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OBSERVER-BASED INPUT-OUTPUT LINEARIZATION

CONTROL OF A MULTIVARIABLE CONTINUOUS

CHEMICAL REACTOR

Bouhamida Mohamed, Daaou Bachir, Mansouri Abdellah,
and Chenafa Mohammed

Abstract. The goal of this paper is to develop a nonlinear observer-
based control strategy for a multi-variables continuous stirred tank reac-
tor (CSTR). A new robust nonlinear observer is constructed to estimate
the whole process state variables. The observer is coupled with a non-
linear controller, designed based on the input-output linearization for
controlling the concentration and reactor temperature. The closed loop
system is shown to be globally asymptotically stable based on Lyapunov
arguments. Finally, computer simulations are developed for showing the
performance of the proposed controller.

1. Introduction

Continuous stirred tank reactors (CSTR) are ones of the most important
plants in chemical industry. In practice, however, the control of these reac-
tors poses a number of challenging problems. These problems arise from the
presence of severe nonlinearities of these chemical reactors, as well as for mon-
itoring and control applications, only a few measurements are available, either
because the measuring devices do not exist or are too expensive. Therefore, we
can deduce that the main difficulties arising in the control of CSTR’s reactors
arrive from two main sources: the process complexity and the difficulty to have
reliable measurements of state variables ([1], [16]). In recent years, a various
design methods of nonlinear control strategies have been proposed. Most of
these based on differential geometric concepts ([15]-[18], [23]). This method
allows a certain class of systems to be linearized using state feedback and co-
ordinate transformations ([12], [14]). Extensions of the method like adaptive
linearization ([21], [25]), robust linearization [24], and asymptotically exact
linearization [13] account for small model-plant-mismatch.
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bility, chemical reactor.

c©2012 The Korean Mathematical Society

641



642 B. MOHAMED, D. BACHIR, M. ABDELLAH, AND C. MOHAMMED

Concerning the state estimation, there are many works dealing with the
observation techniques to estimate the state variables in chemical reactors ([4]-
[11], [26]).

The main purpose of this work is to develop an observer-based nonlinear
control scheme for a multi-input multi-output continuous chemical reactor
(CSTR). We apply a robust non-linear observer, as proposed by Daaou et
al. [7] in order to estimate the concentrations. The controller is constructed
through feedback linearization. Keeping in mind that no separation princi-
ple exists for nonlinear systems, the study of the asymptotical stability of the
closed-loop system including the observer dynamics has been established, which
is the main contribution of this work.

This article is arranged as follows. In Section 2, the reactor model is pre-
sented. In Section 3, a non-linear observer for estimating concentrations is
constructed. Section 4 is devoted to closed loop control, where we use Lya-
punov arguments to prove the closed loop stability. In Section 5, the computer
simulations were developed to illustrate the effectiveness of the proposed ap-
proach. Finally, we will close the paper with some concluding remarks.

2. System description

The continuous stirred chemical reactor (CSTR) has been perhaps one of the
most widely studied unit operation, from both dynamic analysis and control
perspectives. The typical diagram of this reactor is shown in Figure 1 in which

the series reactions, A
k1→ B

k2→ C, take place in the liquid phase.

F , CAi
, Ti

Fj , Tji

CA, CB, CC , T

Figure 1. Schematic of the multivariable non-isothermal
chemical reactor.

Here CA, CB and CC are the outlet concentrations of the reactant A, B and
C respectively, CAi inlet concentration of the reactant A, T reactor outlet
temperature, Ti reactor inlet temperature, Tj jacket temperature, Tji jacket
inlet temperature, F feed flow rate to reactor.
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Table 1. Parameter values of the reactor.

Parameter value Unit
α −0.1914 —
β1 0.0072 —
β2 0.0120 —
k01 15.155× 108 min−1

E1 60 kJmol−1

k02 38.22× 106 min−1

E2 55 kJmol−1

V 0.009 m3

Ti 293 K
Tij 343 K
CAi 100 mol.m−3

R 08.314 J.mol−1

In this paper some assumptions have been introduced in the attempt to
reduce the model complexity. In particular, we will assume the following:

(i) There is a complete uniformity of concentration and temperature within
the reactor and a complete uniformity of temperature inside the jacket.

(ii) The reactor and jacket volumes are constant.
(iii) The thermal exchange between the reactor and the jacket is expressed

by a constant global heat exchange coefficient U and the amount of
heat retained in the reactor walls is negligible.

(iv) The reaction enthalpies ∆Hi are independent of temperature.
(v) The heat capacities of the process fluids are constant.

Under the above assumptions, the material and energy balances applied to the
jacket reactor give the mathematical model [7].

Ṫ = −
UA

ρCpV
(T − Tj) +

F

V
(Ti − T )−

∆H1

ρCp

K1(T )CA −
∆H2

ρCp

K2(T )CB,(1)

ĊA = −K1(T )CA +
F

V
(CAi − CA),(2)

ĊB = K1(T )CA −K2(T )CB −
F

V
CB,(3)

ĊC = K2(T )CB −
F

V
CC ,(4)

y1 = T,(5)

y2 = CC ,(6)

with Ki(T ) = ki0 exp
−Ei

RT
, i = 1, 2, where U is the overall heat-transfer co-

efficient, A heat transfer surface area, Cp heat capacity of feed and product,
Cpj heat capacity of jacket fluid, Ei (i=1,2) activation energy, R universal gas
constant, k0i (i = 1, 2) pre-exponential factor, ∆Hi (i = 1, 2) heat of reaction
ρ density of mixture in reactor and ρj density of jacket fluid.
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The model (1-6) has the following form:

(7)
ẋ = f(x) + g(x)u

y = Cxx,

where x = [T,CA, CB, CC ]
T , u = [F0, Tj ]

T and

f(x) =







αx1 + β1K1(x1)x2 + β2K2(x1)x3

−K1(x1)x2

K1(x1)x2 −K2(x1)x3

K2(x1)x3






, g(x) =







1
V
(Ti − x1) −α

1
V
(CAi − x2) 0
− 1

V
x3 0

− 1
V
x4 0






,

Cx =

[
1 0 0 0
0 0 0 1

]

with α1 = − UA
ρCpV

, β1 = −∆H1

ρCp
, β2 = −∆H2

ρCp
.

The reactor parameter values are given in (1) [7].

3. Nonlinear observer design

Consider the nonlinear MIMO model of our chemical reactor:
(8)

ẋ =







αx1 + β1K1(x1)x2 + β2K2(x1)x3

−K1(x1)x2

K1(x1)x2 −K2(x1)x3

K2(x1)x3







︸ ︷︷ ︸

f(x)

+







1
V
(Ti − x1) α1

1
V
(CAi − x3) 0
− 1

V
x3 0

− 1
V
x4 0







︸ ︷︷ ︸

g(x)

[
u1

u2

]

y =

[
h1(x)
h2(x)

]

=

[
x1

x4

]

.

By using the usual variable change:

(9) x → Ψ(x) =

[
h(x)

Lf [h(x)]

]

=







x1

x4

Lf [x1]
Lf [x4]






=

[
z1
z2

]

with z1 = [x1, x4]
T
, z2 = [Lf [x1], Lf [x4]]

T
, Lf (h(x)) =

∑
∂h
∂xi

fi.
The change of coordinates gives the following system:

(10)

ż =

[
ż1
ż2

]

=

[
0 1
0 0

]

︸ ︷︷ ︸

A

[
z1
z2

]

︸ ︷︷ ︸

z

+

[
0

ϕ(z)

]

︸ ︷︷ ︸

Φ(z)

+

[
B1(z, u)
B2(z, u)

]

︸ ︷︷ ︸

B(z,u)

y = z1,

where ϕ(z) =
[
L2

f [x1]

L2

f [x4]

]

, B1(z, u) =
[
Lg [x1]

Lg [x4]

]

, B2(z, u) =
[
LfLg [x1]

LfLg [x4]

]

.

We now state the following assumptions:

Assumption 1. The function ϕ(z) is globally Lipschitz with respect to z.

Assumption 2. The functions B1(z, u) and B2(z, u) are globally Lipschitz

with respect to z uniformly with respect to the inputs u.
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Theorem 1. Under the above assumptions, the nonlinear observer given by:

(11) ˙̂z = Aẑ +Φ(ẑ) +B(ẑ, u)−Gθ(Cẑ − y)

is an exponential observer for the system (10) for θ sufficiently large, with

A =

[
0 1
0 0

]

,Φ(ẑ) =

[
0

ϕ(ẑ)

]

, B(ẑ, u) =

[
B1(ẑ1, u)
B2(ẑ2, u)

]

, C = [1, 0] ,

Gθ = S−1
θ G =

[
θG1

θ2G2

]

, θ > 0,

where G is a constant matrix so that (A−GC) is stable and Sθ is the solution

of the Lyapunov equation:

(12) Ṡθ = −θSθ +ATSθ − SθA+ CzC
T
z = 0.

When the inverse variable change Ψ−1 is applied, the equation of the observer

in the original x-coordinate system x̂ = Ψ−1(ẑ) is given by:

(13)
˙̂x = f(x̂) + g(x̂)u−

[
∂Ψ(x)

∂x

]
−1

Gθ(Cx̂− y)

ŷ = Cxx̂.

Proof. See Appendix A. �

4. Input-output feedback linearization controller design

In this work we consider a multiple-input/multiple-output controller whose
regulated outputs are the temperature and concentration of the constituent B,
that is, x1 and x3.

The linearization condition that permits to verify if a nonlinear system ad-
mits an input output linearization is the relative degree order of the system
([15], [24]).

The relative degree of an output is the number of times that it is necessary
to derive the output to reveal the input u.

ẏ1 = Lf (x1) + Lg11(x1)u1 + Lg12(x1)u2,(14)

ẏ2 = Lf (x3) + Lg21(x3)u1,(15)

with

Lf(x1) = αx1 + β1r1(x) + β2r2(x),

Lf(x3) = r1(x)− r2(x),

Lg11(x1) =
1

V
(Ti − x1),

Lg12(x1) = −α,

Lg21(x1) = −
1

V
x3,

where r1(x) = K1(x1)x2 and r2(x) = K2(x1)x3.
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Then, the total degree of the system is equal to 2.
Indeed, we have:

(16)

[
ẏ1
ẏ2

]

=

[
Lf (x1)
Lf (x2)

]

+

[
Lg11(x1) Lg12(x1)
Lg21(x3) 0

] [
u1

u2

]

and we obtain the two feedbacks:

u1 =
υ2 − Lf (x3)

Lg21(x3)
,(17)

u2 =
υ1 − Lf (x1)− Lg11(x1)u1

Lg12(x1)
,(18)

where υ1 = ŷ1 and υ2 = ŷ2.
It should be noted that the state variables are estimated using an observer.

Then the equations (17) and (18) become:

u1 =
υ2 − L̂f(x3)

L̂g21(x3)
,(19)

u2 =
υ1 − L̂f(x1)− L̂g11(x1)u1

L̂g12(x1)
(20)

with

υ2 =
L̂g21(x3)

Lg21(x3)
ẏ2 −

L̂g21(x3)

Lg21(x3)
Lf(x3) + L̂f (x3) =

x̂3

x3
ẏ2 −

x̂3

x3
Lf (x3) + L̂f(x3),

υ1 = ẏ1 − Lf (x1)− Lg11(x1)u1 + L̂f(x1) + L̂g11(x1)u1,

where

L̂f (x1) = αx̂1 + β1r1(x̂) + β2r2(x̂) + θx̃1,

L̂f (x3) = r1(x̂)− r2(x̂) + γ1x̃1 + γ2x̃4,

L̂g11(x1) =
1

V
(Ti − x̂1),

L̂g21(x3) = −
1

V
x3,

γ1 =
θx2

β1r1(x̂)

(

α+ β1
E1

Rx2
1

r1(x̂) + θ

)

,

γ2 =
β2x2

β1r1(x̂)
θ2,

x̃i = xi − x̂i (i = 1, . . . , 4).

We choose υ1 and υ2 such that the system is closed loop stable and achieves a
desired setpoint on temperature and concentration.

υ1 = −δ1e11 − δ2e12 + ẋr
1 + υ11,(21)

υ2 = −δ3e21 − δ4e22 + ẋr
3 + υ22,(22)
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where υ11 and υ22 are the compensating terms to cope with the error caused
by state estimate. e11 =

∫
(x1 − xr

1)dt, e12 = x1 − xr
1, e21 =

∫
(x3 − xr

3)dt,
e22 = x3 − xr

3 xr
1 and xr

3 are respectively the desired reactor temperature and
concentration.

The closed-loop error dynamics and observer are given by:

(23)

ė11 = e12,

ė12 = −δ1e11 − δ2e12 + (Lf (x1)− L̂f (x1))

+ (Lg11(x1)− L̂g11(x1))u1 + υ11,

ė21 = e22,

ė22 = −δ3e21 − δ4e22 +
x̃3

x3
ẏ2 −

x̃3

x3
Lf (x3) + Lf(x3)− L̂f (x3) + υ22,

˙̂x = f(x̂) + g(x̂)u −

[
∂Ψ(x)

∂x

]
−1

Gθ(Cx̂ − y).

Now consider the following assumptions:

Assumption 3. The functions r1(x) and r2(x) are globally Lipschitz with re-

spect to x, i.e.,

∀x ∈ R
4, ∃σr1 > 0, ‖r1(x) − r1(x̂)‖ ≤ σr1 ‖x̃‖ ,

∀x ∈ R
4, ∃σr2 > 0, ‖r2(x) − r2(x̂)‖ ≤ σr2 ‖x̃‖ .

Assumption 4. The control inputs are bounded, i.e.,

∀t ≥ 0, 0 < Umin1 ≤ u1 ≤ Umax 1,

∀t ≥ 0, 0 < Umin2 ≤ u2 ≤ Umax 2.

Theorem 2. Consider the controls laws stated in (19)-(20) and the observer

(13), if Assumptions 1-4 are satisfied and if the compensating terms υ22 and

υ11 are chosen as

υ11 = (θ − α)x̃1 +
1

V
x̃3Umin1,

υ22 = (r2(x) − r2(x̂)) + γ1x̃1 + γ2x̃4

and by selecting δ1, δ2, δ3 and δ4 such that all roots of the two polynomial

s2+δ2s+δ1 and s2+δ4s+δ3 lie in the open left-hand side of the complex plane

then the closed loop system described by (23) is globally asymptotically stable

Proof. An original proof of Theorem 2 will be presented in the appendix B. �
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5. Simulation results

Simulations, using MATLAB Software Package, have been carried out to
verify the effectiveness of the proposed method.

The values of the model parameters used in simulation are given in Table 1.
The states initial conditions were set to:

x(0) = [309.46; 4.49; 20.06; 0]
T
, x̂(0) = [302.16; 2.49; 21.06; 0.3]

T
.

First we investigate the transient response of the system for regulation con-
trol. For this case the desired temperature and concentration are 350K and
20mol/m3 respectively.

The temperature and concentration transient responses and the tow controls
actions are shown in Figures 2 and 3 respectively.
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Figure 2. Time response for the: a) Reactor temperature, b)
Concentration of the constituent B.
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Figure 3. Control inputs.
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Next, the proposed controller is tested for the set point tracking. Figure 4
show the measured temperature and concentration and their references trajec-
tories. The manipulated signals u1 and u2 is also depicted in Figure 5. From
the results, it can be seen that the proposed observer/controller structure shows
good performance in achieving the output regulation.

Finally, we examine the robustness of the proposed controllers in the pres-
ence of the measurements noisy and model uncertainty.
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Figure 4. Time tracking responses for the: a) Reactor tem-
perature, b) Concentration of the constituent B.
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Figure 5. Control inputs for tracking responses.

Case 01: Performance analysis in the presence of measurements

noise:

In this case, white Gaussian noises with variances of 5/ are simultaneously
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added to the outputs measurements. The temperature and concentration tran-
sient’s responses for the controller are shown in Figure 6. The tow controls
actions obtained in this case are depicted in Figure 7. It can be seen that the
set-point tracking behaviour is very satisfactory. Note that the proposed con-
troller maintains the temperature and concentration in a small neighborhood
of the references value despite the noise on the measurement.
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Figure 6. Time responses in presence of measure noises for
the: a) Reactor temperature, b) Concentration of the con-
stituent B.
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Figure 7. Control inputs in presence of measure noises.

Case 02: Performance analysis in the presence of model uncertainty:

For this purpose, it was considered a mismatch between the real activation en-
ergy and its value in the model. In this work, a difference up to 2/ between the
real parameter and its value in the model was considered. Simulation results
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are depicted in Figures 8 and 9. Again the proposed methodology is able to
reject the dynamics mismatch adequately.
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Figure 8. Time responses for 2/ increase in the activation
energy for the: a) Reactor temperature, b) Concentration of
the constituent B.
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Figure 9. Control input for 2/ increase in the activation energy.

6. Conclusion

In this paper, we presented a robust observer based on a nonlinear con-
trol scheme for a multivariable chemical reactor. The observer proposed in
this study offers the advantage of only one tuning parameter θ. This observer
is coupled with nonlinear controller. The controller is constructed through
feedback linearization for concentration and temperature reactor control. The
Lyapunov’s stability technique is used to establish the asymptotical stability of
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closed-loop system including the observer dynamics. Through numerical simu-
lations, we illustrated the feasibility of the designed control system. Moreover,
the proposed control exhibits a satisfactory performance when used with noisy
measurements and dynamics uncertainty.

Appendix

Appendix A. Proof of Theorem 1

Let z̃ = z − ẑ. Then we have:

(24) ˙̃z = (A−GθCz)z̃ +

[
0

ϕ(z)− ϕ(Ẑ)

]

+

[
B1(z, u)−B1(ẑ, u)
B2(z, u)−B2(ẑ, u)

]

.

Consider the following variable change: z̄ = ∆θz̃ with ∆θ =
[

1

θ
0

0 1

θ2

]

. Using the

well known property of K. Busawon et al. [8]: ∆θA∆
−1
θ = θA, Cz∆

−1
θ = θCz .

We obtain:

(25) ˙̄z = θ(A −GθCz)z̄ +

[
0

(ϕ(z)−ϕ(ẑ))
θ2

]

+

[
(B1(z,u)−B1(ẑ,u))

θ
(B2(z,u)−B2(ẑ,u))

θ2

]

.

Since (A−GCz) is Hurwitz, there exists a symmetric positive definite matrix
P such that:

(26) (A−GCz)
TP + P (A−GCz) = −I.

Define Vo(z̄) = z̄TP z̄ as the Lyapunov candidate function. Then its time
derivative is:

V̇o(z̄) = ˙̄zTP z̄ + z̄TP ˙̄z,

(27)

V̇o(z̄) = θz̄T
[
(A−GCz)

TP + P (A−GCz)
]
z̄

(28)

+ 2P z̄T
[

0
(ϕ(z)−ϕ(ẑ))

θ2

]

+ 2P z̄T

[
(B1(z,u)−B1(ẑ,u))

θ
(B2(z,u)−B2(ẑ,u))

θ2

]

,

V̇o(z̄) = − θ ‖z̄‖
2
+ 2P z̄T

[
0

(ϕ(z)−ϕ(ẑ))
θ2

]

+ 2P z̄T

[
(B1(z,u)−B1(ẑ,u))

θ
(B2(z,u)−B2(ẑ,u))

θ2

]

.

(29)

Setting:

∆θ0 =

[
1
θ0

0

0 1
θ2

0

]

.
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By introducing ∆θ0 in (29), we obtain:

(30)

V̇o(z̄) = − θ ‖z̄‖
2
+ 2∆θ0P z̄T

[

0
θ2

0

θ2 (ϕ(z)− ϕ(ẑ))

]

+ 2∆θ0P z̄T

[
θ0
θ
(B1(z, u)−B1(ẑ, u))

θ2

0

θ2 (B2(z, u)−B2(ẑ, u))

]

,

(31)

V̇o(z̄) ≤ − θ ‖z̄‖
2
+ 2 ‖∆θ0‖

∥
∥P z̄T

∥
∥

〈



0
θ20
θ2

(ϕ(z)− ϕ(ẑ))





〉

+ 2 ‖∆θ0‖
∥
∥P z̄T

∥
∥

〈





θ0
θ
(B1(z, u)−B1(ẑ, u))

θ20
θ2

(B2(z, u)−B2(ẑ, u))






〉

,

where 〈·〉 is the Euclidean scalar product on R
n. Using the Cauchy-Schwarz

inequality this gives for θ > θ0 sufficiently large:

V̇o(z̄) ≤ − θ ‖z̄‖
2
+ 2 ‖∆θ0‖

∥
∥P z̄T

∥
∥
θ20
θ2

‖(ϕ(z)− ϕ(ẑ))‖ + 2 ‖∆θ0‖
∥
∥P z̄T

∥
∥

×

√
(
θ0
θ

)2

‖B1(z, u)−B1(ẑ, u)‖
2
+

(
θ20
θ2

)2

‖B2(z, u)−B2(ẑ, u)‖.(32)

Using the following assumption (Assumptions 1 and 2):

‖(ϕ(z)− ϕ(ẑ))‖ ≤ λϕ ‖z̃‖

⇒ ‖(ϕ(z)− ϕ(ẑ))‖ ≤ λϕ

√

θ2 ‖z̄1‖
2
+ θ4 ‖z̄2‖

2
,

‖B1(z, u)− B1(ẑ, u)‖ ≤ λB1
‖z̃‖

⇒ ‖B1(z, u)−B1(ẑ, u)‖ ≤ λB1

√

θ2 ‖z̄1‖
2
+ θ4 ‖z̄2‖

2
,

‖B2(z, u)− B2(ẑ, u)‖ ≤ λB2
‖z̃‖

⇒ ‖B2(z, u)−B2(ẑ, u)‖ ≤ λB2

√

θ2 ‖z̄1‖
2
+ θ4 ‖z̄2‖

2
,

where λϕ, λB1
and λB2

denote, respectively, the Lipschitz constants of ϕ(z),
B1(z, u) and B2(z, u).

Inequality (32) becomes:

V̇o(z̄) ≤ − θ ‖z̄‖2 + 2λϕ

θ20
θM

‖∆θ0‖
∥
∥P z̄T

∥
∥

√

‖z̄1‖
2 + θ2 ‖z̄2‖

2 + 2 ‖∆θ0‖
∥
∥P z̄T

∥
∥

(33)

×
√

(λ2
B1

θ20 + λ2
B2

θ40)(‖z̄1‖
2
+ ‖z̄2‖

2
),

V̇o(z̄) ≤ − θ ‖z̄‖
2
+ 2θ0λϕ

∥
∥P z̄T

∥
∥ ‖z̄‖+ 2θ0λB |

∥
∥P z̄T

∥
∥ ‖z̄‖ ,

(34)
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where γB =
√

λ2
B1

+ λ2
B2

θ20.

Thus, it results that:

V̇o(z̄) ≤ −θ ‖z̄‖2 + ξ ‖z̄‖2 ,(35)

V̇o(z̄) ≤ −(θ − ξ) ‖z̄‖
2
,(36)

where ξ = 2θ0(λϕ + λB)λ
P
max and λP

max denotes the largest eigenvalue of P .
Then, if θ > ξ the estimation error converges exponentially to zero.
The system (8) is considered to be uniformly observable. Then:

z = Ψ(x) and x = Ψ−1(z).

If the transform Ψ(x) is nonsingular and Ψ−1(z) is uniformly Lipschitz, we
have:

(37) ‖x− x̂‖ ≤ µ̄Ψ ‖z − ẑ‖ ,

where µ̄Ψ denote, the Lipschitz constants of Ψ−1(z).
Thus, the inequality (36) can be rewritten in the original coordinates as:

(38) V̇o(x̃) ≤ −µ̄Ψ(θ − ξ) ‖x̃‖
2
.

If we chose θ > ξ, then the norm of the estimation error goes to zero as t → ∞.
Consequently, the convergence of the algorithm is guaranteed. This completes
the proof of the theorem.

Appendix B. Proof of Theorem 2

Consider the following Lyapunov function candidate:

V (x̃, e1, e2) = Vo(x̃) + Vc1(e1) + Vc2(e2),(39)

where Vc1(e1) =
1
2 (e

2
11 + e212), Vc2(e2) =

1
2 (e

2
21 + e222).

The time derivative of the Lyapunov V (x̃, e1, e2) function is:

V̇ (x̃, e1, e2) = V̇o(x̃) + V̇c1(e1) + V̇c2(e2).(40)

Where V̇o(x̃) was defines in the preceding proof (V̇o(x̃) ≤ −µ̄Ψ(θ − ξ) ‖x̃‖
2
):

V̇c1(e1) = e11ė11 + e12ė12,

(41)

V̇c1(e1) = e11e12 + e12(−δ1e11 − δ2e12) + e12((α − θ)x̃1 + β1(r1(x)− r1(x̂)))

(42)

+ e12β2(r2(x)− r2(x̂))−
1

V
x̃3u1e12 + e12υ11

V̇c1(e1) = − eT1 Ac1e1 + e12((α − θ)x̃1 + β1(r1(x)− r2(x̂)))

(43)

+ e12β2(r2(x)− r2(x̂))−
1

V
x̃3u1e12 + e12υ11

with Ac1 =
[

0 −1
δ1 δ2

]
> 0, e1 = [ e11e12 ].
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Using assumption (Assumption 3), inequality (43) become

(44)
V̇c1(e1) ≤ − λmin

Ac1
‖e1‖

2
+ e12(α− θ)x̃1 + β1σr1e12 ‖x̃‖

+ β2σr2e12 ‖x̃‖ −
1

V
x̃3Umin1e12 + e12υ11,

where λmin
Ac1

is the minimum eigenvalue of Ac1.
Knowing that ‖e12‖ ≤ ‖e1‖, ‖x̃3‖ ≤ ‖x̃‖ and ‖x̃1‖ ≤ ‖x̃‖ we obtain:

(45)
V̇c1(e1) ≤ − λmin

Ac1
‖e1‖

2
+ β1σr1 ‖e1‖ ‖x̃‖+ β2σr2 ‖e1‖ ‖x̃‖

+ (α− θ)x̃1e12 −
1

V
x̃3Umin1e12 + e12υ11.

If we choose υ11 as,

(46) υ11 = (θ − α)x̃1 +
1

V
x̃3Umin1

inequality (45) becomes:

V̇c1(e1) ≤ − λmin
Ac1

‖e1‖
2
+ (β1σr1 + β2σr2) ‖e1‖ ‖x̃‖ ,(47)

V̇c2(e2) = e21ė21 + e22ė22,(48)

V̇c2(e2) = e21e22 + e22(−δ3e21 − δ4e22) + e22((r1(x)− r1(x̂)))

− e22((r2(x) − r2(x̂)) + γ1x̃1 + γ2x̃4 −
1

V
x̃3u1) + e22υ22,(49)

V̇c2(e2) = − eT2 Ac2e2 + e22((r1(x)− r1(x̂)))

− e22((r2(x) − r2(x̂)) + γ1x̃1 + γ2x̃4 −
1

V
x̃3u1) + e22υ22,(50)

with Ac2 =
[

0 −1
δ3 δ4

]
> 0, e2 = [ e21e22 ], where λmin

Ac2
is the minimum eigenvalue of

Ac2.

(51)
V̇c2(e2) ≤ − λmin

Ac2
‖e2‖

2 + σr2 ‖x̃‖ e22

− e22((r2(x) − r2(x̂)) + γ1x̃1 + γ2x̃4 −
1

V
x̃3u1) + e22υ22.

We have: ‖e22‖ ≤ ‖e2‖ and ‖x̃3‖ ≤ ‖x̃‖.
Then:

(52)
V̇c2(e2) ≤ − λmin

Ac2
‖e2‖

2 + σr2 ‖x̃‖ ‖e2‖

− e22((r2(x) − r2(x̂)) + γ1x̃1 + γ2x̃4 +
1

V
Umin1) + e22υ22.

We choose υ22 = (r2(x) − r2(x̂)) + γ1x̃1 + γ2x̃4 + 1
V
Umin1, inequality (52)

becomes:

(53) V̇c2(e2) ≤ −λmin
Ac2

‖e2‖
2 + σr2 ‖x̃‖ ‖e2‖ ,

V̇ (x̃, e1, e2) ≤ − µΨ(θ − ξ) ‖x̃‖
2
− λmin

Ac1
‖e1‖

2
− λmin

Ac2
‖e2‖

2

+ (β1σr1 + β2σr2) ‖e1‖ ‖x̃‖+ σr2 ‖x̃‖ ‖e2‖ .(54)
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Inequality (54) can be rewritten as:

(55) V̇ (x̃, e1, e2) ≤ −ΛTΓΛ

with

Γ =





µΨ(θ − ξ) −(β1σr1 + β2σr2) −σr2

0 λmin
Ac1

0
0 0 λmin

Ac2



 ,Λ =





x̃
e1
e2



 .

If θ > ξ, λmin
Ac1

> 0 and λmin
Ac2

> 0, then Γ > 0 and V (x̃, e1, e2) ≤ 0.
Consequently, asymptotical stability of the closed-loop system is established.
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