• Title/Summary/Keyword: Circuit noise

Search Result 1,307, Processing Time 0.029 seconds

Design of Moving Magnet Type Optical Pickup Actuator (가동 자석형 광 픽업 엑추에이터 개발)

  • Kim, Sang-Ryong;Kim, Yoon-Ki;Song, Myong-Gyu;Woo, Jung-Hyun;Park, No-Cheol;Yoo, Jeong-Hoon;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.848-851
    • /
    • 2007
  • Recently, as the demand of the information storage devices with large storage capacity such as BD(Blu-ray Disk) and HDTV(high-definition television) is increased, the optical storage devices are also required to have fast data transfer rate and large storage capacity. To satisfy these requirements, the actuator for optical disk drive should have high flexible mode frequencies for system stability. In this paper, we suggested a moving magnet type actuator having high flexible mode frequency. However, the moving magnet type actuator does not have sufficient driving sensitivities due to the weight of its moving part. To improve driving sensitivities, we designed the model with the closed electromagnetic circuit for tracking direction. In addition, driving sensitivities and flexible mode frequencies were improved by using DOE(Design of Experiments) for magnetic circuit and modifying the lens holder. Consequently, it is confirmed that the designed model is satisfied with the desired specifications.

  • PDF

Oxygen Permeability Characteristics of the Multi-Cathode Type Dissolved Oxygen Sensor Using the Low Noise Measuring Circuit (저잡음화 계측회로에 의한 다음극형 용존산소센서의 산소투과특성)

  • Rhie, Dong-Hee;Kim, T.J.;Kim, Y.H.;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.764-766
    • /
    • 1998
  • An evaluation method for oxygen permeable characteristics of the membrane covering to each cathode of multiple cathode - single anode type dissolved oxygen sensor, which has high reproducibility and is capable of measuring multiple components in solutions. For this purpose, a measuring circuit for the multiple cathode type DO sensor was designed to lower the noise signal by adapting a digital LPF to readout the sensor output accurately. Digital LPF is designed by setting up the transfer function to set the cutoff frequency to 10Hz, and the transfer function is programmed by C language, and then the filtering characteristics are evaluated with the simulation and experiments. Using this LPF added measuring circuit for the multiple cathode type DO sensor, we have obtained the calibration factor for each cathode to calibrate the variation of the output signals. The calibration factor was obtained by measuring the sensor output signal followed by oxygen partial pressure, using the same oxygen permeable membrane at each cathode of the multiple cathode type DO sensor.

  • PDF

An Integrated High Linearity CMOS Receiver Frontend for 24-GHz Applications

  • Rastegar, Habib;Ryu, Jee-Youl
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.595-604
    • /
    • 2016
  • Utilizing a standard 130-nm CMOS process, a RF frontend is designed at 24 GHz for automotive collision avoidance radar application. Single IF direct conversion receiver (DCR) architecture is adopted to achieve high integration level and to alleviate the DCR problem. The proposed frontend is composed of a two-stage LNA and downconversion mixers. To save power consumption, and to enhance gain and linearity, stacked NMOS-PMOS $g_m$-boosting technique is employed in the design of LNA as the first stage. The switch transistors in the mixing stage are biased in subthreshold region to achieve low power consumption. The single balanced mixer is designed in PMOS transistors and is also realized based on the well-known folded architecture to increase voltage headroom. This frontend circuit features enhancement in gain, linearity, and power dissipation. The proposed circuit showed a maximum conversion gain of 19.6 dB and noise figure of 3 dB at the operation frequency. It also showed input and output return losses of less than -10 dB within bandwidth. Furthermore, the port-to-port isolation illustrated excellent characteristic between two ports. This frontend showed the third-order input intercept point (IIP3) of 3 dBm for the whole circuit with power dissipation of 6.5 mW from a 1.5 V supply.

Design of A Self Oscillating and Mixing Frequency Down-Converter Using A DGS (DGS 구조를 이용한 자기발진혼합형 주파수 하향변환기 설계)

  • 정명섭;박준석;김형석;임재봉
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.536-543
    • /
    • 2003
  • In this paper, we describe a unique self oscillating and mixing (SOM) down-converter design using a modified defected ground structure (DGS). The proposed SOM converter is consisted of self-oscillator, which can produce negative resistance and select resonance frequency, RF matching circuit, and IF low pass filter. As the advantage of this SOM converter can mix LO and RF signals as well as inducing LO signal with only one active device. it is designed as a simple structure and the low cost. Also, there is easy advantage to be applied in RFIC/MMIC technology because it offers excellent phase noise performance in spite of using micro-strip structure. The LO signal for the proposed SOM converter is designed at 1㎓ and RF frequency was chosen to be 800MHz. The achieved conversion loss and phase noise performances of the implemented SOM converter are 15㏈ and -95dBc/Hz at 100KHz offset frequency respectively. The equivalent circuit parameters for DGS are extracted by using a three dimensional EM simulator and simple circuit analysis method.

Development of a Dedicated Algorithm for the Analysis of DC Electrical Outputs of Cantilevered Piezoelectric Vibration Energy Harvesters (외팔보 압전 진동 에너지 수확 장치의 직류 전기 출력 해석을 위한 전용 알고리즘 개발)

  • Kim, Jae-Eun;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.896-902
    • /
    • 2012
  • For most applications of the vibration energy harvesting technology as in wireless sensor networks for smart buildings and plants, the evaluation of DC output performance of vibration energy harvesters is typically required. However, there is no dedicated algorithm for the evaluation. The lack of a dedicated algorithm results from difficulties in the direct incorporation of nonlinear rectifying and regulating circuitry into finite element models of piezoelectric vibration energy harvesters. In this study, we develop a dedicated algorithm and present software based on it for the evaluation of not only AC but also DC electrical quantities. Here, an equivalent electrical circuit model is employed. The COMSOL multiphysics simulation tool is adopted for extracting equivalent electrical circuit parameters of a piezoelectric vibration energy harvester and MATLAB is used to make a graphical user interface. The AC voltage and power outputs calculated by the proposed algorithm under various conditions are compared with those by a traditional finite element analysis. The DC output voltage and power through a rectifier are obtained for varying values of smoothing capacitance and external resistance.

Design and Implementation of Miniature VCO using LTCC Technique (LTCC 기법을 이용한 초소형 VCO 설계 및 구현)

  • 김태현;권원현;이영훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1176-1183
    • /
    • 2003
  • In this paper, miniature voltage-controlled oscillator(VCO) for 1.6 ㎓ PCS band is designed and implemented using the LTCC technique. Circuit level design using commercial components is performed, and passive L, C elements embedded in LTCC substrate is optimized by simulation tools. Embedded passive components are modeled into equivalent circuits and their circuit parameters are extracted for circuit simulation. Utilizing the designed embedded passive elements and 21 layers LTCC substrate, VCO with 4.0${\times}$4.0${\times}$1.6 ㎣ dimensions is designed and fabricated. Developed VCO operates in 2.7 V with 8.5 ㎃ current consumption. The phase noise performance of VCO is below -112.61 ㏈c/㎐ at 100 ㎑ offset and harmonic suppression characteristics is measured above -30 ㏈.

Size-Efficient 3 GHz CMOS LNA (회로면적에 효율적인 3 GHz CMOS LNA설계)

  • Jhon, Hee-Sauk;Yoon, Yeo-Nam;Song, Ick-Hyun;Shin, Hyung-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.10
    • /
    • pp.33-37
    • /
    • 2007
  • This paper presents the implementation technique to reduce circuit area occupation in designing Low Noise Amplifier (LNA) using vertical shunt symmetric inductor. We applied a vertical shunt symmetric inductor to match the input and output in 3 GHz CMOS LNA to reduce the circuit area. This size efficient amplifier has been designed in a $0.18\;{\mu}m$ digital logic CMOS process. In this paper, the case of conventional asymmetric inductor, and vertical shunt symmetrical inductor with a relatively higher number of turns have been compared in order to efficient a size efficient CMOS LNA design method while still retaining the circuit operation characteristics.

Design and Manufacture of Multi-layer VCO by LTCC (저온 동시소성 세라믹을 이용한 적층형 VCO의 설계 및 제작)

  • Park, Gwi-Nam;Lee, Heon-Yong;Kim, Ji-Gyun;Song, Jin-Hyung;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.291-294
    • /
    • 2003
  • The circuit substrate was made from the Low Temperature Cofired Ceramics(LTCC) that a $\varepsilon_\gamma$ was 7.8. Accumulated Varactor and the low noise transistor which were a Surface Mount Device-type element on LTCC substrate. Let passive element composed R, L, C with strip-line of three dimension in the multilayer substrate circuit inside, and one structure accumulate band-pass filter, resonator, a bias line, a matching circuit, and made it. Used Screen-Print process, and made Strip-line resonator. A design produced and multilayer-type VCO(Voltage Controlled Oscillator), and recognized a characteristic with the Spectrum Analyzer which was measurement equipment. Measured multilayer structure VCO is oscillation frequency 1292[MHz], oscillation output -28.38[dBm], hamonics characteristic -45[dBc] in control voltage 1.5[V], A phase noise is -68.22[dBc/Hz] in 100 KHz offset frequency. The oscillation frequency variable characteristic showed 30[MHz/V] characteristic, and consumption electric current is approximately 10[mA].

  • PDF

Development of Wireless Transmission and Receiver Module for the Management of Chronic Diseases (만성질환 관리를 위한 무선 송·수신기 모듈 개발)

  • Kim, Min Soo;Cho, Young Chang
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1082-1087
    • /
    • 2019
  • In this study, ECG signal amplifier, wireless transmitter/receiver circuit, signal processing filter circuit and A/D converter circuit design required for the development of small sized ECG module for wireless transmission/ reception were performed. In order to verify the performance of ECG sensors, the measurement was performed from 1 m to 3 m to measure the signal noise ratio according to the gateway distance. Experimental results showed that the signal noise ratio at 2 m distance was 17.18 dB on average, which fulfilled the requirements for commercialization. The experimental results obtained in this study are expected to contribute to the low cost, high efficiency mobile health field where remote monitoring diagnosis can be applied to small biometric devices for chronic disease management.

Noise Reduction Performance of a Reactive type Silencer with Perforated Panels (다공판이 내장된 반사형 소음기의 소음저감 성능)

  • Lee, Sun-Ki;Lee, Young-Chul;Song, Hwa-Young;Lee, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1415-1418
    • /
    • 2007
  • When a high voltage COS fuse becomes a short circuit by the over current, the impulse noise over 150 dB(A) with the strong pulse jet is radiated from the COS fuse of an electric transformer. For the purpose of the impulse noise reduction, in this study, a reactive type silencer with perforated panels are considered. The transmission loss of the silencer are calculated by transfer matrix method. The effect of the porosity, the distance between panels, and the number of perforated panel on the sound transmission loss is investigated and discussed.

  • PDF