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A WEIGHTED COMPOSITION OPERATOR ON
THE LOGARITHMIC BLOCH SPACE

Shanli Ye

Abstract. We characterize the boundedness and compactness of the
weighted composition operator on the logarithmic Bloch space LB =
{f ∈ H(D) : supD(1 − |z|2) ln( 2

1−|z| )|f ′(z)| < +∞} and the little loga-

rithmic Bloch space LB0. The results generalize the known corresponding
results on the composition operator and the pointwise multiplier on the
logarithmic Bloch space LB and the little logarithmic Bloch space LB0.

1. Introduction

Let D = {z : |z| < 1} be the open unit disk in the complex plane C, and
H(D) denote the set of all analytic functions on D. For f ∈ H(D), let

‖f‖LB = sup
{

(1− |z|2) ln
(

2
1− |z|

)
|f ′(z)| : z ∈ D

}
.

As in [10, 12], the logarithmic Bloch space LB consists of all f ∈ H(D)
satisfying ‖f‖LB < +∞ and the little logarithmic Bloch space LB0 consists of
all f ∈ H(D) satisfying lim|z|→1−(1 − |z|2) ln( 2

1−|z| )|f ′(z)| = 0. It is known
that with the norm

‖f‖L = |f(0)|+ ‖f‖LB,

LB is a Banach space and LB0 is a closed subspace of LB.
An analytic map ϕ : D → D induces the composition operator Cϕ on H(D),

defined by
Cϕf = f ◦ ϕ

for f analytic on D. It is interesting to provide a function theoretic char-
acterization when ϕ induces a bounded or compact composition operator on
various function spaces. The boundedness and compactness of Cϕ on the clas-
sical Bloch space B were described by Madigan and Matheson in [4]. On the
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logarithmic Bloch space LB, this operator is studied by Yoneda in [12]. On the
other various function spaces, one may see in [3, 7, 8, 11, 13].

In this paper we study the weighted composition operator uCϕ, which can
be regarded as a generalization of a multiplication operator and a composition
operator.

For a fixed analytic function u on D and an analytic self-map ϕ : D → D,
define a weighted composition operator uCϕ as follows:

uCϕf = uf ◦ ϕ, f ∈ H(D).

This operator may be firstly studied on the Bloch space and the little Bloch
space in [6]. In [5], Ohno, Stroethoff, and Zhao got the characterization on ϕ
and u for the weighted composition operator is bounded or compact between the
α-Bloch spaces. Especially, for ϕ(z) = z, this operator is a pointwise multiplier
operator induced by u. The pointwise multiplier operator was studied on the
Bloch spaces [1], on the α-Bloch spaces [14], on the logarithmic Bloch [10], to
mention only a few related works.

Here we will consider the boundedness and the compactness of the weighted
composition operator uCϕ on the logarithmic Bloch space LB and the logarith-
mic little Bloch space LB0. In what follows C will stand for positive constants
not depending on the functions being considered, but whose value may change
from line to line.

2. Auxiliary results

In order to prove the main results of this paper, we need some auxiliary re-
sults. The first four lemmas may be found in [10]. For the purpose of reference,
we give them here.

Lemma 2.1. If f ∈ LB, then

(i) |f(z)| ≤ (2 + ln(ln 2
1−|z| ))‖f‖L;

(ii) |f(z)| ≤ 2 ln(ln 2
1−|z| )‖f‖L, where |z| ≥ r∗ = 1− 2

ee2 .

Lemma 2.2. If f ∈ LB0, then lim|z|→1−
|f(z)|

ln(ln 2
1−|z| )

= 0.

Lemma 2.3. Let f(z) =
(1−|z|) ln 2

1−|z|
|1−z| ln 4

|1−z|
, z ∈ D. Then |f(z)| < 2.

Lemma 2.4. Let 0 ≤ t ≤ 1, f(z) =
(1−|z|) ln 2

1−|z|
(1−|tz|) ln 2

1−|tz|
, z ∈ D. Then |f(z)| < 2.

Lemma 2.5. Suppose f ∈ LB. Then ‖ft‖L ≤ 4‖f‖L , 0 < t < 1, where
ft(z) = f(tz).

The result is easily proved by lemma 2.4.
Using the same idea of [9], we obtain the following result.
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Lemma 2.6. Let f ∈ H(D). Then

‖f‖LB ≈ sup
a∈D

∫

D

|f ′(z)|(1− |z|2)−1 ln
(

2
1− |z|

)
(1− |ϕa(z)|2)2 dA(z),

where ϕa(z) = (a − z)/(1 − az) is the Möbius transformation of D, dA(z)
denotes the Lebesgue area measure on D, and ≈ means the equivalence of two
quantities, that is, the quotient of the left side and the right side lies between
two positive constants unless both are zero.

Proof. Noting that

(1− |z|2)|ϕ′a(z)| = 1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− az|2
and

z ∈ E

(
a,

1
2

)
,

{
z ∈ D : |ϕa(z)| < 1

2

}
=⇒ 1− |z|2 ≈ 1− |a|2

by p. 61 in [15], we obtain that

|f ′(a)| = |f ′(ϕa(0))|

≤ 4
π

∫

|z|< 1
2

|f ′(ϕa(z))| dA(z)

=
4
π

∫

E(a, 1
2 )

|f ′(z)||ϕ′a(z)|2 dA(z)

≤ 4
π(1− |a|2)

∫

E(a, 1
2 )

|f ′(z)|(1− |z|2)−1(1− |ϕa(z)|2)2 dA(z)

≤ 4
π(1− |a|2) ln( 2

1−|a| )

∫

E(a, 1
2 )

|f ′(z)|(1− |z|2)−1 ln
(

2
1− |z|

)
(1− |ϕa(z)|2)2 dA(z) .

Hence

(1− |a|2) ln
(

2
1− |a|

)
|f ′(a)|

≤ 4
π

sup
a∈D

∫

D

|f ′(z)|(1− |z|2)−1 ln
(

2
1− |z|

)
(1− |ϕa(z)|2)2 dA(z),

i.e.,

‖f‖LB ≤ 4
π

sup
a∈D

∫

D

|f ′(z)|(1− |z|2)−1 ln
(

2
1− |z|

)
(1− |ϕa(z)|2)2 dA(z).

Conversely, by Lemma 4.2.2 of [15], we obtain that

sup
a∈D

∫

D

|f ′(z)|(1− |z|2)−1 ln
(

2
1− |z|

)
(1− |ϕa(z)|2)2 dA(z)

≤ ‖f‖LB sup
a∈D

∫

D

(1− |a|2)2
|1− az|4 dA(z) ≤ C‖f‖LB.
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Hence

‖f‖LB ≈ sup
a∈D

∫

D

|f ′(z)|(1− |z|2)−1 ln
(

2
1− |z|

)
(1− |ϕa(z)|2)2 dA(z).

¤

Lemma 2.7. Suppose uCϕ : LB0 → LB0 is a bounded operator. Then uCϕ :
LB → LB is a bounded operator.

Proof. Suppose uCϕ is bounded in LB0. It is clear that for any f ∈ LB, we
have ft ∈ LB0 for every 0 < t < 1. According to Lemma 2.5, we obtain that

‖uCϕ(ft)‖L ≤ ‖uCϕ‖‖ft‖L ≤ 4‖uCϕ‖‖f‖L < +∞.

For the simple, we write ω(|z|) = (1− |z|2)−1 ln( 2
1−|z| )(1− |ϕa(z)|2)2 > 0. By

Lemma 2.6 and Fatou’s lemma, we obtain that

‖uCϕf‖L

= |u(0)f(ϕ(0))|+ ‖uCϕf‖LB
≤ |u(0)f(ϕ(0))|+ C sup

a∈D

∫

D

|u(z)f ′(ϕ(z))ϕ′(z) + u′(z)f(ϕ(z))|ω(|z|) dA(z)

= |u(0)f(ϕ(0))|+ C sup
a∈D

∫

D

lim
t→1−

|u(z)f ′(tϕ(z))tϕ′(z) + u′(z)f(tϕ(z))|ω(|z|) dA(z)

≤ lim
t→1−

|u(0)f(tϕ(0))|+ C sup
a∈D

lim inf
t→1−

∫

D

|(uCϕ(ft))′(z)|ω(|z|) dA(z)

≤ lim
t→1−

|u(0)ft(ϕ(0))|+ C lim inf
t→1−

‖uCϕft‖LB
≤ C‖uCϕ(ft)‖L

≤ C‖uCϕ‖‖f‖L < +∞.

Hence uCϕ : LB → LB is a bounded operator. ¤

3. Boundedness of uCϕ

In this section we characterize bounded weighted composition operators on
the logarithmic Bloch space LB and the little logarithmic Bloch space LB0.

Theorem 3.1. Let u be an analytic function on the unit disc D and ϕ an
analytic self-map of D. Then uCϕ is bounded on the logarithmic Bloch space
LB if and only if the following are satisfied:

(1) sup
z∈D

(1− |z|2) ln
(

2
1− |z|

)
ln

(
ln

2
1− |ϕ(z)|

)
|u′(z)| < +∞;

(2) sup
z∈D

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|ϕ′(z)u(z)| < +∞.
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Proof. Suppose uCϕ is bounded on the logarithmic Bloch space LB. Then we
can easily obtain the following results by taking f(z) = 1 and f(z) = z in LB
respectively:

(3) u ∈ LB;

(4) K = sup
z∈D

(1− |z|2) ln
(

2
1− |z|

)
|ϕ′(z)u(z)| < +∞.

Fix w ∈ D, we take the test function

(5) fw(z) = 2 ln ln
4

1− ϕ(w)z
− 1

ln ln 4
1−|ϕ(w)|2

(
ln ln

4
1− ϕ(w)z

)2

for z ∈ D. Then

f ′w(z) = 2ϕ(w)
(1− ϕ(w)z) ln 4

1−ϕ(w)z

− 2 ln ln
4

1− ϕ(w)z
ϕ(w)

(1− ϕ(w)z) ln 4

1−ϕ(w)z

1
ln ln 4

1−|ϕ(w)|2
.

By Lemmas 2.3 and 2.4 we obtain that fw ∈ LB and ‖fw‖L ≤ 16 with a directly
calculation. Since f ′w(ϕ(w)) = 0 and fw(ϕ(w)) = ln ln 4

1−|ϕ(w)|2 , it follows that

(1− |w|2) ln
(

2
1− |w|

)
|u′(w)fw(ϕ(w))|

= (1− |w|2) ln
2

1− |w| |(uCϕfw)′(w)|
≤ ‖uCϕfw‖LB ≤ ‖uCϕ‖‖fw‖L ≤ 16‖uCϕ‖ < +∞.

We have

sup
w∈D

(1− |w|2) ln
(

2
1− |w|

) ∣∣∣∣ln
(

ln
4

1− |ϕ(w)|2
)∣∣∣∣ |u′(w)| ≤ 16‖uCϕ‖ < +∞.

So

sup
z∈D

(1− |z|2) ln
2

1− |z|

∣∣∣∣ln
(

ln
2

1− |ϕ(z)|
)∣∣∣∣ |u′(z)| < +∞.

Hence (1) holds.
Next, fix w ∈ D with w 6= 0, let

(6) fw(z) =
∫ z

0

(
1− w2

|w|2 z2

)−1
(

ln
4

1− w2

|w|2 z2

)−1

dz.

By Lemma 2.3, we have

sup
z1∈D

(1− |z1|2)
(

ln
2

1− |z1|2
)
|1− z2

1 |−1

∣∣∣∣ln
4

1− z2
1

∣∣∣∣
−1

< 2 < +∞,

applying z1 = w
|w|z, we obtain that

sup
z∈D

(1− |z|2)
(

ln
2

1− |z|2
) ∣∣∣∣1−

w2

|w|2 z2

∣∣∣∣
∣∣∣∣∣ln

4
1− w2

|w|2 z2

∣∣∣∣∣

−1

< 2 < +∞.
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Hence fw ∈ LB and ‖fw‖L < 4 with w 6= 0. Then for w 6= 0 we obtain that

(7)

‖uCϕ(fw)‖LB ≤ ‖uCϕ(fw)‖L

≤ ‖uCϕ‖‖fw‖L

= ‖uCϕ‖‖fw‖LB
= C < +∞.

So for ∀z ∈ D with ϕ(z) 6= 0, applying w = ϕ(z) to (7), we have that

(1− |z|2) ln
2

1− |z| |u(z)f ′w(ϕ(z))ϕ′(z)|

≤ ‖uCϕ(fw)‖LB + sup
z∈D

(1− |z|2) ln
2

1− |z| |u
′(z)||fw(ϕ(z))|

≤ C + 2 sup
z∈D

(1− |z|2) ln
2

1− |z|
(

2 + ln
(

ln
2

1− |ϕ(z)|
))

|u′(z)| < +∞,

where we use Lemma 2.1. So,

sup
z∈D

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|u(z)ϕ′(z)|

≤ sup
z∈D

2(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 4
1−|ϕ(z)|2

|u(z)ϕ′(z)| < +∞.

For ∀z ∈ D with ϕ(z) = 0, by (4), we have

sup
z∈D

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|u(z)ϕ′(z)|

= sup
z∈D

1
ln 2

(1− |z|2) ln
2

1− |z| |u(z)ϕ′(z)| < +∞.

Hence (2) holds.
Conversely, suppose that (1) and (2) hold. For f ∈ LB, by Lemma 2.1, we

have the following inequality:

‖uCϕf‖LB
≤ sup

z∈D
(1− |z|2) ln

(
2

1− |z|
)
|u′(z)f(ϕ(z))|

+ sup
z∈D

(1− |z|2) ln
(

2
1− |z|

)
|u(z)||f ′(ϕ(z))ϕ′(z)|

≤ sup
z∈D

(1− |z|2) ln
(

2
1− |z|

)
|u′(z)|

(
2 + ln ln

2
1− |ϕ(z)|

)
‖f‖L

+ sup
z∈D

(1− |z|2) ln
(

2
1− |z|

) (1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|f ′(ϕ(z))||ϕ′(z)u(z)|
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≤ C‖f‖L + ‖f‖LB sup
z∈D

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|ϕ′(z)u(z)|

≤ C‖f‖L

and

|u(0)f(ϕ(0))| ≤ |u(0)(2 + ln
(

ln
2

1− |ϕ(0)|
)

)|‖f‖L.

This shows that uCϕ is bounded. This completes the proof of Theorem 3.1. ¤

Theorem 3.2. Let u be an analytic function on the unit disc D and ϕ an
analytic self-map of D. Then uCϕ is bounded on the little logarithmic Bloch
space LB0 if and only if u ∈ LB0, (1) and (2) hold, and

lim
|z|→1−

(1− |z|2) ln
2

1− |z| |ϕ
′(z)u(z)| = 0.

Proof. Suppose that uCϕ is bounded on the little logarithmic Bloch space LB0.
Then u = uCϕ1 ∈ LB0. Also uϕ = uCϕz ∈ LB0, thus

(1− |z|2) ln
2

1− |z| |u
′(z)ϕ(z) + u(z)ϕ′(z)| −→ 0 (|z| → 1−).

Since |ϕ| ≤ 1 and u ∈ LB0, we have lim|z|→1−(1− |z|2) ln 2
1−|z| |ϕ′(z)u(z)| = 0.

On the other hand, by Lemma 2.7 and Theorem 3.1, we obtain that (1) and
(2) hold.

Conversely, let

M1 = sup
z∈D

(1− |z|2) ln
(

2
1− |z|

) ∣∣∣∣ln
(

ln
2

1− |ϕ(z)|
)∣∣∣∣ |u′(z)| < +∞;

M2 = sup
z∈D

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|ϕ′(z)u(z)| < +∞.

For ∀f ∈ LB0, we have both (1 − |z|2) ln 2
1−|z| |f ′(z)| → 0 and |f(z)|

ln(ln 2
1−|z| )

→ 0

as |z| → 1− by Lemma 2.2. Given ε > 0 there is 0 < δ < 1 such that
(1− |z|2) ln 2

1−|z| |f ′(z)| < ε
2M2

and |f(z)|
ln(ln 2

1−|z| )
< ε

2M1
for all z with δ < |z| < 1.

If |ϕ(z)| > δ, it follows that

(1− |z|2) ln
2

1− |z| |(uCϕ(f))′(z)|

≤ (1− |z|2) ln
2

1− |z| |u
′(z)||f(ϕ(z))|+ (1− |z|2) ln

2
1− |z| |f

′(ϕ(z))ϕ′(z)||u(z)|

≤ (1− |z|2) ln
2

1− |z| |u
′(z)| ln(ln

2
1− |ϕ(z)| )

|f(ϕ(z))|
ln(ln 2

1−|ϕ(z)| )

+ (1− |ϕ(z)|2) ln
2

1− |ϕ(z)| |f
′(ϕ(z))|

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|u(z)ϕ′(z)|
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< M1
ε

2M1
+ M2

ε

2M2
= ε.

We know that there exists a constant M3 such that |f(z)| ≤ M3 and |f ′(z)| ≤
M3 for all |z| ≤ δ.

If |ϕ(z)| ≤ δ, it follows that

(1− |z|2) ln
2

1− |z| |(uCϕ(f))′(z)|

≤ (1− |z|2) ln
2

1− |z| |u
′(z)||f(ϕ(z))|+ (1− |z|2) ln

2
1− |z| |f

′(ϕ(z))ϕ′(z)||u(z)|

≤ M3(1− |z|2) ln
2

1− |z| |u
′(z)|+ M3(1− |z|2) ln

2
1− |z| |u(z)ϕ′(z)|.

Thus we conclude that (1 − |z|2) ln 2
1−|z| |(uCϕ(f))′(z)| → 0 as |z| → 1−.

Hence uCϕf ∈ LB0 for all f ∈ LB0. On the other hand, uCϕ is bounded on
LB by Theorem 3.1. Hence uCϕ is a bounded operator on the little logarithmic
Bloch space LB0. ¤

Corollary 3.1. Let ϕ be an analytic self-map of D. Then Cϕ is a bounded
operator on LB0 if and only if ϕ ∈ LB0 and

sup
z∈D

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|ϕ′(z)| < +∞.

In the formulation of remark, we use the notation Mu on H(D) defined by
Muf = uf for f ∈ H(D). Let H∞ be the algebra of bounded analytic functions
in D.

Remark 3.1. From Theorem 3.1, we see that the composition operator Cϕ :
LB → LB is bounded if and only if

sup
z∈D

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|ϕ′(z)| < +∞.

This fact is proved in Theorem 1 of [12].

Remark 3.2. From Theorem 3.1 and Theorem 3.2, we see that: the pointwise
multiplier Mu : LB(or LB0) −→ LB(or LB0) is a bounded operator if and only
if u ∈ H∞ and

sup
z∈D

(1− |z|2) ln
(

2
1− |z|

) ∣∣∣∣ln
(

ln
2

1− |z|
)∣∣∣∣ |u′(z)| < +∞.

This fact is proved in Theorem 2.4 of [10].
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4. Compactness of uCϕ

Lemma 4.1. Suppose that uCϕ is a bounded operator on LB. Then uCϕ is
compact if and only if for any bounded sequence {fn} in LB which converges
to 0 uniformly on compact subsets of D, we have ‖uCϕ(fn)‖L → 0 as n →∞.

The proof is similar to that of Proposition 3.11 in [2]. The details are
omitted.

Theorem 4.1. Let u be an analytic function on the unit disc D and ϕ an
analytic self-map of D. Suppose that uCϕ is bounded on the logarithmic Bloch
space LB. Then uCϕ is compact if and only if the following are satisfied:

(i) lim
|ϕ(z)|→1−

(1− |z|2) ln
2

1− |z| ln
(

ln
2

1− |ϕ(z)|
)
|u′(z)| = 0;

(ii) lim
|ϕ(z)|→1−

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|ϕ′(z)u(z)| = 0.

Proof. Suppose that uCϕ is compact on the logarithmic Bloch space LB. Let
{zn} be a sequence in D such that |ϕ(zn)| → 1 as n → ∞. We take the test
functions

fn(z) =
3
an

(
ln ln

4
1− ϕ(zn)z

)2

− 2
a2

n

(
ln ln

4
1− ϕ(zn)z

)3

,

where an = ln ln 4
1−|ϕ(zn)|2 . Clearly fn(z) → 0 uniformly on compact subsets

of D. By Lemmas 2.3 and 2.4, we obtain that supn ‖fn‖L < ∞. Then {fn} is
a bounded sequence in LB which converges to 0 uniformly on compact subsets
of D. Note that f ′n(ϕ(zn)) ≡ 0 and fn(ϕ(zn)) = an, it follows that

‖uCϕfn‖L ≥ ‖uCϕfn‖LB
≥ (1−|zn|2) ln

(
2

1− |zn|
)
|u′(zn)fn(ϕ(zn))+u(zn)f ′n(ϕ(zn))ϕ′(zn)|

= (1−|zn|2) ln
(

2
1− |zn|

)
|u′(zn)|

∣∣∣∣ln ln
4

1− |ϕ(zn)|2
∣∣∣∣

≥ (1−|zn|2) ln
(

2
1− |zn|

)
|u′(zn)|

∣∣∣∣ln ln
2

1− |ϕ(zn)|

∣∣∣∣ .

Then (i) holds by Lemma 4.1.
Next assume that (ii) fails. Then there exist a subsequence {zn} ⊂ D and

an ε0 > 0 such that |ϕ(zn)| → 1(n →∞) and

(1− |zn|2) ln 2
1−|zn|

(1− |ϕ(zn)|2) ln 2
1−|ϕ(zn)|

|ϕ′(zn)u(zn)| ≥ ε0.

Let ϕ(zn) = rneiθn , we take

gn(z) =
∫ z

0

(
rn

1− e−iθnrnw
− r2

n

1− r2
ne−iθnw

)(
ln

4
1− r2

ne−iθnw

)−1

dw,
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so

g′n(z) =
(

rn

1− e−iθnrnz
− r2

n

1− r2
ne−iθnz

)(
ln

4
1− r2

ne−iθnz

)−1

.

One may obtain that |gn(z)| ≤ 1−rn

(1−|z|)2 (ln 4
1−|z| )

−1 by a directly calculation and
‖gn‖L ≤ 8 by Lemmas 2.3 and 2.4. Then {gn} is a bounded sequence in LB
which converges to 0 uniformly on compact subsets of D.

On the other hand, for enough large n, by (i) and Lemma 2.1, it follows that

‖uCϕ(gn)‖L

≥ (1− |zn|2) ln
2

1− |zn| |g
′
n(ϕ(zn))||ϕ′(zn)u(zn)|

− (1− |zn|2) ln
2

1− |zn| |gn(ϕ(zn))||u′(zn)|

≥ (1− |zn|2) ln
2

1− |zn|
(

rn

1− r2
n

− r2
n

1− r3
n

) (
ln

4
1− r3

n

)−1

|ϕ′(zn)u(zn)|

− 2(1− |zn|2) ln
2

1− |zn| ln
(

ln
2

1− |ϕ(zn)|
)
‖gn‖L|u′(zn)|

≥
(1− |zn|2) ln 2

1−|zn|
6(1− |ϕ(zn)|2) ln 2

1−|ϕ(zn)|
|ϕ′(zn)|

− 16(1− |zn|2) ln
2

1− |zn| ln
(

ln
2

1− |ϕ(zn)|
)
|u′(zn)| ≥ ε0

6
(n →∞).

This contradicts the compactness of uCϕ by Lemma 4.1. The proof of the
necessary is completed.

Conversely, suppose that (i) and (ii) hold. Let {fn} be a bounded sequence
in LB which converges to 0 uniformly on compact subsets of D. Let M =
supn ‖fn‖L < +∞. We only prove lim

n→∞
‖uCϕ(fn)‖L = 0 by Lemma 4.1. This

amounts to showing that both

sup
w∈D

(1− |w|2) ln
2

1− |w| |u(w)f ′n(ϕ(w))ϕ′(w)| → 0

and

sup
w∈D

(1− |w|2) ln
2

1− |w| |u
′(w)fn(ϕ(w))| → 0.

If |ϕ(w)| ≤ r < 1, by (4), then

(1− |w|2) ln
2

1− |w| |u(w)f ′n(ϕ(w))ϕ′(w)| ≤ K max
|z|≤r

|f ′n(z)|.

If |ϕ(w)| > r, then

(1− |w|2) ln
2

1− |w| |u(w)f ′n(ϕ(w))ϕ′(w)|
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= (1− |ϕ(w)|2) ln
(

2
1− |ϕ(w)|

)
|f ′n(ϕ(w))| ×

(1− |w|2) ln 2
1−|w|

(1− |ϕ(w)|2) ln 2
1−|ϕ(w)|

|ϕ′(w)u(w)|

≤ M
(1− |w|2) ln 2

1−|w|
(1− |ϕ(w)|2) ln 2

1−|ϕ(w)|
|ϕ′(w)u(w)|.

Thus

sup
w∈D

(1− |w|2) ln
2

1− |w| |u(w)f ′n(ϕ(w))ϕ′(w)|

≤ K max
|w|≤r

|f ′n(w)|+ sup
|ϕ(w)|>r

M
(1− |w|2) ln 2

1−|w|
(1− |ϕ(w)|2) ln 2

1−|ϕ(w)|
|ϕ′(w)u(w)|.

First letting n tend to infinity and subsequently r increase to 1, one obtains
that

sup
w∈D

(1− |w|2) ln
2

1− |w| |u(w)f ′n(ϕ(w))ϕ′(w)| −→ 0

as n →∞. The other statement is proved similarly.
If |ϕ(w)| ≤ r < 1, by (3), then

(1− |w|2) ln
2

1− |w| |u
′(w)fn(ϕ(w))| ≤ ‖u‖L max

|z|≤r
|fn(z)|.

If |ϕ(w)| > r, we may suppose that |r| > r∗, by Lemma 2.1, then

(1− |w|2) ln
2

1− |w| |u
′(w)fn(ϕ(w))|

≤ 2M(1− |w|2) ln
(

2
1− |w|

)
ln

(
ln

2
1− |ϕ(w)|

)
|u′(w)|.

Thus

sup
w∈D

(1− |w|2) ln
2

1− |w| |u
′(w)fn(ϕ(w))|

≤ ‖u‖L max
|w|≤r

|fn(w)|+ 2M sup
|ϕ(w)|>r

(1− |w|2) ln
(

2
1− |w|

)
ln ln

2
1− |ϕ(w)| |u

′(w)|,

which also implies that

sup
w∈D

(1− |w|2) ln
(

2
1− |w|

)
|u′(w)fn(ϕ(w))| −→ 0

as n →∞. This completes the proof of Theorem 3.1. ¤
In order to prove the compactness of uCϕ on the little logarithmic Bloch

space LB0, we require the following lemma.

Lemma 4.2. Let U ⊂ LB0. Then U is compact if and only if it is closed,
bounded and satisfies

lim
|z|→1

sup
f∈U

(1− |z|2) ln
(

2
1− |z|

)
|f ′(z)| = 0.
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The proof is similar to that of Lemma 1 in [4], we omit it.

Theorem 4.2. Let u be an analytic function on the unit disc D and ϕ an
analytic self-map of D. Then uCϕ is compact on the little logarithmic Bloch
space LB0 if and only if the following are satisfied:

(i) lim
|z|→1−

(1− |z|2) ln
(

2
1− |z|

)
ln

(
ln

2
1− |ϕ(z)|

)
|u′(z)| = 0;

(ii) lim
|z|→1−

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|ϕ′(z)u(z)| = 0.

Proof. Assume (i) and (ii) hold. By Theorem 3.2, we know that uCϕ is bounded
on the little logarithmic Bloch space LB0. From (i), we can show that

(8) lim
|z|→1−

(1− |z|2) ln
(

2
1− |z|

)
|u′(z)| = 0.

Suppose that f ∈ LB0 with ‖f‖L ≤ 1. We obtain that

(1− |z|2) ln
2

1− |z| |(uCϕf)′(z)|

≤ (1− |z|2) ln
2

1− |z| |u
′(z)f(ϕ(z))|+ (1− |z|2) ln

2
1− |z| |u(z)||f ′(ϕ(z))ϕ′(z)|

≤ (1− |z|2) ln
2

1− |z| |u
′(z)|

(
2 + ln ln

2
1− |ϕ(z)|

)
+

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|ϕ′(z)u(z)|,

thus

sup
{
|(1− |z|2) ln

2
1− |z| (uCϕf)′(z)| : f ∈ LB0, ‖f‖L ≤ 1

}

≤ (1− |z|2) ln
2

1− |z| |u
′(z)|

(
2 + ln ln

2
1− |ϕ(z)|

)
+

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|ϕ′(z)u(z)|,

and it follows that

lim
|z|→1−

sup
{∣∣∣∣(1− |z|2) ln

2
1− |z| (uCϕf)′(z)

∣∣∣∣ : f ∈ LB0, ‖f‖L ≤ 1
}

= 0,

hence uCϕ is compact on LB0 by Lemma 3.2.
Conversely, suppose that uCϕ is compact on LB0. By Lemma 3.2 we have

(9) lim
|z|→1−

sup
{∣∣∣∣(1− |z|2) ln

2
1− |z| (uCϕf)′(z)

∣∣∣∣ : f ∈ LB0, ‖f‖L ≤ M

}
= 0

for some M > 0. Note that the proof of Theorem 3.1 and the fact that the
functions given in (5) are in LB0 and have norms bounded independently of w,
we obtain that

(10) lim
|w|→1−

(1− |w|2) ln
2

1− |w| ln
(

ln
2

1− |ϕ(w)|
)
|u′(w)| = 0.
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Similarly, note that the functions given in (6) are in LB0 and have norms
bounded independently of w, we obtain that

lim
|z|→1−

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|u(z)ϕ′(z)|

≤ 2 lim
|z|→1−

(1− |z|2) ln
2

1− |z| |(uCϕfw)′(z)|

+ 2 lim
|z|→1−

(1− |z|2) ln
2

1− |z|
(

2 + ln
(

ln
2

1− |ϕ(z)|
))

|u′(z)|

for ϕ(z) 6= 0. So by (9) and (10) it follows that

lim
|z|→1−

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|u(z)ϕ′(z)| = 0

for ϕ(z) 6= 0. However, if ϕ(z) = 0, by taking the constant function and
f(z) = z in (9) respectively, we easily have

lim
|z|→1−

(1− |z|2) ln
(

2
1− |z|

)
|u(z)ϕ′(z)| = 0.

This completes the proof of Theorem 3.2. ¤

Corollary 4.1. Let ϕ be an analytic self-map of D. Then Cϕ is a compact
operator on LB0 if and only if

lim
|z|→1−

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|ϕ′(z)| = 0.

Corollary 4.2. Let u ∈ H(D). Then the pointwise multiplier Mu :LB(or LB0)
−→ LB(or LB0) is a compact operator if and only if u ≡ 0.

Remark 4.1. From Theorem 4.1, we see that the composition operator Cϕ :
LB → LB is compact if and only if

lim
|ϕ(z)|→1−

(1− |z|2) ln 2
1−|z|

(1− |ϕ(z)|2) ln 2
1−|ϕ(z)|

|ϕ′(z)| = 0.

This fact is proved in Theorem 2 of [12].
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