R. CHINA *E-mail address*: liankuozhao@sina.com