• Title/Summary/Keyword: Complex eigenvalue

Search Result 131, Processing Time 0.02 seconds

Parameter Analysis of Rotor Shape Modification for Reduction of Squeal Noise (브레이크의 스퀼 저감을 위한 로터 형상변경 파라메터 해석)

  • Lee, Hyun-Young;Oh, Jae-Eung;Cha, Byeong-Gyu;Joe, Yong-Goo;Lee, Jung-Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.820-825
    • /
    • 2004
  • This paper deals with friction-induced vibration of disc brake system under constant friction coefficient. A linear, finite element parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model, the experimental modal test and the dynamometer test are performed. The comparison of experimental and simulation results shows a good agreement and the analysis indicates that mode coupling due to friction force is responsible for disc brake squeal. And squeal type instability is investigated by using the parametric rotor simulation. This indicates parameters which have influence on the propensity of brake squeal. This helped to validate the FEM model and establish confidence in the simulation results. Also they may be useful during real disk brake model.

  • PDF

Exact Dynamic Stiffness Matrix of Nonsymmetric Thin-walled Beams Subjected to Eccentrically Axial Forces (편심축하중을 받는 비대칭 박벽보의 엄밀한 동적강도행렬)

  • Kim, Moon Young;Yun, Hee Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.703-713
    • /
    • 2001
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled straight beams subjected to eccentrically axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using element force-displacement relationships. The natural frequencies of nonsymmetric thin-walled straight beams are evaluated and compared with analytical solutions or results by thin-walled beam element using the cubic Hermitian polynomials and ABAQU's shell elements in order to demonstrate the validity of this study.

  • PDF

Seismic Response on Thin Shell as Structural Foundation (기초구조물로서 얇은 쉘 구조물의 지진응답)

  • Yee Hooi Min;Azizah Abdul Nassir;Kim Jae Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.31-41
    • /
    • 2024
  • This study aims to investigate the seismic response of a large span thin shell structures and assess their displacement under seismic loads. The study employs finite element analysis to model a thin shell structure subjected to seismic excitation. The analysis includes eigenvalue analysis and time history analysis to evaluate the natural frequencies and displacement response of the structure under seismic loads. The findings show that the seismic response of the large span thin shell structure is highly dependent on the frequency content of the seismic excitation. The eigenvalue analysis reveals that the tenth mode of vibration of the structure corresponds to a large-span mode. The time history analysis further demonstrates, with 5% damping, that the displacement response of the structure at the critical node number 4920 increases with increasing seismic intensity, reaching a maximum displacement of 49.87mm at 3.615 seconds. Nevertheless, the maximum displacement is well below the allowable limit of the thin shell. The results of this study provide insight into the behaviour of complex large span thin shell structures as elevated foundations for buildings under seismic excitation, based on the displacement contours on different modes of eigenvalues. The findings suggest that the displacement response of the structure is significant for this new application of thin shell, and it is recommended to enhance the critical displacement area in the next design phase to align with the findings of this study to resist the seismic impact.

An Analysis of Eigenvalues and Eigenvectors for V-notched Cracks in Pseudo-isotropic Dissimilar Materials

  • Kim, Jin-kwang;Cho, Sang-Bong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.33-44
    • /
    • 2002
  • The problem of eigenvalues and eigenvectors is obtained from a v-notched crack in pseudo-isotropic dissimilar materials by the traction free boundary and the perfect bonded conditions at interface. The complex stress function of the two-term William's type is used. The eigenvalues are solved by a commercial numerical program, MATHEMATICA. Stress singularities for v-notched cracks in pseudo-isotropic dissimilar materials are discussed. The RWCIM(Reciprocal Work Contour Integral Method) is applied to the determination of eigenvector coefficients associated with eigenvalues with egenvalues. The RWCIM algorithm is also coded by the MATHEMATICA.

The Effect of Gear Contact Stiffnesses on the Vibration of Torsional Geared Systems for a Mill Turret (복합공구대 비틀림계 진동에 대한 기어 맞물림 강성의 영향에 관한 연구)

  • Kim, Chae-sil;Kim, Soo-Tae;Cho, Soo-Yong;Jung, Hoon-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.32-39
    • /
    • 2009
  • This paper describes mathematical models of the torsional geared driving system for the indexing path and the mill driving path in a mill turret. The eigenvalue analysis for the models is conducted both with and without the gear contact stiffnesses. The natural frequency leads to the effect of gear contact stiffnesses on the vibration of torsional geared systems in a mill turret. It is necessary to analyze eigenvalues of the complex geared torsional system in order to prevent the unexpected vibrations.

  • PDF

Improved Minimum Variance Matched field Processing Technique for Underwater Acoustic Source Localization (수중 음원 위치 추정을 위한 개선된 최소 분산 정합장 처리 기법)

  • 양인식;김준환;김기만
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.68-72
    • /
    • 2000
  • Matched field processing technique is performed by considering complex underwater environments. Specially, the performance of minimum variance processor is greatly degraded by eigenvalue problem. In this paper, we propose the minimum variance matched field processor using shaping matrix. This shaping matrix makes that the input covariance matrix is invertible and enhances the desired acoustic source component. It was proved effectively range/depth localization of the proposed method with simulated data and vertical array data collected by NATO SACLANT Center north of the island of Elba off the Italian west coast.

  • PDF

Optimal Layout Design of Frequency- and Temperature-Dependent Viscoelastic Materials for Maximum Loss Factor of Constrained-Layer Damping Beam (점탄성 물질의 온도와 주파수 의존성을 고려한 구속형 제진보의 최대 손실계수 설계)

  • Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1023-1026
    • /
    • 2007
  • Optimal damping layout of the constrained viscoelastic damping layer on beam is identified with temperatures by using a gradient-based numerical search algorithm. An optimal design problem is defined in order to determine the constrained damping layer configuration. A finite element formulation is introduced to model the constrained damping layer beam. The four-parameter fractional derivative model and the Arrhenius shift factor are used to describe dynamic characteristics of viscoelastic material with respect to frequency and temperature. Frequency-dependent complex-valued eigenvalue problems are solved by using a simple resubstitution algorithm in order to obtain the loss factor of each mode and responses of the structure. The results of the numerical example show that the proposed method can reduce frequency responses of beam at peaks only by reconfiguring the layout of constrained damping layer within a limited weight constraint.

  • PDF

Unstable Brake Pad Mode Due to Friction-velocity Slope (마찰 곡선에 의한 불안정 브레이크 패드 모드 해석)

  • Nam, Jaehyun;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1206-1212
    • /
    • 2012
  • The brake squeal propensity due to the friction-velocity curve is numerically investigated. The finite element models for the disc and pad are correlated with the modal test. In the friction-engaged system modeling, the friction function is linearized at the equilibrium. The damping term induced by friction-velocity slope is incorporated into the equations of motion. In the complex eigenvalue analysis, it is found that the pad shear mode is very sensitive to the friction curve. The results shows that the squeal propensity of the pad shear mode can be controlled by the design parameters such as pressure and stiffness.

Power System Nonlinearity Modal Interaction by the Normal Forms of Vector Fields

  • Zhang, Jing;Wen, J.Y.;Cheng, S.J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.8-13
    • /
    • 2008
  • Because of the robust nonlinear characteristics appearing in today's modern power system, a strong interaction exists between the angle stability and the voltage stability, which were conventionally studied insularly. However, as the power system is a complex unified system, angle instability always happens in conjunction with voltage instability. The authors propose a novel method to analyze this type of stability problem. In the proposed method, the theory of normal forms of vector fields is utilized to treat the auxiliary dynamic system. By use of this method, the interaction between response modes caused by the nonlinearity of the power system can be analyzed. Consequently, the eigenvalue analysis method is extended to cope with performance analysis of the power system with heavy nonlinearity. The effectiveness of the proposed methodology is verified on a 3-bus power system.

Lateral buckling of thin-walled members with openings considering shear lag

  • Wang, Quanfeng
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.369-383
    • /
    • 1997
  • The classical theory of thin-walled members is unable to reflect the shear lag phenomenon since it is based on the assumption of no shearing strains in the middle surface of the walls. In this paper, an energy equation for the lateral buckling of thin-walled members has been derived which includes the effects of torsion, warping and, especially, the shearing strains which reflect the shear lag phenomenon. A numerical analysis for the lateral buckling of thin-walled members with openings by using Galerkin's method of weighted residuals has been presented. The proposed numerical values and the predictions by experiment for the lateral buckling loads are to agree closely in the paper. The results from these comparisons show that the proposed method here is capable of predicting the lateral buckling of thin-walled members with openings. The fast convergence of the results indicates the numerical stability of the method. By the study, a very complex practical eigenvalue problem is transformed into a very simple one of solving only a linear equation with one variable.