• Title/Summary/Keyword: Composite-field arithmetic

Search Result 12, Processing Time 0.024 seconds

High-Speed Hardware Architectures for ARIA with Composite Field Arithmetic and Area-Throughput Trade-Offs

  • Lee, Sang-Woo;Moon, Sang-Jae;Kim, Jeong-Nyeo
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.707-717
    • /
    • 2008
  • This paper presents two types of high-speed hardware architectures for the block cipher ARIA. First, the loop architectures for feedback modes are presented. Area-throughput trade-offs are evaluated depending on the S-box implementation by using look-up tables or combinational logic which involves composite field arithmetic. The sub-pipelined architectures for non-feedback modes are also described. With loop unrolling, inner and outer round pipelining techniques, and S-box implementation using composite field arithmetic over $GF(2^4)^2$, throughputs of 16 Gbps to 43 Gbps are achievable in a 0.25 ${\mu}m$ CMOS technology. This is the first sub-pipelined architecture of ARIA for high throughput to date.

  • PDF

Area-Optimized Multi-Standard AES-CCM Security Engine for IEEE 802.15.4 / 802.15.6

  • Choi, Injun;Kim, Ji-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.293-299
    • /
    • 2016
  • Recently, as IoT (Internet of Things) becomes more important, low cost implementation of sensor nodes also becomes critical issues for two well-known standards, IEEE 802.15.4 and IEEE 802.15.6 which stands for WPAN (Wireless Personal Area Network) and WBAN (Wireless Body Area Network), respectively. This paper presents the area-optimized AES-CCM (Advanced Encryption Standard - Counter with CBC-MAC) hardware security engine which can support both IEEE 802.15.4 and IEEE 802.15.6 standards. First, for the low cost design, we propose the 8-bit AES encryption core with the S-box that consists of fully combinational logic based on composite field arithmetic. We also exploit the toggle method to reduce the complexity of design further by reusing the AES core for performing two operation mode of AES-CCM. The implementation results show that the total gate count of proposed AES-CCM security engine can be reduced by up to 42.5% compared to the conventional design.

Efficient Hardware Architecture of SEED S-box for Smart Cards

  • Hwang, Joon-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.4
    • /
    • pp.307-311
    • /
    • 2004
  • This paper presents an efficient architecture that optimizes the design of SEED S-box using composite field arithmetic. SEED is the Korean standard 128-bit block cipher algorithm developed by Korea Information Security Agency. The nonlinear function S-box is the most costly operation in terms. of size and power consumption, taking up more than 30% of the entire SEED circuit. Therefore the S-box design can become a crucial factor when implemented in systems where resources are limited such as smart cards. In this paper, we transform elements in $GF(2^8)$ to composite field $GF(((2^2)^2)^2)$ where more efficient computations can be implemented and transform the computed result back to $GF(2^8)$. This technique reduces the S-box portion to 15% and the entire SEED algorithm can be implemented at 8,700 gates using Samsung smart card CMOS technology.

A design of compact and high-performance AES processor using composite field based S-Box and hardware sharing (합성체 기반의 S-Box와 하드웨어 공유를 이용한 저면적/고성능 AES 프로세서 설계)

  • Yang, Hyun-Chang;Shin, Kyung-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.67-74
    • /
    • 2008
  • A compact and high-performance AES(Advanced Encryption Standard) encryption/decryption processor is designed by applying various hardware sharing and optimization techniques. In order to achieve minimized hardware complexity, sharing the S-Boxes for round transformation with the key scheduler, as well as merging and reusing datapaths for encryption and decryption are utilized, thus the area of S-Boxes is reduced by 25%. Also, the S-Boxes which require the largest hardware in AES processor is designed by applying composite field arithmetic on $GF(((2^2)^2)^2)$, thus it further reduces the area of S-Boxes when compared to the design based on $GF(2^8)$ or $GF((2^4)^2)$. By optimizing the operation of the 64-bit round transformation and round key scheduling, the round transformation is processed in 3 clock cycles and an encryption of 128-bit data block is performed in 31 clock cycles. The designed AES processor has about 15,870 gates, and the estimated throughput is 412.9 Mbps at 100 MHz clock frequency.

A design of Giga-bit security module using Fully pipe-lined CTR-AES (Full-pipelined CTR-AES를 이용한 Giga-bit 보안모듈 설계)

  • Vinh, T.Q.;Park, Ju-Hyun;Kim, Young-Chul;Kim, Kwang-Ok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1026-1031
    • /
    • 2008
  • Nowdays, homes and small businesses rely more and more PON(Passive Optical Networks) for financial transactions, private communications and even telemedicine. Thus, encryption for these data transactions is very essential due to the multicast nature of the PON In this parer, we presented our implementation of a counter mode AES based on Virtex4 FPGA. Our design exploits three advanced features; 1) Composite field arithmetic SubByte, 2) efficient MixColumn transformation 3) and on-the-fly key-scheduling for fully pipelined architecture. By pipeling the composite field implementation of the S-box, the area cost is reduced to average 17 percent. By designing the on-the-fly key-scheduling, we implemented an efficient key-expander module which is specialized for a pipelined architecture.

A Design of Giga-bit security module Using Fully pipelined CTR-AES (Full-pipelined CTR-AES를 이용한 Giga-bit 보안모듈 설계)

  • Vinh, T.Q.;Park, Ju-Hyun;Kim, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.225-228
    • /
    • 2008
  • In this paper, we presented our implementation of a counter mode AES based on Virtex4 FPGA. Our design exploits three advanced features: composite field arithmetic SubByte, efficient MixColumn transformation, and On-the-Fly Key-Scheduling for fully pipelined architecture. By pipelining the composite field implementation of the S-box, the area cost is reduced to average 17 percent. By designing the On-the-Fly key scheduling, we implemented an efficient key-expander module which is specialized for a pipelined architecture.

  • PDF

Design of Low-Complexity 128-Bit AES-CCM* IP for IEEE 802.15.4-Compatible WPAN Devices (IEEE 802.15.4 호환 WPAN 기기를 위한 낮은 복잡도를 갖는128-bit AES-CCM* IP 설계)

  • Choi, Injun;Lee, Jong-Yeol;Kim, Ji-Hoon
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • Recently, as WPAN (Wireless Personal Area Network) becomes the necessary feature in IoT (Internet of Things) devices, the importance of data security also hugely increases. In this paper, we present the low-complexity 128-bit AES-$CCM^*$ hardware IP for IEEE 802.15.4 standard. For low-cost and low-power implementation which is essentially required in IoT devices, we propose two optimization methods. First, the folded AES(Advanced Encryption Standard) processing core with 8-bit datapath is presented where composite field arithmetic is adopted for reduced hardware complexity. In addition, to support $CCM^*$ mode defined in IEEE 802.15.4, we propose the mode-toggling architecture which requires less hardware resources and processing time. With the proposed methods, the gate count of the proposed AES-$CCM^*$ IP can be lowered up to 57% compared to the conventional architecture.

A Design of AES-based CCMP Core for IEEE 802.11i Wireless LAN Security (IEEE 802.11i 무선 랜 보안을 위한 AES 기반 CCMP Core 설계)

  • Hwang Seok-Ki;Lee Jin-Woo;Kim Chay-Hyeun;Song You-Soo;Shin Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.798-803
    • /
    • 2005
  • This paper describes a design of AES(Advanced Encryption Standard)-based CCMP core for IEEE 802.1li wireless LAN security. To maximize its performance, two AES cores ate used, one is for counter mode for data confidentiality and the other is for CBC(Cipher Block Chaining) mode for authentication and data integrity. The S-box that requires the largest hardware in AES core is implemented using composite field arithmetic, and the gate count is reduced by about $20\%$ compared with conventional LUT(Lookup Table)-based design. The CCMP core designed in Verilog-HDL has 13,360 gates, and the estimated throughput is about 168 Mbps at 54-MHz clock frequency. The functionality of the CCMP core is verified by Excalibur SoC implementation.

A Design of AES-based CCMP core for IEEE 802.11i Wireless LAN Security (IEEE 802.11i 무선 랜 보안을 위한 AES 기반 CCMP 코어 설계)

  • Hwang Seok-Ki;Kim Jong-Whan;Shin Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.640-647
    • /
    • 2006
  • This paper describes a design of AES-based CCMP(Counter mode with CBC-MAC Protocol) core for IEEE 802.11i wireless LAN security. To maximize the performance of CCMP core, two AES cores are used, one is the counter mode for data confidentiality and the other is the CBC node for authentication and data integrity. The S-box that requires the largest hardware in ARS core is implemented using composite field arithmetic, and the gate count is reduced by about 27% compared with conventional LUT(Lookup Table)-based design. The CCMP core was verified using Excalibur SoC kit, and a MPW chip is fabricated using a 0.35-um CMOS standard cell technology. The test results show that all the function of the fabricated chip works correctly. The CCMP processor has 17,000 gates, and the estimated throughput is about 353-Mbps at 116-MHz@3.3V, satisfying 54-Mbps data rate of the IEEE 802.11a and 802.11g specifications.

A Design of AES-based CCMP Core for IEEE 802.11i Wireless LAN Security (IEEE 802.11i 무선 랜 보안을 위한 AES 기반 CCMP Core 설계)

  • Hwang, Seok-Ki;Lee, Jin-Woo;Kim, Chay-Hyeun;Song, You-Soo;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.367-370
    • /
    • 2005
  • This paper describes a design of AES(Advanced Encryption Standard)-based CCMP core for IEEE 802.11i wireless LAN security. To maximize its performance, two AES cores are used, one is for counter mode for data confidentiality and the other is for CBC(Cipher Block Chaining)mode for authentication and data integrity. The S-box that requires the largest hardware in AES core is implemented using composite field arithmetic, and the gate count is reduced by about 25% compared with conventional LUT(Lookup Table)-based design. The CCMP core designed in Verilog-HDL has 15,450 gates, and the estimated throughput is about 128 Mbps at 50-MHz clock frequency). The functionality of the CCMP core is verified by Excalibur SoC implementation.

  • PDF