
ETRI Journal, Volume 30, Number 5, October 2008 Sang-Woo Lee et al. 707

This paper presents two types of high-speed hardware
architectures for the block cipher ARIA. First, the loop
architectures for feedback modes are presented. Area-
throughput trade-offs are evaluated depending on the
S-box implementation by using look-up tables or
combinational logic which involves composite field
arithmetic. The sub-pipelined architectures for non-
feedback modes are also described. With loop unrolling,
inner and outer round pipelining techniques, and S-box
implementation using composite field arithmetic over
GF(24)2, throughputs of 16 Gbps to 43 Gbps are
achievable in a 0.25 μm CMOS technology. This is the first
sub-pipelined architecture of ARIA for high throughput to
date.

Keywords: ARIA, block cipher, cryptography,
hardware architecture.

Manuscript received Apr. 1, 2008; revised Aug. 18, 2008; accepted Aug. 22, 2008.
This work was supported by the IT R&D program of MKE/IITA, Rep. of Korea [2008-

F036-01, Development of Anonymity-based u-Knowledge Security Technology].
Sang-Woo Lee (phone: +82 42 860 1097, email: ttomlee@etri.re.kr) and Jeong-Nyeo Kim

(email: jnkim@etri.re.kr) are with S/W & Content Research Laboratory, ETRI, Daejeon, Rep.
of Korea.

Sang-Jae Moon (email: sjmoon@knu.ac.kr) is with the Department of Electrical
Engineering, Kyungpook National University, Daegu, Rep. of Korea.

I. Introduction

The importance of cryptography is constantly increasing
with the increasing amount of sensitive data that is being
transmitted over open environments. Compared to software
implementations, hardware implementations of cryptographic
algorithms provide higher throughput and greater physical
security.

The ARIA algorithm was announced as the Korean standard
block cipher algorithm in December of 2004. ARIA is a 128-
bit block cipher with an involution substitution permutation
network (SPN) that supports 128-bit, 192-bit, or 256-bit key
lengths [1], [2]. The block size of the data and the key lengths
are identical to those of Advanced Encryption Standard (AES),
which was specified in 2001 by the National Institute of
Standards and Technology [3]. It is important to note that
Public Key Cryptography Standard (PKCS) #11, which is the
Cryptographic Token Interface Standard published by RSA
Security, has recently incorporated the mechanisms of ARIA as
well as those of AES [4].

To provide different security features, [5] defines five
confidentiality modes of operation for use with an underlying
symmetric key block cipher algorithm: electronic codebook
(ECB), cipher block chaining (CBC), cipher feedback (CFB),
output feedback (OFB), and counter (CTR). These modes can
provide cryptographic protection for sensitive, but unclassified,
computer data. Some of these, such as the CBC mode, restrict
use of the pipeline technique, which processes multiple blocks
simultaneously to achieve better performance. However, the
ECB and CTR modes, which do not require feedback, can be

High-Speed Hardware Architectures for
ARIA with Composite Field Arithmetic and

Area-Throughput Trade-Offs

 Sang-Woo Lee, Sang-Jae Moon, and Jeong-Nyeo Kim

708 Sang-Woo Lee et al. ETRI Journal, Volume 30, Number 5, October 2008

pipelined for high throughput. In addition, some of these modes
such as CFB, OFB, and CTR do not need decryption of an
underlying block cipher. Therefore, the hardware architecture of
ARIA should use a different strategy depending on the mode.

1. Related Work

ARIA is known to be relatively strong against differential
crypto-analysis and linear crypto-analysis [6]. Investigations of
power analysis attacks and countermeasures for ARIA can be
found in [7]-[9]. However, only a small number of papers have
been published on the hardware architecture for the ARIA
algorithm in contrast to AES. A compact design of ARIA was
proposed in two recent studies [10], [11]. In particular, [11]
suggested a 16-bit architecture of ARIA and proposed a
substitution block that used composite field arithmetic. An
implementation of a unified hardware architecture for ARIA
and AES was reported in [12].

On the other hand, numerous studies of the efficient
hardware implementation of AES have been presented [13]-
[30]. Again, as ARIA (despite its involutional features) is an
SPN block cipher similar to AES, previous work on hardware
implementation of the AES algorithm is helpful to the
implementation of ARIA in hardware.

Related previous works can be categorized into area-efficient
architectures for resource-restricted environments [16]-[21] and
high-speed designs using a pipelining technique for server-side
applications [23]-[25], [27]-[29]. SubBytes, a substitution step
of AES, can be implemented using a look-up-table (LUT)
scheme or combinational logic based on composite field
arithmetic. Traditionally, an S-box is implemented in an LUT-
based approach [13], [14]. Several studies [18]-[21] have
proposed alternative methods to implement the S-box in
computational form for compact hardware architecture. These
references illustrate a method to transform the original field of
GF(28) to a composite field of GF(24)2 or GF((22)2)2 in order to
replace the S-box tables. This method was originally suggested
by Rijmen, one of the inventors of AES [22]. In the composite
field scheme, hardware resources of the S-box can be
decreased at the expense of increasing the delay.

Another research area involves architectural optimization for
high-speed design. Some of the earlier implementations are
based on loop architecture and the LUT-based S-box approach
[13], [14]. Thus, they can only provide a throughput of 2 to 3
Gbps. The LUT-based S-box has an undivided delay to access
memory. This feature prevents each round unit from being
divided into sub-stages for further speed-up. Several studies
[23]-[25] suggest a hardware architecture that combines a
pipelining technique with a composite-field-based S-box
implementation to achieve high throughput.

2. Contribution

This paper presents high-speed hardware architectures for the
block cipher ARIA in the form of loop architecture for feedback
modes and sub-pipelined architecture for non-feedback modes.
In addition, the proper key schedulers for these architectures are
proposed. The implementation trade-offs, which depend on the
type of S-box, are evaluated to optimize the hardware size and
the throughput. The novelty of this study is the application of the
hardware optimization techniques found for AES to ARIA.
However, the optimization techniques for AES cannot be applied
to ARIA directly because ARIA uses two S-boxes. One is
equivalent to the AES S-box, but the other is different. A method
to represent S2, the second S-box of ARIA, is described as an
affine transformation of the multiplicative inversion over GF(24)2
with detailed transformation matrices. An effort was made to
explain the detailed matrix conversion, following the affine
transformation equations, and the merged matrix of the affine
transformation with an isomorphic function between GF(28) and
GF(24)2. Such an elaborate description was omitted in two earlier
studies [11], [12], although it is very important for further
improvements.

The proposed loop architecture was designed to complete
one round of encryption and decryption in one clock cycle. The
S-boxes and their inverses were shared for even and odd round
substitution tables. The design trade-offs between the LUT and
the composite field schemes were evaluated. Furthermore, a
round unit was implemented to process the key initialization
step in order to reduce the area cost.

There has been no known hardware architecture of ARIA for
high throughput proposed to date. This work is the first sub-
pipelined hardware architecture of ARIA that uses a method to
implement substitution tables based on a composite field
operation over GF(24)2. The architectures that are addressed in
this paper can achieve throughputs in a range from 16 Gbps to
43 Gbps depending on the number of sub-stages. The proposed
approach involves unrolling the round loop and inserting
pipeline registers both inside and between each round unit. To
achieve higher throughput, deep pipelining can be used in inner
round units. In this case, it is necessary to design a substitution
layer using composite field arithmetic, which allows a deeper
level of pipelining leading to an improvement in the throughput.

The remainder of this paper is organized as follows. In
section II, the ARIA algorithm is briefly described. The detailed
hardware architecture of the primitives is explained in section
III. Section IV describes the architectural optimization, which
includes the loop and sub-pipelined architectures along with
their design trade-offs. In section V, the implementation results
and analysis are discussed. Finally, conclusions are given in
section VI.

ETRI Journal, Volume 30, Number 5, October 2008 Sang-Woo Lee et al. 709

II. ARIA Algorithm

The ARIA algorithm is a symmetric block cipher in which
the data is encrypted and decrypted in blocks of 128 bits. ARIA
has a variable key length which can be 128, 192, or 256 bits,
and the corresponding number of rounds for these lengths is 12,
14, or 16, respectively [1], [2].

ARIA consists of two procedures: a round operation for
encryption or decryption and a key scheduler including key
initialization and round key generation. Each data block is
modified by several rounds of processing in which each round
involves the following:

• AddRoundKey: This performs a bitwise exclusive-OR
operation between the 128-bit round key and the incoming
128-bit data.

• Substitution layer: Two types of substitution layer, which use
four S-boxes (S1, S2, S1

-1, and S2
-1) are processed. S1

-1 and
S2

-1 are the inverses of S1 and S2, respectively.
• Diffusion layer: This computes an involutional 16×16 binary

matrix.

There are two types of substitution layers: one for even
rounds and the other for odd rounds. A substitution layer is
composed of sixteen S-boxes that are byte-oriented substitution
tables. In the case of the AES algorithm, the encryption process
only uses the S-box, and the decryption process looks up the
inverse of the S-box instead of the S-box. However, the
substitution layer of ARIA makes use of both S-boxes and their
inverses during encryption and decryption processes.

The key scheduling unit generates round keys from an
original master key. The key scheduling operation performs
two processes: key initialization and round key generation. In
the key initialization process, four 128-bit values, W0, W1, W2,
and W3, are generated from the master key using a three-round
256-bit Feistel cipher based on the ARIA round operation. The
128-bit round keys are generated by the initialization values W0,
W1, W2, and W3 with the cyclic shifts and XOR operations.
Here, the last round of ARIA requires two round keys.
Therefore, ARIA requires 13, 15, or 17 round keys according
to the key lengths of 128 bits, 192 bits, or 256 bits, respectively.
The round keys used for decryption are different from the
encryption round keys. The order of the round keys is reversed
followed by the output of the diffusion to all encryption round
keys except during the first and last rounds.

III. Detailed Hardware Architecture of the Primitives

1. Substitution Layer

The substitution layer is the most time-consuming step in

the ARIA algorithm. There are two well-known approaches
to implementation of the S-box. The first is the LUT method
using ROMs. With the LUT scheme, sixteen ROMs (256
entries × 1 byte) are required for each round. Therefore, the
LUT approach requires significant hardware resources when
multiple round units are implemented. On the other hand, it is
possible to implement the S-box with combinational logic
using a Galois field operation without tables. While S1 is
defined as an affine transformation of the multiplicative
inversion over GF(28), S2 is a combination of x247 and the
affine transformation. Both S-boxes are defined over GF(28)
with the following irreducible polynomial:

8 4 3() 1m x x x x x= + + + + .

This is identical to the polynomial used in AES. Moreover,
S1 is identical to the S-box of AES.

Several papers describe the implementation of the S-box based
on a transformation of the original field of GF(28) to a composite
field of GF(24)2 or GF((22)2)2 by isomorphic mapping for the S-
box of AES [16], [18]-[21], [23]-[25]. In [18] and [21] the S-box
was implemented using composite field arithmetic over GF(24)2.
Such use of composite field arithmetic was recommended by
Rijmen [22] and is well documented in [18]. Additionally, Satoh
and others [20] used the composite field of GF((22)2)2, and
Zhang and Parhi [23] designed a pipelined S-box using the
composite field of GF((22)2)2 to achieve high throughput. Both
composite field conversions can be efficiently implemented to
reduce the required hardware resources and to improve the
performance. More precisely, the conversion to the composite
field over GF(24)2 proposed by Wolkerstorfer and others has a
smaller critical path delay compared to that proposed by Satoh
and others [26].

In the case of the ARIA algorithm, one study [11] describes a
method of using the composite field of GF((22)2)2 for the
substitution layer. However, that study did not present the internal
matrices for the field conversion and the affine transformation.
Such details are crucial if further improvements are to be made.

In this section, the implementation of the substitution layer of
ARIA using the composite field of GF(24)2 is presented.
Because the method of using the composite field for S1 is well
described in [18], we explain the case of S2 in detail.

The S-boxes and their inverses in ARIA can be presented as
follows:

1
1

1 1 1 1
1

() ,

() (() ()) ,

S x A x a

S x A x A a

−

− − − −

= ⋅ ⊕

= ⋅ ⊕ ⋅
 (1)

247 8
2

1 1

1 1 1 1
2

()

,
() (() ()) ,

S x B x b B x b

B C x b D x b
S x D x D b

−

− −

− − − −

= ⋅ ⊕ = ⋅ ⊕

= ⋅ ⋅ ⊕ = ⋅ ⊕

= ⋅ ⊕ ⋅

 (2)

710 Sang-Woo Lee et al. ETRI Journal, Volume 30, Number 5, October 2008

where x-1
 refers to the inversion of x over GF(28); ⊕ denotes

128-bit XOR; A, B, C, and D are 8×8 binary matrices; and a
and b are 8×1 binary vectors. For S2,, since x254 is x-1 in GF(28)
according to Fermat’s little theorem, the term x247 can be
represented as x-8, and x-8 is equivalent to C x-1 with a new
matrix C. At this point, it is possible to represent B x-8 as B C x-1.
Assuming that D = B C, the equation for S2 becomes
D x-1 ⊕ b. Additionally, the inverse of the matrix D must be
known to calculate S2

-1. The matrices are the following:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11001011
10111010
10000001
00110100
10111001
11101011
10111100
01111010

B

 ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01111000
01010100
11011000
00101110
01000110
00110100
00001110
00001011

C

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01101111
11000110
01110011
11000010
11000011
10110111
11111100
11101010

D

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−

11001001
10111101
11010110
00110111
11000111
01010000
01100100
00011000

1D

Here, the least significant bits are in the upper left corners.

Using these matrices, it is possible to define the affine
transformation for S2 and the inverse affine transformation for
S2

-1 as (3) and (4), respectively.
0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

0 1 0 1 0 1 1 1 0
0 0 1 1 1 1 1 1 1
1 1 1 0 1 1 0 1 0
1 1 0 0 0 0 1 1 0
0 1 0 0 0 0 1 1 0
1 1 0 0 1 1 1 0 1
0 1 1 0 0 0 1 1 1
1 1 1 1 0 1 1 0 1

y x
y x
y x
y x
y x
y x
y x
y x

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢= ⊕⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

, (3)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

0 0 0 1 1 0 0 0 0
0 0 1 0 0 1 1 0 0
0 0 0 0 1 0 1 0 1
1 1 1 0 0 0 1 1 1
1 1 1 0 1 1 0 0 0
0 1 1 0 1 0 1 1 1
1 0 1 1 1 1 0 1 0
1 0 0 1 0 0 1 1 0

y x
y x
y x
y x
y x
y x
y x
y x

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢= ⊕⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (4)

Implementation of the S-boxes using combinational logic
without tables involves inversion in GF(28), which may have
high hardware complexity. To reduce the complexity of the
required logic for inversion in GF(28), the composite field of
G(24)2 is utilized. An element a in the field GF(28) is

Fig. 1. Architecture of the substitution layers: (a) an S-box and (b)
the inverse of the S-box.

Map(x)

x2 x2 × +

+

+

x-1

× ×

Map-1(x)

Affine(x)

Map(x)

+

+

x-1

× ×

Affine-1(x)

x2 x2 × +

×{e} ×{e}

Map-1(x)

(a) (b)

represented as a linear polynomial with coefficients in GF(24):

8 4, for (2), , (2)h l h la a x a a GF a a GF= + ∈ ∈ . (5)

Multiplication of a two-term polynomial with its inverse yields
the 1-element of the field:

4

() (' ') {0} {1},

for , , ', ' (2),
h l h l

h l h l

a x a a x a x

a a a a GF

+ × + = +

∈
 (6)

with an irreducible polynomial 2() {1} { }.n x x x e= + +
Using the extended Euclid algorithm, the inversion from (6)
can be derived as

1

2 2 1

() ' ' () () ,

(({ }) ()) .
h l h l h h l

h h l l

a x a a x a a d x a a d

d a e a a a

−

−

+ = + = × + + ×

= × + × +
 (7)

Figure 1 shows how the S-box can be designed using GF(24)
arithmetic, as described in (7). Figure 1(a) shows the S-box
function, which is composed of the inversion over GF(28) and
the affine transformation, here denoted by Affine(x). Figure
1(b) shows the inverse of the S-box, which consists of the
inverse affine transformation and the inversion over GF(28).
The circuit for the inversion of elements in GF(28) occupies
most of the S-box functionality. In this approach, the inversion
is calculated with combinational logic that operates in GF(24).

The components of the inversion are the following:

ETRI Journal, Volume 30, Number 5, October 2008 Sang-Woo Lee et al. 711

• Map(x) and Map-1(x): an isomorphic mapping function
between GF(28) and GF(24)2 and its inverse, respectively

• x2: square in GF(24)
• ×: multiplication in GF(24)
• +: addition in GF(24) which is equivalent to bitwise XOR
• ×{e}: multiplication of an element in GF(24) by the constant {e}
• x-1: inversion in GF(24)

The input element of GF(28) is mapped to two elements of
GF(24). The multiplicative inverse is calculated using GF(24)
operations, and two GF(24) elements are then mapped inversely
to one element in GF(28). Finally, the affine transformation is
calculated for the S-box. To compute the inverse of the S-box,
inverse affine transformation calculated first, and then the
multiplicative inversion over GF(28) is performed. The
isomorphism may be considered as the matrix multiplication of
the 8×8 binary matrix, M, with the 8-bit value in GF(2)8. The
matrix M of Map(x) and its inverse M-1 are given by

1 0 0 0 1 1 1 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0

,
0 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1
0 0 1 1 0 1 0 1
0 0 0 0 0 1 0 1

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

1 0 0 0 1 0 0 0
0 0 0 0 1 1 0 1
0 1 0 0 1 1 0 1
0 1 0 0 1 1 1 0

.
0 1 0 1 1 1 0 1
0 0 1 0 1 1 0 0
0 1 1 1 1 0 0 1
0 0 1 0 1 1 0 1

M −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Further optimization can be achieved to reduce the hardware
area. Map-1(x) and Affine(x) can be merged for the S-box, and
Affine-1(x) and Map(x) can be combined for the inverse of the
S-box. The combination of the isomorphic mapping with the
affine transformation for S1 and S2 are defined as δ1 and δ2,
respectively. These combinations and their inverses are the
following:

0

1

2

3
1

4

5

6

7

1 0 1 0 1 1 0 1 1
1 1 1 1 1 1 0 1 1
1 0 0 1 1 1 0 0 0
1 0 1 0 1 0 1 1 0

() ,
1 1 0 1 1 0 1 1 0
0 1 1 1 1 1 1 1 1
0 0 0 0 1 0 1 1 1
0 1 1 0 1 0 1 1 0

x
x
x
x

x
x
x
x
x

δ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⊕⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

0

1

2

31
1

4

5

6

7

1 1 0 0 1 0 1 0 1
1 1 0 1 1 0 1 1 1
1 1 0 1 1 0 0 0 0
0 0 0 1 1 0 1 1 1

() ,
1 1 1 0 1 1 1 1 0
0 0 0 1 1 1 1 0 0
1 0 0 0 1 1 1 0 1
0 1 1 0 0 0 1 1 0

x
x
x
x

x
x
x
x
x

δ −

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⊕⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

0

1

2

3
2

4

5

6

7

0 0 1 1 1 0 1 1 0
0 0 1 0 0 1 1 0 1
1 0 0 1 0 1 0 0 0
1 1 0 1 0 0 0 1 0

() ,
0 1 0 1 1 0 0 1 0
1 0 0 0 1 1 0 1 1
0 0 0 1 0 1 0 0 1
1 1 0 1 0 0 1 1 1

x
x
x
x

x
x
x
x
x

δ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⊕⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

0

1

2

31
2

4

5

6

7

0 0 1 0 0 0 1 0 1
0 0 1 0 1 1 0 0 1
1 0 1 1 0 1 0 1 0
1 1 1 0 0 1 1 0 1

() .
0 0 1 1 1 0 1 0 1
1 1 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 1
1 1 1 1 1 0 0 0 1

x
x
x
x

x
x
x
x
x

δ −

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⊕⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

Information on these combinations is important if further
optimizations are to be made.

2. Diffusion Layer

The diffusion layer consists of a byte-oriented 16×16 binary
matrix. There are six XOR operations for each row of the
matrix; hence, there are 768 two-input XOR gates in the
diffusion layer. However, the proposed diffusion layer has only
480 two-input XOR gates because temporary values of the
matrix are used. These are given by

0 3 4 9 14 1 2 5 8 15

0 6 8 13 0 1 7 9 12 1

5 1 10 15 0 4 0 11 14 1

11 2 7 12 0 10 3 6 13 1

14 0 5 11 0 15 1 4 10 1

,
, ,
, ,
, ,
, ,

T x x x x T x x x x
y x x x T y x x x T
y x x x T y x x x T
y x x x T y x x x T
y x x x T y x x x T

= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕

2 1 6 11 12 3 0 7 10 13

2 4 10 15 2 3 5 11 14 3

7 3 8 13 2 6 2 9 12 3

9 0 5 14 2 8 1 4 15 3

12 2 7 9 2 13 3 6 8 3

, ,
, ,

, ,
, ,
, .

T x x x x T x x x x
y x x x T y x x x T
y x x x T y x x x T
y x x x T y x x x T
y x x x T y x x x T

= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕

3. Round Key Generation

The key scheduling is typically implemented using one of
two methods: computing the round keys in advance and
storing them in memory or computing them on-the-fly for
every block of encrypted data. The former method is suitable
for applications in which keys do not change frequently.
However, the pre-computing key-generation scheme consumes
a considerable amount of memory to store the entire set of
round keys. On the other hand, in applications that need to
change keys frequently, generating keys on-the-fly is preferred

712 Sang-Woo Lee et al. ETRI Journal, Volume 30, Number 5, October 2008

Fig. 2. Block diagram of fully parallel round key generation.

W0 W1

Roundkey1

enc
/

dec

W2 W3 W0 W1 W0 W1 W0 W1W1 W2

Roundkey2 Roundkey3 Roundkey9 Roundkey13 Roundkey17

>>19 >>19 <<61 <<31 <<19>>19

XOR XOR XOR XOR XORXOR

Diffusion Diffusion Diffusion Diffusion

MUX MUX MUX MUX

Fig. 3. Block diagram of the on-the-fly key generator.

W0

MUX

XOR

Barrel
shifter

Diffusion

Encryption
key

Decryption
key

W1 W2 W3

as it is possible to change keys rapidly without delay.

The key scheduling of ARIA consists of two procedures: key
initialization and round key generation. The key initialization
process can be implemented by sharing a round operation
block with additional XOR arrays. In this section, two types of
round key generation blocks are described.

Figure 2 describes a part of the fully parallel round key
generation block. In the figure, << x and >> x denote cyclic
shifts by x bits to the left and right, respectively. With the
proposed architecture, all the round keys, (for both encryption
and decryption), can be generated simultaneously in one clock
cycle. This feature is appropriate for applications that support
numerous independent streams of data with different keys and
that therefore require very high throughput. Resources such as
the XORs and the diffusion logic can be shared to reduce the
hardware size, but additional clock cycles are required to
generate all of the round keys. As the cyclic shifts can be
implemented by wiring inputs, no logic gates are needed. Thus,
the delay in generating the round keys for encryption is
determined by only one XOR gate and the multiplexer.
However, there is extra delay for decryption. Here, the critical
path of the key generation is composed of one XOR gate, the
diffusion layer, and the multiplexer as shown in Fig. 2. To
reduce the critical path of the entire system, seventeen round
key registers are required. Therefore, the fully parallel
architecture of the round key generation is suitable for a pre-

Table 1. Gate counts of the proposed key generators.

 Gate count

On-the-fly generator 4,990

Fully parallel generator 46,563

computing method that originally requires memory to store the
round keys. In addition, this generator is proper for the loop
unrolled and pipelined architecture, which requires round key
registers to store the entire set of round keys in order to process
multiple blocks simultaneously.

In the other type of architecture, the on-the-fly key scheduler,
the registers to store all of the round keys can be removed. In
the case of the AES algorithm, it is easy to perform key
scheduling procedures in the forward direction for encryption.
However, round keys are applied in the reverse order for
decryption. Therefore, the on-the-fly key scheduler for AES
causes extra clock cycles for decryption since the decryption
process can only begin after the last round key is computed. In
contrast, the round keys for both encryption and decryption in
ARIA can be generated directly from the main key. Thus, the
overhead for decryption is eliminated with ARIA. The on-the-
fly round key generator is shown in Fig. 3.

Variable amounts of cyclic shift can be implemented by a
combinational barrel shifter. In this key-scheduling process,
only one 128-bit register (instead of seventeen round key
registers) is required in order to store the next round key.
Therefore, on-the-fly key scheduling is appropriate for the loop
architecture, as it computes one round per clock cycle. Table 1
presents the gate counts of the two proposed round key
generators. The fully parallel round key generator has more
gates, as it has seventeen 128-bit registers and fifteen diffusion
circuits compared to the on-the-fly key generator, which has
one key register and one diffusion circuit.

IV. Architectural Optimization and Trade-Offs

In this section, two types of hardware architectures of ARIA
are described in relation to the mode of operation. First, the loop
architecture is explained, in which one round operation unit is
implemented in hardware. This block is reused several times to
complete the entire encryption or decryption process depending
on the key length. The loop architecture has a small circuit area
but has low throughput. Thus, the throughput is improved at the
expense of an increase in the area by using a combination of loop
unrolling and pipelining. Unrolled architectures have a large
number of rounds that are independently implemented in
hardware. Pipelining increases the encryption speed by
processing multiple blocks of data simultaneously. This is

ETRI Journal, Volume 30, Number 5, October 2008 Sang-Woo Lee et al. 713

Fig. 4. Block diagram of the loop architecture.

XOR(1)

XOR(2)

MUX

Data Round key

Output

Data Reg

Substitution

Diffusion

Final round key

MUX

W Reg

W1

KL KR

MUX

CK1 CK2 CK3 KL

XOR(3)

achieved by inserting registers in among the round units. The
sub-pipelined architectures with inserted registers in both the
inner and outer rounds are then presented.

1. Loop Architecture

The loop architecture unrolls only one full cipher round and
iteratively loops data through this round unit until the entire
encryption or decryption transformation is completed. Only
one block of data is processed at a time. Therefore, the loop
architecture is suitable for the feedback modes of ARIA.

Figure 4 shows the loop architecture of ARIA, in which one
round operation per clock cycle is performed. It has a 128-bit
XOR array, a substitution block, and a diffusion block. The
substitution block can be implemented by LUT or the
combinational logic using composite field arithmetic. The
substitution logic is controlled to execute a different
substitution procedure for even or odd rounds, as mentioned in
the previous section. If a multiplexer is used to control the
inputs of the S-boxes and their inverses, then it is possible to
share the S-boxes and their inverses with the even and odd
rounds. Thus, the round unit in the loop architecture has one
substitution layer.

In addition, the key initialization procedure can be executed
using the proposed round function block. To share the
resources, the round function block consists of an additional
128-bit XOR array, as denoted by XOR(2), W registers, and an
additional multiplexer to select the constant values of CK1, CK2,
and CK3 for key initialization. Three clock cycles are required
to compute the key initialization values of W0, W1, W2, and W3,
and 12, 14, and 16 clock cycles are necessary for the round

Fig. 5. Sub-pipelined round unit.

3-stage sub-pipeline
2-stage sub-pipeline

4-stage sub-pipeline

Map(x)

x2 x2 × +

+

+

x-1

× ×

Diffusion

AddRoundKey

× {e}

Map-1(x) & Affine(x)

operations of 128-bit, 192-bit, and 256-bit key lengths,
respectively. As the diffusion step is replaced by the
AddRoundKey step in the final round, extra 128-bit XOR
gates, denoted by XOR(3), are required in order to perform the
final round in one clock cycle. In Fig. 4, KL denotes the left
128 bits of the master key and KR denotes the right 128 bits of
the 256-bit key.

2. Sub-pipelined Architecture

In the non-feedback modes, pipelining can be used to
achieve high throughput. There are two layers that can be
pipelined in ARIA: the inner and outer rounds.

The throughput is calculated according to the clock
frequency and the number of clock cycles for encryption or
decryption. If one 128-bit data word is encrypted every clock
cycle, the throughput is defined by 128 times the clock
frequency for the 128-bit data. Therefore, the loop unrolling of
all the rounds and pipelining architecture can achieve a
throughput that is twelve times higher than the loop
architecture for a 128-bit key. This is due to the removal of all
the loops to form a loop-unrolled design in which the data is

714 Sang-Woo Lee et al. ETRI Journal, Volume 30, Number 5, October 2008

processed in multiple round units and the insertion of pipeline
registers in each round unit. As the loop unrolled and pipelined
architecture consumes a considerable amount of hardware
resources, implementation of the S-boxes with combinational
logic is more suitable than implementation of the LUT scheme.
Essentially, the 12th, 14th, and 16th round units differ from the
others because they involve an additional AddRoundKey step
instead of a diffusion layer.

Although implementation of the S-boxes using composite
field arithmetic is highly area-efficient, it involves a long delay
compared to other layers. This would greatly degrade the
performance of ARIA. To overcome this obstacle, further
pipelining can be implemented in the inner round unit.
However, dividing each round unit into an arbitrary number of
sub-stages does not always speed up the process. Because the
minimum clock period is set according to the longest path in
the design, inserting additional pipelining registers in the
remainder of the round unit with a shorter delay does not
further shorten the clock period. Therefore, the sub-pipelined
architecture can provide the highest throughput when each
round unit is split into multiple sub-stages with equal delays.

Figure 5 describes the critical path of the sub-pipelined round
unit. The sub-pipeline cuts are determined through full round
operation as AddRoundKey, Substitution, and Diffusion. With
careful investigation of the delay in each layer, the round unit
can be divided into two, three, or four sub-stages. In the two-
stage sub-pipelined architecture, pipeline registers are inserted
after the inversion of GF(24) because the inversion unit is the
most time-consuming operation. In the three-stage sub-
pipelining round unit, however, the first pipeline cut is located
before the inversion of GF(24), and the second pipeline cut is
placed before the merged isomorphic map with an affine
transformation in order to ensure the same amount of delay. In
the four-stage sub-pipelined architecture, two additional
pipeline registers are inserted to break down the delay of the
previous two-stage pipelining round unit.

V. Implementation Results and Analysis

The proposed hardware architectures for the ARIA algorithm
were implemented in Verilog HDL, and the Synopsys Design
Compiler was used with a 0.25 μm CMOS standard cell
technology library. Table 2 shows the gate counts and the
throughputs of the two loop architectures using LUT-based S-
boxes or composite-field-based S-boxes with the on-the-fly
key scheduler. In Table 2, LUT denotes the LUT-based S-box
implementation, while Comp. denotes the composite-field-
based implementation. The encryption and decryption of a
128-bit data block with a 128-bit key require 15 clock cycles
including the key initialization step which requires three clock

Table 2. Performance of the loop architectures.

Design
Gate
count

Freq.
(MHz)

Key len.
(bit) Lat.

Thrt.
(Mbps)

Thrt./area
(kbps/gate)

Tech.
(μm)

LUT 25,427 147
128
192
256

15
17
19

1,254
1,106
990

49.31
43.49
38.93

Comp. 21,757 97
128
192
256

15
17
19

827
730
653

38.01
33.52
30.01

0.25

[10]
32-bit

13,893 71 128 356 25 1.79 0.35

[10]
128-bit

43,760 71 128 12 757 17.29 0.35

[11]
16-bit

6,840 15 128 488 3.93 0.57 0.25

[12]
128-bit

15,496 102 128 16 816 52.65 0.25

Table 3. Performance of the pipelined architectures.

Design
Gate
count

Freq.
(MHz)

Throughput
(Mbps)

Throughput / area
(kbps/gate)

LUT –
pipeline 217,579 203 25,984 124

Comp. –
pipeline 181,093 126 16,128 96

2 stage
sub-pipeline 203,114 233 29,184 143

3 stage
sub-pipeline 216,221 306 39,263 181

4 stage
sub-pipeline 260,354 338 43,338 166

cycles. The LUT-based architecture shows a 52% higher
throughput than the composite-field-based architecture because
the critical path of delay is shorter. However, the area cost
shows an increase of 16% compared to the composite-field-
based architecture. Table 2 also shows some other loop
architectures for comparison. It can be seen that our work
offers better performance than those previously reported in the
literature. It appears that Koo and others [12] did not include
the area of the key scheduler, some of the registers, or selection
logics for the inputs. In addition, they only implemented ARIA
with a 128-bit key. Park and others [10] and Yang and others
[11] proposed an area-efficient architecture based on a 32-bit
data path and 16-bit data path, respectively. Their results have a
small area but with a very low throughput. Park and others [10]
also reported a 128-bit architecture that has a throughput of 757
Mbps. However, their area cost is 43,760 gates because they
use LUT-based S-boxes for both the even and odd rounds.

ETRI Journal, Volume 30, Number 5, October 2008 Sang-Woo Lee et al. 715

Table 4. Performance comparison of this work with the existing AES
implementations.

Design
Gate
count

Freq.
(MHz)

Thrt.
(Mbps)

Thrt. / area
(kbps/gate)

Tech.
(μm)

This work:
Loop

25,427 147 1,254 49.31 0.25

[28] 31,957 100 610 19.08 0.25

[29] 119,000 166 2,120 17.81 0.25

[27] 34,300 330 3,840 111.95 0.18

[13] 173,000 154 1,600 9.24 0.18
This work: 4 stage

sub-pipeline 260,354 338 43,338 166 0.25

[24] 225,000 445 57,000 253 0.18

Having said that, our proposed loop architecture achieves the
highest throughput of 1,254 Mbps with 25,427 equivalent gates
for ARIA with a 128-bit key.

Table 3 describes the implementation results of the pipelined
architectures with the fully parallel round key generator. To
evaluate the effect of the S-box implementation scheme in the
pipelined architectures, the result of the LUT-based S-box
implementation is also described. In the case of the loop
unrolled and pipelined architectures, which only use the outer
round pipelining, the LUT-based approach still gives higher
throughput compared to that of the composite-field-based
scheme. However, the LUT-based S-box cannot be pipelined
due to its undivided delay; therefore, we implemented the sub-
pipelined architecture using composite field arithmetic to
achieve higher performance. Area-throughput trade-offs are
determined according to the number of sub-pipeline stages, as
this increases the number of pipelining registers in the overall
design. A throughput of 43 Gbps was achieved with the four-
stage sub-pipelined architecture at the expense of 260,354
equivalent gates. This is the highest throughput in ARIA
hardware implementation to date.

Table 4 compares the performance of the two proposed
ARIA processors with the existing AES implementations. It is
difficult to compare them directly because AES and ARIA are
different algorithms in spite of their similarity, and they were
implemented with different technologies. For loop
architectures, our fast loop architecture is presented in Table 4.
The implementation of Hodjat and others [27] has the highest
throughput of the previous iterative AES implementations. The
performance of our loop architecture of ARIA is slower than
that of [27]. However, we should consider that [27] used a
more advanced technology library. In particular, the encryption
and decryption procedures of ARIA have two more rounds
than AES for the same key sizes. For example, ARIA has 12

rounds, but AES has 10 rounds for a 128-bit key. Therefore, the
throughput of ARIA in the iterative architectures should be
smaller than that of AES with the same clock frequency and
key size. However, in the decryption procedure with the on-
the-fly key scheduler, ARIA has faster throughput than AES
because ARIA does not need extra clock cycles to generate
round keys for decryption.

In addition, the pipelined implementations are compared. In
reference [24], the throughputs of 30 Gbps to 70 Gbps were
achievable in 0.18 μm CMOS technology according to
architectural optimization and variable synthesis options. We
described the performance of the architecture proposed in [24],
which was the same four-stage sub-pipelined architecture as
this work in Table 4. Upon comparison, we conclude that our
effort to design high-speed hardware architectures for ARIA
has been reasonably successful.

VI. Conclusion and Future Work

This article presented efficient high-speed hardware
architectures for block cipher ARIA. The two methods of
LUT-based or a composite-field-based implementation of
S-boxes were evaluated in terms of area-throughput trade-offs.
We gave a detailed explanation of the composite-field-based
S-box implementation over GF(24)2, specifically pertaining to S2.

Loop architectures for feedback modes and pipelined
architectures for non-feedback modes were proposed. The
proposed loop architectures showed a 65% increase in
throughput over previous designs and achieved a throughput of
1,254 Mbps with 25,427 equivalent gates with a 128-bit key. In
addition, fully pipelined high-speed ARIA processors that can
provide a throughput of 43 Gbps were presented. This sub-
pipelined architecture is implemented by loop unrolling along
with inner and outer round pipelining in order to reduce the
critical path delay and to increase the maximum throughput. A
substitution layer was implemented using combinational logic
to avoid the undivided delay of LUTs. Upon comparison, the
implementation presented in this work was shown to achieve
better performance than previously reported implementations.

Secure implementation of cryptographic algorithms is
another important issue in addition to area-throughput trade-
offs [9], [30]-[34]. The architectures in this paper would be
vulnerable to power analysis attacks. While we have focused
on performance and efficiency in this paper, the
countermeasures of power analysis attacks would be an
important research area. In [9], a masking countermeasure was
presented and its second-order side channel resistance was
analyzed by using various suitable preprocessing on FPGA
implementations of ARIA. Investigation of their
countermeasures on our ARIA hardware architectures would

716 Sang-Woo Lee et al. ETRI Journal, Volume 30, Number 5, October 2008

be an interesting work.
In addition, we believe that a power-efficient design in

restricted environments such as PDAs and smart cards would
be another important topic in relation to ARIA hardware
implementations.

Architectural optimization approaches for implementations
supporting the modes of operation that have been recently
published, such as OCB and GCM, require further study [35],
[36]. In particular, the CTR mode is used for encryption in the
GCM mode. Therefore, the proposed sub-pipelined
architectures could be a good building block in the GCM mode
if ARIA is used as an encryption algorithm.

References

[1] NSRI: Specification of ARIA, available at: http://www.nsri.re.kr/
ARIA/doc/ARIA-specification-e.pdf

[2] D. Kwon et al., “New Block Cipher: ARIA,” Proc. of ICISC-
LNCS 2971, Nov. 2003, pp. 432-445.

[3] FIPS pub. 197: Specification for the Advanced Encryption
Standard (AES), Nov. 2001, available at http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf.

[4] PKCS #11 v2.20 Amendment 3 Rev. 1, Additional PKCS#11
Mechanisms, available at: ftp://ftp.rsasecurity.com/pub/pkcs/
pkcs-11/v2-20/pkcs-11v2-20a3.pdf.

[5] NIST Special Publication 800-38A: Recommendation Block
Cipher Modes of Operation Methods and Techniques, 2001,
available at http://csrc.nist.gov/publications/nistpubs/800-38a/
sp800-38a.pdf

[6] NSRI: Security and Performance Analysis of ARIA, available at:
http://www.nsri.re.kr/ARIA/doc/ARIA-COSICreport.pdf.

[7] H. Yoo et al., “Investigations of Power Analysis Attacks and
Countermeasures for ARIA,” Proc. of WISA 2006 - LNCS 4298,
2007, pp. 160-172.

[8] J. Ha et al., “Differential Power Analysis on Block Cipher ARIA,”
Proc. of HPCC - LNCS 3726, 2005, pp. 541-548.

[9] C. Kim, M. Schläffer, and S. Moon, “Differential Side Channel
Analysis Attacks on FPGA Implementations of ARIA,” ETRI
Journal, vol. 30, no. 1, Apr. 2008, pp. 315-325.

[10] J. Park et al., “Low Power Compact Design of ARIA Block
Cipher,” Proc. of ISCAS, May 2006, pp. 313-316.

[11] S. Yang, J. Park, and Y. You, “The Smallest ARIA Module with 16-
Bit Architecture,” Proc. ICISC-LNCS 4296, 2006, pp. 107-117.

[12] B. Koo et al., “Design and Implementation of Unified Hardware
for 128-Bit Block Ciphers ARIA and AES,” ETRI Journal, vol.
29, no. 6, Dec. 2007, pp. 820-822.

[13] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and
Performance Testing of a 2.29-GB/s Rijndael Processor,” IEEE J.
Solid-State Circuits, vol. 38, Mar. 2003, pp. 569-572.

[14] H. Kuo and I. Verbauwhede, “Architectural Optimization for

1.82Gbits/sec VLSI Implementation of the AES Rijndael
Algorithm,” Proc. of CHES, LNCS 2162, 2001, pp. 51-64.

[15] D. K. Kim et al., “Design and Performance Analysis of Electronic
Seal Protection Systems Based on AES,” ETRI Journal, vol. 29,
no. 6, Dec. 2007, pp. 755-768.

[16] F. Standaert et al., “Efficient Implementation of Rijndael
Encryption in Reconfigurable Hardware: Improvements and
Design Tradeoffs,” Proc. CHES-LNCS 2779, 2003, pp. 334-350.

[17] P. Chodowiec and K. Gaj, “Very Compact FPGA Implementation
of the AES Algorithm,” Proc. CHES-LNCS 2779, 2003, pp. 319-
333.

[18] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC
Implementation of the AES SBoxes,” Proc. of CT-RSA - LNCS
2271, 2002, pp. 67-78.

[19] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong
Authentication for RFID Systems Using the AES Algorithm,”
Proc. of CHES – LCNS 3156, 2004, pp. 357-370.

[20] A. Satoh et al., “A Compact Rijndael Hardware Architecture with
S-Box Optimization,” Proc. of ASIACRYPT - LNCS 2248, 2001,
pp. 239-254.

[21] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, “AES
Implementation on a Grain of Sand,” IEE Proc. Information
Security, vol. 152, no. 1, 2005, pp. 13-20.

[22] V. Rijmen, “Efficient Implementation of the Rijndael S-Box,”
available at www.iaik.tugr az.at/RESE ARCH/krypto/AES/old/
~rijmen/rijndael/sbox.pdf

[23] X. Zhang and K.K. Parhi, “High-Speed VLSI Architectures for
the AES Algorithm,” IEEE Trans. VLSI System, vol. 12, no. 9,
Sept. 2004, pp. 957-967.

[24] A. Hodjat and I. Verbauwhede, “Area-Throughput Trade-Offs for
Fully Pipelined 30 to 70 Gbits/s AES Processors,” IEEE Trans.
Computers, vol. 55, no. 4, Apr. 2006, pp. 366-372.

[25] T. Good and M. Benaissa, “Pipelined AES on FPGA with Support
for Feedback Modes (in a Multi-channel Environment),” IET
Information Security, vol. 1, no. 1, Mar. 2007, pp. 1-10.

[26] X. Zhang and K.K. Parhi, “On the Optimum Construction of
Composite Field for the AES Algorithm,” IEEE Trans. Circuits
and Systems, vol. 53, no. 10, Oct. 2006, pp. 1153-1157.

[27] A. Hodjat et al., “A 3.84 Gbits/s AES Crypto Coprocessor with
Modes of Operation in a 0.18-um CMOS Technology,” Proc.
15th ACM Great Lakes Symp. VLSI, Apr. 17-19, 2005, pp. 60-63.

[28] C.C. Lu and S.Y. Tseng, “Integrated Design of AES (Advanced
Encryption Standard) Encrypter and Decrypter,” Proc. Application-
Specific Systems, Architectures and Processors, 2002, pp. 277-285.

[29] F.K. Guürkaynak et al., “A 2 Gb/s Balanced AES Crypto-chip
Implementation,” Proc. 14th ACM Great Lakes Symp. VLSI,
2004, pp. 39-44.

[30] http://www.iaik.tu-raz.ac.at/research/krypto/AES/#hardware.
[31] M. Asim and V. Jeoti, “Efficient and Simple Method for

Designing Chaotic S-Boxes,” ETRI Journal, vol. 30, no. 1, Feb.

ETRI Journal, Volume 30, Number 5, October 2008 Sang-Woo Lee et al. 717

2008, pp. 170-172.
[32] T. Kim et al., “Power Analysis Attacks and Countermeasures on

ηT Pairing over Binary Fields,” ETRI Journal, vol. 30, no. 1, Feb.
2008, pp. 68-80.

[33] T. Kim et al., “Differential Power Analysis on Countermeasures
Using Binary Signed Digit Representations,” ETRI Journal, vol.
29, no. 5, Oct. 2007, pp. 619-632.

[34] H. Kim et al., “Hyperelliptic Curve Crypto-Coprocessor over
Affine and Projective Coordinates,” ETRI Journal, vol. 30, no. 3,
June 2008, pp. 365-376.

[35] P. Rogaway, M. Bellare, and J. Black, “OCB: A Block-Cipher
Mode of Operation for Efficient Authenticated Encryption,”
ACM Trans. Information and System Security (TISSEC), vol. 6,
no. 3, Aug. 2003, pp. 365-403.

[36] NIST Special Publication 800-38D: Recommendation Block
Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC, Nov. 2007, available at http://csrc.nist.gov/publications/
nistpubs/800-38D/SP800-38D.pdf

Sang-Woo Lee received his BS and MS
degrees in electronics from Kyungpook
National University, Daegu, Rep. of Korea, in
1999 and 2001, respectively. Currently, he is a
PhD student in electronics at Kyungpook
National University. Since 2001, He has been a
senior member of engineering staff with

Electronics and Telecommunications Research Institute (ETRI). His
research interests include information security based on cryptography,
hardware architectures for cryptographic algorithms, and secure
embedded systems.

Sang-Jae Moon received his BS and MS
degrees in electronics from Seoul National
University, Rep. of Korea, in 1972 and 1974,
respectively. He received his PhD in
communication engineering from the
University of California, Los Angeles, USA, in
1984. Currently, he is a professor with the

School of Electrical Engineering and Computer Science, Kyungpook
National University, Rep. of Korea. He is also the director of the
Mobile Network Security Technology Research Center (MSRC). He is
an honorary president of the Korea Institute of Information Security
and Cryptology. His current research interests are information security
in mobile, ubiquitous, and RFID networks including the physical
security of smart IC cards. He took part in the Korea Certificate-Based
Digital Signature Algorithm (KCDSA) Standard project. He has a
number of issued patents and more than one hundred technical
publications in international journals and conferences in the area of
information security.

Jeong-Nyeo Kim received her BS degree in
computer science from Chungnam National
University, Rep. of Korea, in 1987. She
received her MS and PhD degrees in computer
engineering from Chungnam National
University, Rep. of Korea, in 2000 and 2004,
respectively. She studied computer science at

the University of California, Irvine, USA in 2005. Since 1988, she has
been a principal member of engineering staff with the Electronics and
Telecommunications Research Institute (ETRI), where she is currently
working as a team leader of the Knowledge-Based Information
Security Research Team. Her research interests include network
security and secure operating system.

