Abstract
For most applications of the vibration energy harvesting technology as in wireless sensor networks for smart buildings and plants, the evaluation of DC output performance of vibration energy harvesters is typically required. However, there is no dedicated algorithm for the evaluation. The lack of a dedicated algorithm results from difficulties in the direct incorporation of nonlinear rectifying and regulating circuitry into finite element models of piezoelectric vibration energy harvesters. In this study, we develop a dedicated algorithm and present software based on it for the evaluation of not only AC but also DC electrical quantities. Here, an equivalent electrical circuit model is employed. The COMSOL multiphysics simulation tool is adopted for extracting equivalent electrical circuit parameters of a piezoelectric vibration energy harvester and MATLAB is used to make a graphical user interface. The AC voltage and power outputs calculated by the proposed algorithm under various conditions are compared with those by a traditional finite element analysis. The DC output voltage and power through a rectifier are obtained for varying values of smoothing capacitance and external resistance.