Size-Efficient 3 GHz CMOS LNA

회로면적에 효율적인 3 GHz CMOS LNA설계

  • 전희석 (서울대학교 전기공학부, ISRC) ;
  • 윤여남 (서울대학교 전기공학부, ISRC) ;
  • 송익현 (서울대학교 전기공학부, ISRC) ;
  • 신형철 (서울대학교 전기공학부, ISRC)
  • Published : 2007.10.25

Abstract

This paper presents the implementation technique to reduce circuit area occupation in designing Low Noise Amplifier (LNA) using vertical shunt symmetric inductor. We applied a vertical shunt symmetric inductor to match the input and output in 3 GHz CMOS LNA to reduce the circuit area. This size efficient amplifier has been designed in a $0.18\;{\mu}m$ digital logic CMOS process. In this paper, the case of conventional asymmetric inductor, and vertical shunt symmetrical inductor with a relatively higher number of turns have been compared in order to efficient a size efficient CMOS LNA design method while still retaining the circuit operation characteristics.

본 논문에서는 vertical shunt symmetric inductor를 이용하여 CMOS LNA의 설계에 있어서 회로의 면적을 줄이는 설계기술 및 구현에 관한 내용을 제시하고자 한다. 본 연구에 있어서 vertical shunt symmetric inductor는 LNA의 입력단과 출력단을 3GHz로 정합하기 위해서 사용되었다. 이렇게 구현된 보다 면적에 있어서 효율적인 증폭기를 0.18um digital logic공정으로 구현되었다. 본 논문에서는 일반적으로 LNA에서 사용하고 있는 inductor를 이용하는 경우와, vertical shunt symmetric inductor를 이용하여 LNA를 설계하는 경우에 대한 부분을 비교하였고, 최종적으로 면적에 효율적인 회로설계 기술을 제시하고자 한다.

Keywords

References

  1. K. Lee and B. Seo 'The impact of semiconductor technology scaling on CMOS RF and digital circuits for wireless application,' IEEE Trans. Electron Devices, vol. 52, pp. 1415-1422, July. 2005 https://doi.org/10.1109/TED.2005.850632
  2. B. Razavi, 'CMOS technology characterization for analog and RF design,' IEEE J. Solid-State Circuits, vol. 34, pp. 268-276, Mar. 1999 https://doi.org/10.1109/4.748177
  3. T. H. Lee, '5-GHz CMOS wireless LANs,' IEEE Trans. Microwave Theory Tech., vol. 50, pp. 268-280, Jan. 2002 https://doi.org/10.1109/22.981280
  4. F. Stubbe et al., 'A CMOS RF-receiver front-end for 1 GHz applications,' in VLSI Circuits Tech. Symp. Dig., 1998, pp. 80-83
  5. Shaeffer, D.K. and Lee, T.H.; 'A 1.5-V, 1.5-GHz CMOS low noise amplifier,' IEEE J. Solid-State Circuit, vol. 32, pp. 745-759, May. 1997 https://doi.org/10.1109/4.568846
  6. Shaeffer, D.K. and T.H. Lee, The Design and Implementation of Low-Power CMOS Radio Receivers. Kluwer academic ,1999
  7. Razavi, RF microelectronics. Prentice Hall, 1998
  8. J. Goo and Dutton, R.W., 'A noise optimization technique for integrated low-noise amplifiers,' IEEE J. Solid-State Circuit, vol. 37, pp. 994-1002, Aug. 2002 https://doi.org/10.1109/JSSC.2002.800956
  9. T. Nguyen and S. Lee, 'CMOS Low Noise Amplifier Design Optimization Techniques,' IEEE Trans. Microwave Theory and Technique, vol. 52, pp. 1433-1442, May. 2004 https://doi.org/10.1109/TMTT.2004.827014
  10. Sjoland, H., and A.A., 'A merged CMOS LNA and mixer for a WCDMA receiver,' IEEE J. Solid-State Circuit, vol. 38, pp. 1045-1050, June. 2003 https://doi.org/10.1109/JSSC.2003.811952
  11. T. Kim, B. Kim, and K. Lee, 'Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors,' IEEE J. Solid-State Circuit, vol. 39, pp. 223-229, Jan. 2004 https://doi.org/10.1109/JSSC.2003.820843
  12. Baki, R.A. and M.N.;, 'Distortion in RF CMOS short-channel low-noise amplifiers,' IEEE Trans. Microwave Theory and Technique, vol. 54, pp. 46-56, Jan. 2006 https://doi.org/10.1109/TMTT.2005.860897
  13. Burghartz, J.N. and Jenkins, K.A, 'Microwave inductors and capacitors in standard multilevel interconnect silicon technology,' IEEE Trans. Microwave Theory and Technique, vol. 44, pp. 100-104, Jan. 1996 https://doi.org/10.1109/22.481391
  14. C. P. Yue and S. S. Wong, 'A simple parameter extraction method of spiral on-chip inductors,' IEEE Trans. Electron Devices, vol. 52, pp. 1976-1981, Jan. 2005 https://doi.org/10.1109/TED.2005.854273
  15. Kang, M and Hyungcheol Shin 'Microwave inductors and capacitors in standard multilevel interconnect silicon technology,' IEEE Trans. Microwave Theory and Technique, vol. 44, pp. 100-104, Jan. 1996 https://doi.org/10.1109/22.481391