• Title/Summary/Keyword: Closed-loop observer

Search Result 145, Processing Time 0.026 seconds

Stability Proof of NFL-ROO/SMC : Part 2 (NFL-ROO/SMC의 안정도 증명 : Part 2)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.976-978
    • /
    • 1998
  • This paper presents the stability proof of a nonlinear feedback linearization-reduced order observer/sliding mode controller (NFL-ROO/SMC). The closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF

Stability Proof of NFL-O/SMMFC : Part 3 (NFL-O/SMMFC의 안정도 증명 : Part 3)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.979-981
    • /
    • 1998
  • This paper presents a stability proof for the nonlinear feedback linearization-observer/sliding mode model following controller (NFL-O/SMMFC). The separation principle is derived, and the closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF

Stability Proof of NFL-ROO-based SMC : Part 6 (NFL-ROO에 기준한 SMC의 안정도 증명 : Part 6)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.988-990
    • /
    • 1998
  • This paper presents the stability proof of a nonlinear feedback linearization-reduced order observer-based sliding mode controller (NFL-ROO-based SMC). The closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF

Stability Proof of NFL-O-based SMMFC : Part 7 (NFL-O에 기준한 SMMFC의 안정도 증명 : Part 7)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.991-993
    • /
    • 1998
  • This paper presents a stability proof for the nonlinear feedback linearization-observer-based sliding mode model following controller (NFL-O-based SMMFC). The closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF

A Motion Control of a Two Degree of Freedom Inverted Pendulum with Passive Joint using Discrete-time Sliding Observer Based VSS Controller (슬라이딩 관측기를 갖는 가변구조제어기에 의한 도립진자의 운동제어)

  • Suh, Yong-Seok;You, Wan-Sik;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.468-471
    • /
    • 1994
  • This paper presents the digital implementation of an optimal and robust VSS controller with sliding observer. Firstly, a discrete-time VSS control law which enables the system state to move into a sliding sector where the closed-loop system is stable is designed. Then optimal control theory is used to design an optimal sliding sector. Secondly, a sliding observer which provide robust state estimation against model-plant mismatches due to parameter uncertainties is designed for the sampled-data multivariable systems. Finally, modified sliding observer which effectively reduce chattering of state variables in state estimation was proposed. The proposed scheme was applied 10 a two degree of freedom inverted pendulum with passive joint to verify robust motion control. Computer simulation results confirm the viability of the proposed observer-based controller.

  • PDF

OBSERVER-BASED INPUT-OUTPUT LINEARIZATION CONTROL OF A MULTIVARIABLE CONTINUOUS CHEMICAL REACTOR

  • Mohamed, Bouhamida;Bachir, Daaou;Abdellah, Mansouri;Mohammed, Chenafa
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.641-658
    • /
    • 2012
  • The goal of this paper is to develop a nonlinear observer-based control strategy for a multi-variables continuous stirred tank reactor (CSTR). A new robust nonlinear observer is constructed to estimate the whole process state variables. The observer is coupled with a nonlinear controller, designed based on the input-output linearization for controlling the concentration and reactor temperature. The closed loop system is shown to be globally asymptotically stable based on Lyapunov arguments. Finally, computer simulations are developed for showing the performance of the proposed controller.

Robust Adaptive Control for Nonlinear Systems Using Nonlinear Disturbance Observer (외란 관측기를 이용한 비선형 시스템의 강인 적응제어)

  • Hwang, Young-Ho;Han, Byung-Jo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.327-329
    • /
    • 2006
  • A controller is proposed for the robust adaptive backstepping control of a class of uncertain nonlinear systems using nonlinear disturbance observer (NDO). The NDO is applied to estimate the time-varying lumped disturbance in each step, but a disturbance observer error does not converge to zero since the derivative of lumped disturbance is not zero. Then the fuzzy neural network (FNN) is presented to estimate the disturbance observer error such that the outputs of the system are proved to converge to a small neighborhood of the desired trajectory. The proposed control scheme guarantees that all the signals in the closed-loop are semiglobally uniformly ultimately bounded on the basis of the Lyapunov theorem. Simulation results are presented to illustrate the effectiveness and the applicability of the approaches proposed.

  • PDF

Fuzzy Gain Scheduling Flux Observer for Direct Torque Controlled Induction Motor Drives (직접토크제어 유도전동기 구동장치를 위한 퍼지이득조정 자속관측기)

  • 금원일;류지수;박태건;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.234-234
    • /
    • 2000
  • A direct torque control(DTC) based sensorless speed control system which employs a new closed loop flux observer is proposed. The flux observer takes an adaptive scheduling gains where motet speed is used as the scheduling variable. Adaptive nature comes from the fact that the estimated values of stator resistance and speed are included as observer parameters. The parameters of the PI controllers adopted in the adaptive law for the estimation of stator resistance and motor speed are determined by simple genetic algorithm. Simulation results in low speed region are given for comparison between proposed and conventional flux estimate scheme.

  • PDF

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

  • Foo, Gilbert;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.582-592
    • /
    • 2009
  • This paper proposes a new speed sensorless direct torque and flux controlled interior permanent magnet synchronous motor (IPMSM) drive. Closed-loop control of both the torque and stator flux linkage are achieved by using two proportional-integral (PI) controllers. The reference voltage vectors are generated by a SVM unit. The drive uses an adaptive sliding mode observer for joint stator flux and rotor speed estimation. Global asymptotic stability of the observer is achieved via Lyapunov analysis. At low speeds, the observer is combined with the high frequency signal injection technique for stable operation down to standstill. Hence, the sensorless drive is capable of exhibiting high dynamic and steady-state performances over a wide speed range. The operating range of the direct torque and flux controlled (DTFC) drive is extended into the high speed region by incorporating field weakening. Experimental results confirm the effectiveness of the proposed method.

Robustness Recovery of Observer Based Multivariable Control Systems (관측기를 이용한 다변수 제어계의 로바스트성 회복)

  • Kim, Sang-Bong;Jeong, Seok-Kwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.1
    • /
    • pp.18-23
    • /
    • 1989
  • An approach for robustness recovery of the observer-based control system is presented. The approach is developed by adding a loop with appropriate constant matrix to the observer-based closed-loop system. It will be shown that if there exists an added-loop matrix M satisfying F=MC for a feedback gain F and output matrix C, then the observer-based control systems have the same loop transfer functions as full-state feedback implementations, in other words, the former has the same relative stability and robustness as the latter.

  • PDF