DOI QR코드

DOI QR Code

Seismic Response on Thin Shell as Structural Foundation

기초구조물로서 얇은 쉘 구조물의 지진응답

  • Yee Hooi Min (Faculty of Civil Engineering, UniversitiTeknologi MARA) ;
  • Azizah Abdul Nassir (Faculty of Civil Engineering, UniversitiTeknologi MARA) ;
  • Kim Jae Yeol (Hyupsung university)
  • 이휘민 ;
  • 아지자 압둘 나살 ;
  • 김재열 (협성대학교 건축공학과)
  • Received : 2024.02.06
  • Accepted : 2024.06.05
  • Published : 2024.06.15

Abstract

This study aims to investigate the seismic response of a large span thin shell structures and assess their displacement under seismic loads. The study employs finite element analysis to model a thin shell structure subjected to seismic excitation. The analysis includes eigenvalue analysis and time history analysis to evaluate the natural frequencies and displacement response of the structure under seismic loads. The findings show that the seismic response of the large span thin shell structure is highly dependent on the frequency content of the seismic excitation. The eigenvalue analysis reveals that the tenth mode of vibration of the structure corresponds to a large-span mode. The time history analysis further demonstrates, with 5% damping, that the displacement response of the structure at the critical node number 4920 increases with increasing seismic intensity, reaching a maximum displacement of 49.87mm at 3.615 seconds. Nevertheless, the maximum displacement is well below the allowable limit of the thin shell. The results of this study provide insight into the behaviour of complex large span thin shell structures as elevated foundations for buildings under seismic excitation, based on the displacement contours on different modes of eigenvalues. The findings suggest that the displacement response of the structure is significant for this new application of thin shell, and it is recommended to enhance the critical displacement area in the next design phase to align with the findings of this study to resist the seismic impact.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(RS-2024-00339490).

References

  1. R. Pathak, Melani, Amit, Khare, Rakesh, Finite Element Modelling and Free Vibration Analysis of RC Shell & Spatial Structures for Seismic Evaluation, Proceedings of Recent Advances in Interdisciplinary Trends in Engineering & Applications (RAITEA). (2019).
  2. C.L. Dym, F. Asce, H.E. Williams, Stress and Displacement Estimates for Arches, Journal of Structural Engineering. 137 (1) (2011) 49-58. DOI:https://ascelibrary.org/doi/10.1061/%28ASCE%29ST.1943-541X.0000267
  3. A.A. Mansor, M.M. Hamid, S. Abbas, Finite Element Dynamic Analysis of Thin Shells Subjected to Arbitrary Loading. Journal of Engineering Science and Technology. 16 (6) (2021).
  4. O.C. Zienkiewicz, The Finite Element Method, ZAMM - Zeitschrift fur Angewandte Mathematik und Mechanik. 60 (8) (1980) 345-46.
  5. K.J. Bathe, Finite element procedures, New Jersey: Prentice Hall. (1996).
  6. Y.C. Chiang, P. Buskermolen, A. Borgart, Discretised Airy Stress Functions and Body Forces, (2020)
  7. M.K. Das, Three-Dimensional Finite Element Model to Study the Behavior of Hyperbolic Paraboloid Shell as Foundation, Master of Science in Civil Engineering Thesis, Bangladesh University of Engineering and Technology. (1989).
  8. C. Faber, Candela: The Shell Builder, New York, NY, USA: Reinhold Publishing Corporation, (1963).
  9. A.A. Nassir, H.M Yee, A. Petchsasithon, S.F. Senin, Optimization of a heavy-duty elevated thin shell structure. Songklanakarin J. Sci. Technol. 44 (4) (2022) 1085-1090.
  10. A.A. Nassir, H.M Yee, S.F. Senin, Computational Mechanics Analysis in Elevated Shell Platform Structures, Journal of Mechanical Engineering. 18 (3) (2021).
  11. A.A. Nassir, H.M Yee, S.F. Senin, W.Y. Peen, Sustainable development of elevated shell platform, Engineerin Journal. 25 (6) (2021) 123-130. DOI:https://engj.org/index.php/ej/article/view/4355/1133
  12. A.J. Sadowski, J.M. Rotter, Solid or Shell Finite Elements to Model Thick Cylindrical Tubes and Shells under Global Bending, International Journal Mechanical Science, 74 (2013) 143-153. DOI:https://doi.org/10.1016/j.ijmecsci.2013.05.008
  13. J.C. Yu, Q.T. Wang, Modal analysis of the rotating shell structure based on Absolute Nodal Coordinate Formulation, IOP Conference Series: Materials Science and Engineering. 531 (2019). DOI:https://doi.org/10.1088/1757-899X/531/1/012061
  14. A. Astakhova, Calculation of thin isotropic shells beyond the elastic limit by the method of elastic solutions, MATEC Web of Conferences. 196 (2018).
  15. Q. Chai, Y.Q. Wang, F.L. Yang, Frequency response of spinning cylindrical shells with discontinuous boundary conditions: A semi-analytical method. Thin-Walled Structures. 182 (2023). DOI:https://doi.org/10.1016/j.tws.2022.110253
  16. J. Kandasamy, M. Madhavi, N. Haritha, Free Vibration Analysis of Thin Cylindrical Shells Subjected to Internal Pressure and Finite Element Analysis, International Journal of Research in Engineering and Technology. 5 (13) (2016) 40-48. DOI:https://doi.org/10.1007/s13296-019-00277-5
  17. R.W. Clough, J. Penzien, Dynamics of structures (3rdEdition), NewYork: McGraw-HillBookCo.Inc.(2003).
  18. T.R. Chandrupatla, A.D. Belegundu, T. Ramesh, C. Ray, Introduction to finite elements in engineering, Upper Saddle River, NJ: Prentice Hall. (2) (2002).
  19. J. Zhao, Q. Tian, H.Y. Hu, Modal Analysis of a rotating thin plate via absolute nodal coordinate formulation, Journal of Compu-tational and Nonlinear Dynamics. 6 (4) (2016). DOI:https://doi.org/10.1115/1.4003975
  20. N.D. Lagaros, C.C. Mitropoulou, M. Papadrakakis, Time History Seismic Analysis, Encyclopedia of Earthquake Engineering. (2013).
  21. X.T. He, X.G. Wang, J.Y. Sun, Application of the Variational Method to the Large Deformation Problem of Thin Cylindrical Shells with Different Moduli in Tension and Com-  pression, Materials. 16 (4) (2023). DOI:https://doi.org/10.3390/ma16041686
  22. Q. Chai, Y.Q. Wang, F.L. Yang, Frequency response of spinning cylindrical shells with discontinuous boundary conditions: A semi-analytical method, Thin-Walled Structures. 182 (2023). DOI:https://doi.org/10.1016/j.tws.2022.110253
  23. I. M. Smith, D. V. Griffiths, L. Margetts, Programming the Finite Element Method, 5th Edition, John Wiley & Sons. (2013).
  24. LUSAS Ltd. LUSAS User Manual [Manual]. (2021).
  25. Y.C. Chiang, P.J. Buskermolen, A. Borgart, Discretised Airy Stress Functions and Body Forces, Advances in Architectural Geometry 2020. (2021) 62-83.
  26. R. Yu, Q. Zhang, Z. Wei, L. Li, Z. Yue, X. Wang, T.J. Lu, Dynamic response of fully-clamped steel plate under laboratory-simulated sequential fragment impact and blast loading, Thin-Walled Structures. 182 (2022). DOI:https://doi.org/10.1016/j.tws.2022.110144
  27. LUSAS Ltd., Worked Example: Seismic Analysis of a 3D Frame (Time Domain). (n.d.).
  28. Y. Wu, S. Fan, Y. Guo, S. Duan, Q. Wu, Experimental study and numerical simulation on the seismic behavior of diagonally stiffened stainless steel plate shear walls under low cyclic loading, Thin-Walled Structures. 182 (2023). DOI:https://doi.org/10.1016/j.tws.2022.110165
  29. BS 5400 Part 7:1992. Steel, concrete and composite bridges - Part 7: Specification for materials and workmanship, concrete, reinforcement and prestressing tendons. British Standards Institution. (2013).
  30. T. Uenaga, P. Omidian, R.C. George, M. Mirzajani, N. Khaji, Seismic Resilience Assessment of Curved Reinforced Concrete Bridge Piers through Seismic Fragility Curves Considering Short and Long Period Earthquakes, Sustainability. 15 (10) (2023). DOI:https://doi.org/10.3390/su15107764
  31. M.D. Duong, V.M. Nguyen, Q.T. Dao, T.H. Do, Reference Response Based Time-Varying Vibration Suppression, Journal of Engineering Science and Technology. 18 (1) (2023) 604-623.