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This paper presents two types of high-speed hardware 
architectures for the block cipher ARIA. First, the loop 
architectures for feedback modes are presented. Area-
throughput trade-offs are evaluated depending on the   
S-box implementation by using look-up tables or 
combinational logic which involves composite field 
arithmetic. The sub-pipelined architectures for non-
feedback modes are also described. With loop unrolling, 
inner and outer round pipelining techniques, and S-box 
implementation using composite field arithmetic over 
GF(24)2, throughputs of 16 Gbps to 43 Gbps are 
achievable in a 0.25 μm CMOS technology. This is the first 
sub-pipelined architecture of ARIA for high throughput to 
date. 
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I. Introduction 

The importance of cryptography is constantly increasing 
with the increasing amount of sensitive data that is being 
transmitted over open environments. Compared to software 
implementations, hardware implementations of cryptographic 
algorithms provide higher throughput and greater physical 
security. 

The ARIA algorithm was announced as the Korean standard 
block cipher algorithm in December of 2004. ARIA is a 128-
bit block cipher with an involution substitution permutation 
network (SPN) that supports 128-bit, 192-bit, or 256-bit key 
lengths [1], [2]. The block size of the data and the key lengths 
are identical to those of Advanced Encryption Standard (AES), 
which was specified in 2001 by the National Institute of 
Standards and Technology [3]. It is important to note that 
Public Key Cryptography Standard (PKCS) #11, which is the 
Cryptographic Token Interface Standard published by RSA 
Security, has recently incorporated the mechanisms of ARIA as 
well as those of AES [4]. 

To provide different security features, [5] defines five 
confidentiality modes of operation for use with an underlying 
symmetric key block cipher algorithm: electronic codebook 
(ECB), cipher block chaining (CBC), cipher feedback (CFB), 
output feedback (OFB), and counter (CTR). These modes can 
provide cryptographic protection for sensitive, but unclassified, 
computer data. Some of these, such as the CBC mode, restrict 
use of the pipeline technique, which processes multiple blocks 
simultaneously to achieve better performance. However, the 
ECB and CTR modes, which do not require feedback, can be 
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pipelined for high throughput. In addition, some of these modes 
such as CFB, OFB, and CTR do not need decryption of an 
underlying block cipher. Therefore, the hardware architecture of 
ARIA should use a different strategy depending on the mode. 

1. Related Work 

ARIA is known to be relatively strong against differential 
crypto-analysis and linear crypto-analysis [6]. Investigations of 
power analysis attacks and countermeasures for ARIA can be 
found in [7]-[9]. However, only a small number of papers have 
been published on the hardware architecture for the ARIA 
algorithm in contrast to AES. A compact design of ARIA was 
proposed in two recent studies [10], [11]. In particular, [11] 
suggested a 16-bit architecture of ARIA and proposed a 
substitution block that used composite field arithmetic. An 
implementation of a unified hardware architecture for ARIA 
and AES was reported in [12]. 

On the other hand, numerous studies of the efficient 
hardware implementation of AES have been presented [13]-
[30]. Again, as ARIA (despite its involutional features) is an 
SPN block cipher similar to AES, previous work on hardware 
implementation of the AES algorithm is helpful to the 
implementation of ARIA in hardware. 

Related previous works can be categorized into area-efficient 
architectures for resource-restricted environments [16]-[21] and 
high-speed designs using a pipelining technique for server-side 
applications [23]-[25], [27]-[29]. SubBytes, a substitution step 
of AES, can be implemented using a look-up-table (LUT) 
scheme or combinational logic based on composite field 
arithmetic. Traditionally, an S-box is implemented in an LUT-
based approach [13], [14]. Several studies [18]-[21] have 
proposed alternative methods to implement the S-box in 
computational form for compact hardware architecture. These 
references illustrate a method to transform the original field of 
GF(28) to a composite field of GF(24)2 or GF((22)2)2 in order to 
replace the S-box tables. This method was originally suggested 
by Rijmen, one of the inventors of AES [22]. In the composite 
field scheme, hardware resources of the S-box can be 
decreased at the expense of increasing the delay.   

Another research area involves architectural optimization for 
high-speed design. Some of the earlier implementations are 
based on loop architecture and the LUT-based S-box approach 
[13], [14]. Thus, they can only provide a throughput of 2 to 3 
Gbps. The LUT-based S-box has an undivided delay to access 
memory. This feature prevents each round unit from being 
divided into sub-stages for further speed-up. Several studies 
[23]-[25] suggest a hardware architecture that combines a 
pipelining technique with a composite-field-based S-box 
implementation to achieve high throughput. 

2. Contribution 

This paper presents high-speed hardware architectures for the 
block cipher ARIA in the form of loop architecture for feedback 
modes and sub-pipelined architecture for non-feedback modes. 
In addition, the proper key schedulers for these architectures are 
proposed. The implementation trade-offs, which depend on the 
type of S-box, are evaluated to optimize the hardware size and 
the throughput. The novelty of this study is the application of the 
hardware optimization techniques found for AES to ARIA. 
However, the optimization techniques for AES cannot be applied 
to ARIA directly because ARIA uses two S-boxes. One is 
equivalent to the AES S-box, but the other is different. A method 
to represent S2, the second S-box of ARIA, is described as an 
affine transformation of the multiplicative inversion over GF(24)2 
with detailed transformation matrices. An effort was made to 
explain the detailed matrix conversion, following the affine 
transformation equations, and the merged matrix of the affine 
transformation with an isomorphic function between GF(28) and 
GF(24)2. Such an elaborate description was omitted in two earlier 
studies [11], [12], although it is very important for further 
improvements. 

The proposed loop architecture was designed to complete 
one round of encryption and decryption in one clock cycle. The 
S-boxes and their inverses were shared for even and odd round 
substitution tables. The design trade-offs between the LUT and 
the composite field schemes were evaluated. Furthermore, a 
round unit was implemented to process the key initialization 
step in order to reduce the area cost. 

There has been no known hardware architecture of ARIA for 
high throughput proposed to date. This work is the first sub-
pipelined hardware architecture of ARIA that uses a method to 
implement substitution tables based on a composite field 
operation over GF(24)2. The architectures that are addressed in 
this paper can achieve throughputs in a range from 16 Gbps to 
43 Gbps depending on the number of sub-stages. The proposed 
approach involves unrolling the round loop and inserting 
pipeline registers both inside and between each round unit. To 
achieve higher throughput, deep pipelining can be used in inner 
round units. In this case, it is necessary to design a substitution 
layer using composite field arithmetic, which allows a deeper 
level of pipelining leading to an improvement in the throughput. 

The remainder of this paper is organized as follows. In 
section II, the ARIA algorithm is briefly described. The detailed 
hardware architecture of the primitives is explained in section 
III. Section IV describes the architectural optimization, which 
includes the loop and sub-pipelined architectures along with 
their design trade-offs. In section V, the implementation results 
and analysis are discussed. Finally, conclusions are given in 
section VI. 
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II. ARIA Algorithm 

The ARIA algorithm is a symmetric block cipher in which 
the data is encrypted and decrypted in blocks of 128 bits. ARIA 
has a variable key length which can be 128, 192, or 256 bits, 
and the corresponding number of rounds for these lengths is 12, 
14, or 16, respectively [1], [2].  

ARIA consists of two procedures: a round operation for 
encryption or decryption and a key scheduler including key 
initialization and round key generation. Each data block is 
modified by several rounds of processing in which each round 
involves the following: 

• AddRoundKey: This performs a bitwise exclusive-OR 
operation between the 128-bit round key and the incoming 
128-bit data.  

• Substitution layer: Two types of substitution layer, which use 
four S-boxes (S1, S2, S1

-1, and S2
-1) are processed.  S1

-1 and 
S2

-1 are the inverses of S1 and S2, respectively. 
• Diffusion layer: This computes an involutional 16×16 binary 

matrix. 

There are two types of substitution layers: one for even 
rounds and the other for odd rounds. A substitution layer is 
composed of sixteen S-boxes that are byte-oriented substitution 
tables. In the case of the AES algorithm, the encryption process 
only uses the S-box, and the decryption process looks up the 
inverse of the S-box instead of the S-box. However, the 
substitution layer of ARIA makes use of both S-boxes and their 
inverses during encryption and decryption processes. 

The key scheduling unit generates round keys from an 
original master key. The key scheduling operation performs 
two processes: key initialization and round key generation. In 
the key initialization process, four 128-bit values, W0, W1, W2, 
and W3, are generated from the master key using a three-round 
256-bit Feistel cipher based on the ARIA round operation. The 
128-bit round keys are generated by the initialization values W0, 
W1, W2, and W3 with the cyclic shifts and XOR operations. 
Here, the last round of ARIA requires two round keys. 
Therefore, ARIA requires 13, 15, or 17 round keys according 
to the key lengths of 128 bits, 192 bits, or 256 bits, respectively. 
The round keys used for decryption are different from the 
encryption round keys. The order of the round keys is reversed 
followed by the output of the diffusion to all encryption round 
keys except during the first and last rounds. 

III. Detailed Hardware Architecture of the Primitives 

1. Substitution Layer  

The substitution layer is the most time-consuming step in 

the ARIA algorithm. There are two well-known approaches 
to implementation of the S-box. The first is the LUT method 
using ROMs. With the LUT scheme, sixteen ROMs (256 
entries × 1 byte) are required for each round. Therefore, the 
LUT approach requires significant hardware resources when 
multiple round units are implemented. On the other hand, it is 
possible to implement the S-box with combinational logic 
using a Galois field operation without tables. While S1 is 
defined as an affine transformation of the multiplicative 
inversion over GF(28), S2 is a combination of x247 and the 
affine transformation. Both S-boxes are defined over GF(28) 
with the following irreducible polynomial: 

8 4 3( ) 1m x x x x x= + + + + . 

This is identical to the polynomial used in AES. Moreover, 
S1 is identical to the S-box of AES.  

Several papers describe the implementation of the S-box based 
on a transformation of the original field of GF(28) to a composite 
field of GF(24)2 or GF((22)2)2 by isomorphic mapping for the S-
box of AES [16], [18]-[21], [23]-[25]. In [18] and [21] the S-box 
was implemented using composite field arithmetic over GF(24)2. 
Such use of composite field arithmetic was recommended by 
Rijmen [22] and is well documented in [18]. Additionally, Satoh 
and others [20] used the composite field of GF((22)2)2, and 
Zhang and Parhi [23] designed a pipelined S-box using the 
composite field of GF((22)2)2 to achieve high throughput. Both 
composite field conversions can be efficiently implemented to 
reduce the required hardware resources and to improve the 
performance. More precisely, the conversion to the composite 
field over GF(24)2 proposed by Wolkerstorfer and others has a 
smaller critical path delay compared to that proposed by Satoh 
and others [26]. 

In the case of the ARIA algorithm, one study [11] describes a 
method of using the composite field of GF((22)2)2 for the 
substitution layer. However, that study did not present the internal 
matrices for the field conversion and the affine transformation. 
Such details are crucial if further improvements are to be made. 

In this section, the implementation of the substitution layer of 
ARIA using the composite field of GF(24)2 is presented. 
Because the method of using the composite field for S1 is well 
described in [18], we explain the case of S2 in detail.  

The S-boxes and their inverses in ARIA can be presented as 
follows: 

1
1

1 1 1 1
1

( ) ,

( ) (( ) ( )) ,

S x A x a

S x A x A a

−

− − − −

= ⋅ ⊕
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            (1) 

247 8
2

1 1

1 1 1 1
2

( )
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( ) (( ) ( )) ,
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S x D x D b

−

− −
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         (2) 
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where x-1
 refers to the inversion of x over GF(28); ⊕ denotes 

128-bit XOR; A, B, C, and D are 8×8 binary matrices; and a 
and b are 8×1 binary vectors. For S2,, since x254 is x-1 in GF(28) 
according to Fermat’s little theorem, the term x247 can be 
represented as x-8, and x-8 is equivalent to C x-1 with a new 
matrix C. At this point, it is possible to represent B x-8 as B C x-1. 
Assuming that D = B C, the equation for S2 becomes       
D x-1 ⊕ b. Additionally, the inverse of the matrix D must be 
known to calculate S2

-1. The matrices are the following:   

⎥
⎥
⎥
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⎥
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Here, the least significant bits are in the upper left corners. 

Using these matrices, it is possible to define the affine 
transformation for S2 and the inverse affine transformation for 
S2

-1 as (3) and (4), respectively. 
0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7
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Implementation of the S-boxes using combinational logic 
without tables involves inversion in GF(28), which may have 
high hardware complexity. To reduce the complexity of the 
required logic for inversion in GF(28), the composite field of 
G(24)2 is utilized. An element a in the field GF(28) is  

 

Fig. 1. Architecture of the substitution layers: (a) an S-box and (b) 
the inverse of the S-box.
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represented as a linear polynomial with coefficients in GF(24): 

8 4, for (2 ), , (2 )h l h la a x a a GF a a GF= + ∈ ∈ .  (5) 

Multiplication of a two-term polynomial with its inverse yields 
the 1-element of the field: 

4

( ) ( ' ') {0} {1},

for , , ', ' (2 ),
h l h l

h l h l

a x a a x a x

a a a a GF

+ × + = +

∈
       (6) 

with an irreducible polynomial 2( ) {1} { }.n x x x e= + +   
Using the extended Euclid algorithm, the inversion from (6) 
can be derived as  

1

2 2 1

( ) ' ' ( ) ( ) ,

(( { }) ( ) ) .
h l h l h h l

h h l l

a x a a x a a d x a a d

d a e a a a

−

−

+ = + = × + + ×

= × + × +
 (7) 

Figure 1 shows how the S-box can be designed using GF(24) 
arithmetic, as described in (7). Figure 1(a) shows the S-box 
function, which is composed of the inversion over GF(28) and 
the affine transformation, here denoted by Affine(x). Figure 
1(b) shows the inverse of the S-box, which consists of the 
inverse affine transformation and the inversion over GF(28). 
The circuit for the inversion of elements in GF(28) occupies 
most of the S-box functionality. In this approach, the inversion 
is calculated with combinational logic that operates in GF(24). 

The components of the inversion are the following: 
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• Map(x) and Map-1(x): an isomorphic mapping function 
between GF(28) and GF(24)2 and its inverse, respectively 

• x2: square in GF(24) 
• ×: multiplication in GF(24) 
• +: addition in GF(24) which is equivalent to bitwise XOR 
• ×{e}: multiplication of an element in GF(24) by the constant {e} 
• x-1: inversion in GF(24) 

The input element of GF(28) is mapped to two elements of 
GF(24). The multiplicative inverse is calculated using GF(24) 
operations, and two GF(24) elements are then mapped inversely 
to one element in GF(28). Finally, the affine transformation is 
calculated for the S-box. To compute the inverse of the S-box, 
inverse affine transformation calculated first, and then the 
multiplicative inversion over GF(28) is performed. The 
isomorphism may be considered as the matrix multiplication of 
the 8×8 binary matrix, M, with the 8-bit value in GF(2)8. The 
matrix M of Map(x) and its inverse M-1 are given by 

1 0 0 0 1 1 1 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0

,
0 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1
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Further optimization can be achieved to reduce the hardware 
area. Map-1(x) and Affine(x) can be merged for the S-box, and 
Affine-1(x) and Map(x) can be combined for the inverse of the 
S-box. The combination of the isomorphic mapping with the 
affine transformation for S1 and S2 are defined as δ1 and δ2, 
respectively. These combinations and their inverses are the 
following: 
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Information on these combinations is important if further 
optimizations are to be made. 

2. Diffusion Layer 

The diffusion layer consists of a byte-oriented 16×16 binary 
matrix. There are six XOR operations for each row of the 
matrix; hence, there are 768 two-input XOR gates in the 
diffusion layer. However, the proposed diffusion layer has only 
480 two-input XOR gates because temporary values of the 
matrix are used. These are given by 
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3. Round Key Generation 

The key scheduling is typically implemented using one of 
two methods: computing the round keys in advance and 
storing them in memory or computing them on-the-fly for 
every block of encrypted data. The former method is suitable 
for applications in which keys do not change frequently. 
However, the pre-computing key-generation scheme consumes 
a considerable amount of memory to store the entire set of 
round keys. On the other hand, in applications that need to 
change keys frequently, generating keys on-the-fly is preferred  
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Fig. 2. Block diagram of fully parallel round key generation. 
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Fig. 3. Block diagram of the on-the-fly key generator. 
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as it is possible to change keys rapidly without delay.   

The key scheduling of ARIA consists of two procedures: key 
initialization and round key generation. The key initialization 
process can be implemented by sharing a round operation 
block with additional XOR arrays. In this section, two types of 
round key generation blocks are described. 

Figure 2 describes a part of the fully parallel round key 
generation block. In the figure, << x and >> x denote cyclic 
shifts by x bits to the left and right, respectively. With the 
proposed architecture, all the round keys, (for both encryption 
and decryption), can be generated simultaneously in one clock 
cycle. This feature is appropriate for applications that support 
numerous independent streams of data with different keys and 
that therefore require very high throughput. Resources such as 
the XORs and the diffusion logic can be shared to reduce the 
hardware size, but additional clock cycles are required to 
generate all of the round keys. As the cyclic shifts can be 
implemented by wiring inputs, no logic gates are needed. Thus, 
the delay in generating the round keys for encryption is 
determined by only one XOR gate and the multiplexer. 
However, there is extra delay for decryption. Here, the critical 
path of the key generation is composed of one XOR gate, the 
diffusion layer, and the multiplexer as shown in Fig. 2. To 
reduce the critical path of the entire system, seventeen round 
key registers are required. Therefore, the fully parallel 
architecture of the round key generation is suitable for a pre-  

Table 1. Gate counts of the proposed key generators. 

 Gate count 

On-the-fly generator 4,990 

Fully parallel generator 46,563 

 

computing method that originally requires memory to store the 
round keys. In addition, this generator is proper for the loop 
unrolled and pipelined architecture, which requires round key 
registers to store the entire set of round keys in order to process 
multiple blocks simultaneously. 

In the other type of architecture, the on-the-fly key scheduler, 
the registers to store all of the round keys can be removed. In 
the case of the AES algorithm, it is easy to perform key 
scheduling procedures in the forward direction for encryption. 
However, round keys are applied in the reverse order for 
decryption. Therefore, the on-the-fly key scheduler for AES 
causes extra clock cycles for decryption since the decryption 
process can only begin after the last round key is computed. In 
contrast, the round keys for both encryption and decryption in 
ARIA can be generated directly from the main key. Thus, the 
overhead for decryption is eliminated with ARIA. The on-the-
fly round key generator is shown in Fig. 3. 

Variable amounts of cyclic shift can be implemented by a 
combinational barrel shifter. In this key-scheduling process, 
only one 128-bit register (instead of seventeen round key 
registers) is required in order to store the next round key. 
Therefore, on-the-fly key scheduling is appropriate for the loop 
architecture, as it computes one round per clock cycle. Table 1 
presents the gate counts of the two proposed round key 
generators. The fully parallel round key generator has more 
gates, as it has seventeen 128-bit registers and fifteen diffusion 
circuits compared to the on-the-fly key generator, which has 
one key register and one diffusion circuit.  

IV. Architectural Optimization and Trade-Offs 

In this section, two types of hardware architectures of ARIA 
are described in relation to the mode of operation. First, the loop 
architecture is explained, in which one round operation unit is 
implemented in hardware. This block is reused several times to 
complete the entire encryption or decryption process depending 
on the key length. The loop architecture has a small circuit area 
but has low throughput. Thus, the throughput is improved at the 
expense of an increase in the area by using a combination of loop 
unrolling and pipelining. Unrolled architectures have a large 
number of rounds that are independently implemented in 
hardware. Pipelining increases the encryption speed by 
processing multiple blocks of data simultaneously. This is 
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Fig. 4. Block diagram of the loop architecture. 
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achieved by inserting registers in among the round units. The 
sub-pipelined architectures with inserted registers in both the 
inner and outer rounds are then presented. 

1. Loop Architecture 

The loop architecture unrolls only one full cipher round and 
iteratively loops data through this round unit until the entire 
encryption or decryption transformation is completed. Only 
one block of data is processed at a time. Therefore, the loop 
architecture is suitable for the feedback modes of ARIA. 

Figure 4 shows the loop architecture of ARIA, in which one 
round operation per clock cycle is performed. It has a 128-bit 
XOR array, a substitution block, and a diffusion block. The 
substitution block can be implemented by LUT or the 
combinational logic using composite field arithmetic. The 
substitution logic is controlled to execute a different 
substitution procedure for even or odd rounds, as mentioned in 
the previous section. If a multiplexer is used to control the 
inputs of the S-boxes and their inverses, then it is possible to 
share the S-boxes and their inverses with the even and odd 
rounds. Thus, the round unit in the loop architecture has one 
substitution layer.  

In addition, the key initialization procedure can be executed 
using the proposed round function block. To share the 
resources, the round function block consists of an additional 
128-bit XOR array, as denoted by XOR(2), W registers, and an 
additional multiplexer to select the constant values of CK1, CK2, 
and CK3 for key initialization. Three clock cycles are required 
to compute the key initialization values of W0, W1, W2, and W3, 
and 12, 14, and 16 clock cycles are necessary for the round 

 

Fig. 5. Sub-pipelined round unit. 
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operations of 128-bit, 192-bit, and 256-bit key lengths, 
respectively. As the diffusion step is replaced by the 
AddRoundKey step in the final round, extra 128-bit XOR 
gates, denoted by XOR(3), are required in order to perform the 
final round in one clock cycle. In Fig. 4, KL denotes the left 
128 bits of the master key and KR denotes the right 128 bits of 
the 256-bit key.  

2. Sub-pipelined Architecture 

In the non-feedback modes, pipelining can be used to 
achieve high throughput. There are two layers that can be 
pipelined in ARIA: the inner and outer rounds. 

The throughput is calculated according to the clock 
frequency and the number of clock cycles for encryption or 
decryption. If one 128-bit data word is encrypted every clock 
cycle, the throughput is defined by 128 times the clock 
frequency for the 128-bit data. Therefore, the loop unrolling of 
all the rounds and pipelining architecture can achieve a 
throughput that is twelve times higher than the loop 
architecture for a 128-bit key. This is due to the removal of all 
the loops to form a loop-unrolled design in which the data is 



714   Sang-Woo Lee et al. ETRI Journal, Volume 30, Number 5, October 2008 

processed in multiple round units and the insertion of pipeline 
registers in each round unit. As the loop unrolled and pipelined 
architecture consumes a considerable amount of hardware 
resources, implementation of the S-boxes with combinational 
logic is more suitable than implementation of the LUT scheme. 
Essentially, the 12th, 14th, and 16th round units differ from the 
others because they involve an additional AddRoundKey step 
instead of a diffusion layer. 

Although implementation of the S-boxes using composite 
field arithmetic is highly area-efficient, it involves a long delay 
compared to other layers. This would greatly degrade the 
performance of ARIA. To overcome this obstacle, further 
pipelining can be implemented in the inner round unit. 
However, dividing each round unit into an arbitrary number of 
sub-stages does not always speed up the process. Because the 
minimum clock period is set according to the longest path in 
the design, inserting additional pipelining registers in the 
remainder of the round unit with a shorter delay does not 
further shorten the clock period. Therefore, the sub-pipelined 
architecture can provide the highest throughput when each 
round unit is split into multiple sub-stages with equal delays. 

Figure 5 describes the critical path of the sub-pipelined round 
unit. The sub-pipeline cuts are determined through full round 
operation as AddRoundKey, Substitution, and Diffusion. With 
careful investigation of the delay in each layer, the round unit 
can be divided into two, three, or four sub-stages. In the two-
stage sub-pipelined architecture, pipeline registers are inserted 
after the inversion of GF(24) because the inversion unit is the 
most time-consuming operation. In the three-stage sub-
pipelining round unit, however, the first pipeline cut is located 
before the inversion of GF(24), and the second pipeline cut is 
placed before the merged isomorphic map with an affine 
transformation in order to ensure the same amount of delay. In 
the four-stage sub-pipelined architecture, two additional 
pipeline registers are inserted to break down the delay of the 
previous two-stage pipelining round unit. 

V. Implementation Results and Analysis  

The proposed hardware architectures for the ARIA algorithm 
were implemented in Verilog HDL, and the Synopsys Design 
Compiler was used with a 0.25 μm CMOS standard cell 
technology library. Table 2 shows the gate counts and the 
throughputs of the two loop architectures using LUT-based S- 
boxes or composite-field-based S-boxes with the on-the-fly 
key scheduler. In Table 2, LUT denotes the LUT-based S-box 
implementation, while Comp. denotes the composite-field-
based implementation. The encryption and decryption of a 
128-bit data block with a 128-bit key require 15 clock cycles 
including the key initialization step which requires three clock 

Table 2. Performance of the loop architectures. 

Design
Gate 
count

Freq. 
(MHz)

Key len. 
(bit) Lat. 

Thrt. 
(Mbps) 

Thrt./area 
(kbps/gate)

Tech.
(μm)

LUT 25,427 147
128 
192 
256 

15 
17 
19 

1,254 
1,106 
990 

49.31 
43.49 
38.93 

Comp. 21,757 97 
128 
192 
256 

15 
17 
19 

827 
730 
653 

38.01 
33.52 
30.01 

0.25

[10] 
32-bit

13,893 71 128 356 25 1.79 0.35

[10] 
128-bit

43,760 71 128 12 757 17.29 0.35

[11] 
16-bit

6,840 15 128 488 3.93 0.57 0.25

[12] 
128-bit

15,496 102 128 16 816 52.65 0.25

Table 3. Performance of the pipelined architectures. 

Design 
Gate 
count 

Freq. 
(MHz) 

Throughput 
(Mbps) 

Throughput / area 
(kbps/gate) 

LUT – 
pipeline 217,579 203 25,984 124 

Comp. – 
pipeline 181,093 126 16,128 96 

2 stage  
sub-pipeline 203,114 233 29,184 143 

3 stage 
sub-pipeline 216,221 306 39,263 181 

4 stage 
sub-pipeline 260,354 338 43,338 166 

 

cycles. The LUT-based architecture shows a 52% higher 
throughput than the composite-field-based architecture because 
the critical path of delay is shorter. However, the area cost 
shows an increase of 16% compared to the composite-field-
based architecture. Table 2 also shows some other loop 
architectures for comparison. It can be seen that our work 
offers better performance than those previously reported in the 
literature. It appears that Koo and others [12] did not include 
the area of the key scheduler, some of the registers, or selection 
logics for the inputs. In addition, they only implemented ARIA 
with a 128-bit key. Park and others [10] and Yang and others 
[11] proposed an area-efficient architecture based on a 32-bit 
data path and 16-bit data path, respectively. Their results have a 
small area but with a very low throughput. Park and others [10] 
also reported a 128-bit architecture that has a throughput of 757 
Mbps. However, their area cost is 43,760 gates because they 
use LUT-based S-boxes for both the even and odd rounds. 
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Table 4. Performance comparison of this work with the existing AES
implementations. 

Design 
Gate 
count 

Freq. 
(MHz)

Thrt. 
(Mbps) 

Thrt. / area 
(kbps/gate) 

Tech.
(μm)

This work: 
Loop 

25,427 147 1,254 49.31 0.25

[28] 31,957 100 610 19.08 0.25

[29] 119,000 166 2,120 17.81 0.25

[27] 34,300 330 3,840 111.95 0.18

[13] 173,000 154 1,600 9.24 0.18
This work: 4 stage 

sub-pipeline 260,354 338 43,338 166 0.25

[24] 225,000 445 57,000 253 0.18

 

Having said that, our proposed loop architecture achieves the 
highest throughput of 1,254 Mbps with 25,427 equivalent gates 
for ARIA with a 128-bit key. 

Table 3 describes the implementation results of the pipelined 
architectures with the fully parallel round key generator. To 
evaluate the effect of the S-box implementation scheme in the 
pipelined architectures, the result of the LUT-based S-box 
implementation is also described. In the case of the loop 
unrolled and pipelined architectures, which only use the outer 
round pipelining, the LUT-based approach still gives higher 
throughput compared to that of the composite-field-based 
scheme. However, the LUT-based S-box cannot be pipelined 
due to its undivided delay; therefore, we implemented the sub-
pipelined architecture using composite field arithmetic to 
achieve higher performance. Area-throughput trade-offs are 
determined according to the number of sub-pipeline stages, as 
this increases the number of pipelining registers in the overall 
design. A throughput of 43 Gbps was achieved with the four-
stage sub-pipelined architecture at the expense of 260,354 
equivalent gates. This is the highest throughput in ARIA 
hardware implementation to date. 

Table 4 compares the performance of the two proposed 
ARIA processors with the existing AES implementations. It is 
difficult to compare them directly because AES and ARIA are 
different algorithms in spite of their similarity, and they were 
implemented with different technologies. For loop 
architectures, our fast loop architecture is presented in Table 4. 
The implementation of Hodjat and others [27] has the highest 
throughput of the previous iterative AES implementations. The 
performance of our loop architecture of ARIA is slower than 
that of [27]. However, we should consider that [27] used a 
more advanced technology library. In particular, the encryption 
and decryption procedures of ARIA have two more rounds 
than AES for the same key sizes. For example, ARIA has 12 

rounds, but AES has 10 rounds for a 128-bit key. Therefore, the 
throughput of ARIA in the iterative architectures should be 
smaller than that of AES with the same clock frequency and 
key size. However, in the decryption procedure with the on-
the-fly key scheduler, ARIA has faster throughput than AES 
because ARIA does not need extra clock cycles to generate 
round keys for decryption. 

In addition, the pipelined implementations are compared. In 
reference [24], the throughputs of 30 Gbps to 70 Gbps were 
achievable in 0.18 μm CMOS technology according to 
architectural optimization and variable synthesis options. We 
described the performance of the architecture proposed in [24], 
which was the same four-stage sub-pipelined architecture as 
this work in Table 4. Upon comparison, we conclude that our 
effort to design high-speed hardware architectures for ARIA 
has been reasonably successful. 

VI. Conclusion and Future Work 

This article presented efficient high-speed hardware 
architectures for block cipher ARIA. The two methods of  
LUT-based or a composite-field-based implementation of   
S-boxes were evaluated in terms of area-throughput trade-offs. 
We gave a detailed explanation of the composite-field-based  
S-box implementation over GF(24)2, specifically pertaining to S2.  

Loop architectures for feedback modes and pipelined 
architectures for non-feedback modes were proposed. The 
proposed loop architectures showed a 65% increase in 
throughput over previous designs and achieved a throughput of 
1,254 Mbps with 25,427 equivalent gates with a 128-bit key. In 
addition, fully pipelined high-speed ARIA processors that can 
provide a throughput of 43 Gbps were presented. This sub-
pipelined architecture is implemented by loop unrolling along 
with inner and outer round pipelining in order to reduce the 
critical path delay and to increase the maximum throughput. A 
substitution layer was implemented using combinational logic 
to avoid the undivided delay of LUTs. Upon comparison, the 
implementation presented in this work was shown to achieve 
better performance than previously reported implementations. 

Secure implementation of cryptographic algorithms is 
another important issue in addition to area-throughput trade-
offs [9], [30]-[34]. The architectures in this paper would be 
vulnerable to power analysis attacks. While we have focused 
on performance and efficiency in this paper, the 
countermeasures of power analysis attacks would be an 
important research area. In [9], a masking countermeasure was 
presented and its second-order side channel resistance was 
analyzed by using various suitable preprocessing on FPGA 
implementations of ARIA. Investigation of their 
countermeasures on our ARIA hardware architectures would 
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be an interesting work. 
In addition, we believe that a power-efficient design in 

restricted environments such as PDAs and smart cards would 
be another important topic in relation to ARIA hardware 
implementations. 

Architectural optimization approaches for implementations 
supporting the modes of operation that have been recently 
published, such as OCB and GCM, require further study [35], 
[36]. In particular, the CTR mode is used for encryption in the 
GCM mode. Therefore, the proposed sub-pipelined 
architectures could be a good building block in the GCM mode 
if ARIA is used as an encryption algorithm. 
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