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WEIGHTED COMPOSITION
OPERATORS BETWEEN LP-SPACES

M. R. JABBARZADEH

ABSTRACT. In this paper we will consider the weighted composi-
tion operator W = uC,, between two different LP(X, X, i) spaces,
generated by measurable and non-singular transformations ¢ from
X into itself and measurable functions u on X. We characterize
the functions v and transformations ¢ that induce weighted com-
position operators between LP-spaces by using some properties of
conditional expectation operator, pair (u,p) and the measure space
(X, %, u). Also, Fredholmness of these type operators will be inves-
tigated.

1. Preliminaries and notations

Takagi in [9] has characterized the boundedness of multiplication and
composition operators on LP(X) spacesin1 < p < gand.1 < ¢q < p cases.
In [4], boundedness of weighted composition operators has been inves-
tigated in 1 < ¢ < p < oo case. In the next section we will give the
necessary and sufficient condition for boundedness of weighted compo-
sition operators in 1 < p < g < oo case. In section 3 we investigate a
necessary and sufficient condition for a weighted composition operator
W = uC, to be Fredholm. Fredholm weighted composition operators
have been studied by H. Takagi[8] in the LP(X) setting. By using some
properties of conditional expectation operator we omit the continuity
hypothesis of M,. In other words, we do not require that u € L*®(%).
This is stated as a hypothesis in [8].

Let (X, X, 1) be a o-finite measure space. By L(X), we denote the
linear space of all ¥-measurable functions on X. When we consider any
sub-g-algebra A of ¥, we assume they are completed; i.e., u(A) =
implies B € A for any B C A. For any o-finite algebra 4 C ¥ and
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1 < p < oo we abbreviate the LP-space LP(X, A, pu4) to LP(A), and
denote its norm by ||-||,. We define the support of a measurable function
faso(f)={z € X; f(z) # 0}. We understand LP(.A) as a subspace of
LP(¥) and as a Banach space. All comparisons between two functions
or two sets are to be interpreted as holding up to a p-null set. An atom
of the measure p is an element A € ¥ with p(A) > 0 such that for each
F € %, if F C A then either u(F) = 0 or p(F) = p(A). It is easy to
see that every A-measurable function f € L(X) is constant p-almost
everywhere on an atom A. So for each f € L(X) and each atom A we
have [, fdu = f(A)u(A). A measure with no atoms is called non-atomic.
We can easily check the following well known facts (see [11]):

(a) Every o-finite measure space (X, %, u) can be decomposed
into two disjoint sets B and Z, such that p is a non-atomic over
B and Z is a countable union of atoms of finite measure. So we
can write X = BU (UneN An) , where {Ap}nen is a countable
collection of disjoint atoms and B is a non-atomic set.

(b) Suppose 1 < p < ¢ < oo. If an A-measurable set K is non-
atomic and that p(K) > 0, there exists a function fo € LP(A)
such that [y |fol?%du < oo.

Associated with each o-algebra A C X, there exists an operator
E(-|A) = EA(-) on the set of all non-negative measurable functions
f or on the set of all functions f € LP(X), 1 < p < 0o, that is uniquely
determined by the conditions :

(i) BA(f) is A-measurable, and

(ii) if A is any A-measurable set for which [, fdu exists, we have
Jafdu= [, EA(f)dp.

The operator E4 is called the conditional expectation operator. This
operator is at the central idea of our work, and we list here some of its
useful properties: :

El. If g is A-measurable then EA(fg) = EA(f)g.
E2. EA(1) = 1.

E3. |EA(f9)|* < BA(IF17) EA(l9%)-

E4. If f > 0, then EA(f) > 0.

The properties E1 and E2 imply that E“(.) is an idempotent and
EA(LP(T)) = LP(A). So when A = ¥, we have E* = I where [ is the
identity operator. Suppose that ¢ is a mapping from X into X which is
measurable, (i.e., o~}(X) C £) and pop! is absolutely continuous with
respect to p (1o o™t <« u). Let h be the Radon-Nikodym derivative,
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h = duo ¢~ /du. If we put A = ¢~ 1(X), it is easy to show that for each
non-negative Y-measurable function f or for each f € LP(X) (p > 1),
there exists a Y-measurable function g such that B~ ®)(f) = go ¢.
We can assume that the support of g lies in the support of h, and there
exists only one g with this property. We then write g = B¢ ®) (flop~t,
though we make no assumption regarding the invertibility of ¢ (see [2]).
For a deeper study of the properties of E see the paper [6].

Take a function u in L{X) and let ¢ : X — X be a non-singular
measurable transformation; i.e. u(@~1(A)) =0 for all A € ¥ such that
pu(A)y = 0. Then the pair (u,y) induces a linear operator uC, from
LP(X) into L(X) defined by

uCp(f) =u.fop, (f€LP(X)).

Here, the non-singularity of ¢ guarantees that uCy, as a mapping of
equivalence classes of functions on support u is well defined. If uC,
takes LP(X) into LI(X) or uC, is equivalently bounded, then we say
that uC, is a weighted composition operator from LP(3) into L%(X)
(1 < p,q < o0). When u = 1, we just have the composition operator C,
defined by C,(f) = f o ¢. For more details see [7].

2. Boundedness of weighted composition operators in 1 <
p < g < o0 case

Let 1 < p < g < oo. In this section we characterize the functions u
and transformations ¢ that induce weighted composition operators uC,, :
LP(X) — L9(X) by using some properties of conditional expectation
operator, pair (u, ¢) and the measure space (X, X, u).

Case: 1<g<p<x

Let 1 < ¢ < p < oo. In [4] we examined the set
Kpg = Kpg(AX) = {u € LX) : uLP(A) C LYZ)}.

Kpq(A, L) is a vector subspace of L(X). Also note that if 1 <g=p <
00, then L®(X) C K, (A, E) and K, ,(2, E) = L>®(X).

For u € L(X), let M,, from L?(A) into L(X) defined by M, f = u.f
be the corresponding linear transformation. An easy consequence of the
closed graph theorem and the result guaranteeing a pointwise convergent
subsequence for each LP convergent sequence assures us that for each u €
Kp,q(A, %), the operator M, : LP(A) — LI(X) is a bounded multiplica-
tion operator. Boundedness of weighted composition operators on LP(3)
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spaces has already been studied in [3]. Namely, for a non-singular mea-
surable transformation ¢ and complex valued measurable weight func-
tion u on X, uC,, is bounded if and only if RE®™ &) (juP)op™! € L®().
The following two results are established in [4].

THEOREM 2.1. Suppose 1 < g < p < o0 and u € L(X). Then
1
u € K, 4 if and only if (EA(|u|?))s € L"(A), where % +1= é—.

THEOREM 2.2. Supposel < g < p < oo and %—1—% = %. Letu € L(X)
and ¢ : X — X be a non-singular measurable transformation. Then the
pair (u, ) induces a weighted composition operator uC, from L?(X)

into LY(X) if and only if J = hE“’_l(E)(|u|q) ople Lg(E).

Case: 1 <p<g<oo

In this case we shall find the relationship between a o-finite algebra
A C ¥ and the set of multiplication operators which map LP(A) into
LY(X). Our first task is the description of the members of Kp 4 in terms
of the conditional expectation induced by A.

THEOREM 2.3. Suppose 1 < p < ¢ < oo and u € L(X). Then
u € K4 if and only if u satisfies the following two conditions:

(i) EA(Ju|?) =0 on B.

(1) suppen (EA(Iu(An)9))*/u(An) < 0o, where ; + 1 = 1.

Proof. To prove the theorem, we adopt the methods used by
Axler [1] and Takagi [9]. Suppose that both (i) and (ii) hold. Put

b = sup,en (EA(]u(An)]q))g/u(An). Then, for each f € LP(A) with
I fll, <1 we have

luflly= [ EAQuifda

- /A Al

neN

Allu g a : 4
-y ((E (ut2) ) ) (FAPu(A)

neN H(An)
<0 3 (1F(Aa)Pu(An)

neN

=bs Yy /An | fPdp

nenN
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<t [ 17Pdy
X

< 2SI

< bs.
Hence u € Kp4. Conversely, suppose that u € K, 4. So the operator
M, : L*(A) — LI(X) given by M, f = u.f is a bounded linear operator
on X = BU (Upen An). Assume that p({z € B : EA(ju(x)|9) #
0}) > 0. Then there exists a positive number ¢ such that u({x € B :
EA(Ju(z)|9) > 6}) > 0. Put K = {z € B: EA(Ju(x)|?) > 6}. Since K
is non-atomic, by (b) we can find fy € L?(A) such that [, |fo|?%dy = oo.
Then we have

o> 1Mufolly> [ BAQuilfoltda 28 [ |flrde = oo,

which is a contradiction. In other words, E4(Ju|?) = 0 on B. Now we

prove that (i) also holds. For any n € N put fr, = (1/u(4n)?)x4,- It
is clear that f, € LP(A) and || fy|lp = 1. Hence we have

1

(BA(u(An))7 _ {__1_EA ey };
MEME A (lu(An)|")1(An)

_ L e :
= {u(An)% AnE (I |)dﬂ}

-{/. EA(IUnt”)du}%

= ”Mufn”q < “Mu”

Since this holds for any n € N, it follows that b < ||[M,]|* < oo. d

The next corollary follows immediately from Theorem 2.3 and the
known fact that when A = ¥ then E“ = I (identity operator).

COROLLARY 2.4. Suppose 1 < p < q < oo and u € L(X). Then the
operator M,, from LP(X) into L1(X) is a bounded linear operator if and
only if u satisfies the following two conditions:

(i) u=0o0n B,
(ii) supnen [u(An)|*/1(An) < oo, where § + 5 = 3

P
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In the following theorem we give a necessary and sufficient condi-
tion for boundedness of weighted composition operators from LP(X) into
LY(X), where 1 <p < ¢ < 0.

THEOREM 2.5. Supposel <p<qg< oo, u€ L(X)andyp: X — X is
a non-singular measurable transformation. Then the pair (u, ) induces
a weighted composition operator uC,, from LP(X) into LI(X) if and only
if the following conditions hold:

(i) J=0o0n B,
(i) suppen |J(An)|e/pu(An) < co, where =1

+

WY -
@ |t

Proof. Let f € LP(X). We will have

[uCo f1I§ = /hE“’_l(E)(IUI") o~ f|%du = /I\"/jflqdu = | M g5 fI3-
So by Corollary 2.4 the theorem holds. |

COROLLARY 2.6. Under the same assumptions as in Theorem 2.5,
¢ induces a composition operator C,, : LP(X) — L4(X) if and only if the
following conditions hold:

(i) h=0on B,

(if) suppen [A(An)le/1(An) < oo, where % + % = %-

3. Fredholm weighted composition operators on LP-spaces

: Let1§p<oo,1§q<ooand%+%=1. Then it is well-known
fact that each g* € LI(X) defines a bounded linear functional Fy« on
LP(3) by

Fr(f) = [fodn (f € I2().

Moreover, the mapping g* — Fg+ is an isometry from LI(X) onto
(L?)*(X2), so the norm dual of LP(X) can be identified with LI(¥X). In
the following theorem we compute the adjoint of ©C,,.

PROPOSITION 3.1. Let W = uC,, be a weighted composition operator
on LP(%) and 1 +1 = 1. Then W*g* = hE(u.g*)op™" for all g* € LY(Z).
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Proof. Take A € ¥ such that 0 < p(A) < co. For g* € LI(¥) consider
a bounded linear functional Fy« on LP(X) as above. Then we have

(W*Fy)(xa) = Fy (Wyxa) = / (Wxa)g" du

= /U-XA op gtdu= /hE(U-g*) 0 0™ xa dp = Fhpu.g*)op-1XA-

Hence, W*Fy« = Fp(y.g*)op-1- After identifying (LP)*(¥) with LI(X)
and g* with F,«, we can write W*g* = hE(u.g*) o ¢! for all g* €
L9(5). O

In the following theorem we investigate a necessary and sufficient
condition for a weighted composition operator W = uC,, to be Fredholm.
The proof of the theorem follows a similar method of proof as was used
to prove Theorem 4.2 in [5] which is similar to a theorem of Takagil8].
We use the symbols V(W) and R(W) to denote the kernel and the range
of W, respectively. We recall that W is said to be a Fredholm operator
if R(W) is closed and if dim N (W) < oo and codim R(W) < co.

THEOREM 3.2. Suppose that u is a non-atomic measure. Let W =
uC, be a weighted composition operator on LP(X). Then W is a Fred-

holm operator if and only if J = hE‘P_l(E)(]uP’) o™l > § almost every
where on X for some § > 0.

Proof. Suppose that W is a Fredholm operator. We first claim that
W is onto and takes an f, € LP(X)\R(W). Since R(W) is closed, we can
find a functional Ly on LP(X) corresponding to g* € L(X) (% + é =1)
which is defined as

(1) Lg(f) = /X fg*du such that Ly« (fo) = 1 and Ly (R(W)) = 0.

Hence the set E5 = {x € X : Re(fog*)(z) > &} must have positive
measure for some ¢ > 0. Since p is non-atomic we can choose a sequence
{E,} of subsets of Fs with 0 < u(E,) < u(Es) and E, N E,, = 0 for
n # m. Let g} = xg,g9*. Then g}, € L4(X) and is nonzero because

Re / foghdu > Su(EBy) > 0.
X

Evidently for any f € LP(X), xg, f isin LP(¥), and so the right equality
(1) yields

/f(W*g = [ hB(ug) o ¢ ~tdu = / FB(ug") 0 o o~
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/ fopE(ug®)du = / ug® fopdu = / g uf op(xE, op)dp
¢~ 1(En) = 1(En) X

/ g u(fxe,) o pdu = / W (fxe,)du = 0.
X X

This implies that g} € N (W*). Thus the sequence {g}} forms a lin-
early independent subset of N(W*). This contradicts the fact that
dim N (W*) = codimR(W) < oco. Hence W is onto. Next we put
Z(J) = {z : J(z) = 0}. Now we claim that u(Z(J)) = 0. For, if
w(Z(J)) > 0, there exists a subset F' of Z(J) with 0 < u(F) < oco. If
xr € R(W), then there exists f € LP(X) such that xp = W f. Then

u(F) = [ 1P [ I\ipan=o

and this is a contradiction. So xr € LP(X) \ R(W), which contradicts
the fact that W is onto. Also since u(Z(J)) = 0 and pop™! < u we
have u(Z(J o)) =0. For each n=1,2,..., let

|J © ¢lloo
(n+1)?

and H = {n : pu(Hy) > 0}. Then the H,’s are pairwise disjoint and
X =, ; Hp. Define

[ { (J o o(z)/u(Hy))? if z € Hy, neH,

<Jop(r) <

Hn:{xeX: ——HJO(’DHOO},

n2

0 elsewhere.

Then

_ J o p(z)
/xmpd#_ T;{/Hn W) "

17 0 ¢l o 1
< ZT“—SIIJWHOOZEQO,
neH n=1

so f € LP(X). If g € LP(X) is such that Wg = f, then

| BT O uplgl? o o = [ B P
. X X
It follows that

/ RE?™ ) (|ulP) 0 o~ glPdp = / RE? " O £7) 0 o~ dp.
X X
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Thus |g|? = RE?T & (|f|P) o o™1/J on off Z(J). Since u(Z(J)) = 0, it
follows that

e E) (| FIP -1 w‘l(E) P)
/X,g,pdﬂ___/XE (gl)o‘#’ d,uogo /E (1£17)

Joy
P d
:/ |/ dp = p =31
xJogp o5 JH, B(Hn)
This implies that H must be finite set. Thus there is an n, such that
n > n, implies pu(Hy) = 0 and so

u({meX:Jocp(x)g%"ﬁD =#<D HnUZ(Jogo)> = 0.

n=ng

Therefore we obtain J o ¢ > ||J o ¢|leo/ ng almost everywhere on X.
Since N (W) = LP(Z(J)), i(Z(J)) =0 so dim N (W) = {0} and then ¢
is essentially surjective. Hence J > ||J||oo/n2 (= &) almost everywhere
on X.

Conversely, suppose that J > § almost everywhere for some § > 0.
Since h > 0 and for each f € LP(Z), ([Wfl, = (fx JIfPdu)/P >
8P| f|lp, it follows that W and C,, are injective and R(W) is closed.
Also since W = M,,C, we deduce that M, is injective and so u(Z(u)) =
0. Now let g* € N(W*). Then W*g* = hE®” ®(ug*) 0 p~! = 0 and
so B¢ (® (ug*) o o1 = 0. It follows that ¢g* = 0. Thus codim R(W) =
dim NV (W*) = 0. Therefore the theorem is proved. O

REMARK 3.3. One of the interesting features of a weighted composi-
tion operator is that the multiplication operator alone may not define a
bounded operator between two LP(X) spaces. As an example, let X be
(0,1), £ be the Borel sets, and u be the Lebesgue measure. Let ¢ be the
map ¢(z) = ¥z and u(z) = 1/+/z on (0,1). Then M, dos not define a
bounded operator from L!(X) into L'(X). However a simple computa-
tion shows that J(z) = 3\/z € L*°(X) and so W f(z) = 1//2f(¥x) is
bounded operator on L!(X).
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