• Title/Summary/Keyword: Cipher algorithm

Search Result 320, Processing Time 0.023 seconds

Key Recovery Attacks on HMAC with Reduced-Round AES

  • Ryu, Ga-Yeon;Hong, Deukjo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.57-66
    • /
    • 2018
  • It is known that a single-key and a related-key attacks on AES-128 are possible for at most 7 and 8 rounds, respectively. The security of CMAC, a typical block-cipher-based MAC algorithm, has very high possibility of inheriting the security of the underlying block cipher. Since the attacks on the underlying block cipher can be applied directly to the first block of CMAC, the current security margin is not sufficient compared to what the designers of AES claimed. In this paper, we consider HMAC-DM-AES-128 as an alternative to CMAC-AES-128 and analyze its security for reduced rounds of AES-128. For 2-round AES-128, HMAC-DM-AES-128 requires the precomputation phase time complexity of $2^{97}$ AES, the online phase time complexity of $2^{98.68}$ AES and the data complexity of $2^{98}$ blocks. Our work is meaningful in the point that it is the first security analysis of MAC based on hash modes of AES.

FPGA Implementation and Performance Analysis of High Speed Architecture for RC4 Stream Cipher Algorithm (RC4 스트림 암호 알고리즘을 위한 고속 연산 구조의 FPGA 구현 및 성능 분석)

  • 최병윤;이종형;조현숙
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.4
    • /
    • pp.123-134
    • /
    • 2004
  • In this paper a high speed architecture of the RC4 stream cipher is proposed and its FPGA implementation is presented. Compared to the conventional RC4 designs which have long initialization operation or use double or triple S-arrays to reduce latency delay due to S-array initialization phase, the proposed architecture for RC4 stream cipher eliminates the S-array initialization operation using 256-bit valid entry scheme and supports 40/128-bit key lengths with efficient modular arithmetic hardware. The proposed RC4 stream cipher is implemented using Xilinx XCV1000E-6H240C FPGA device. The designed RC4 stream cipher has about a throughput of 106 Mbits/sec at 40 MHz clock and thus can be applicable to WEP processor and RC4 key search processor.

Implementation of RFID Reader System using the Data Encryption Standard Algorithm (표준 암호화 알고리즘을 이용한 RFID 판독 시스템의 구현)

  • 박성욱
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.1
    • /
    • pp.55-61
    • /
    • 2003
  • The Data Encryption Standard(DES) has been a worldwide standard for over 20 years. DES is one of the block encryption techniques which ciphers 64-bit input data blocks using a 56-bit private key. The DES algorithm transforms 64-bit input in a series of steps into a 64-bit output. Thus, it is impossible to deduce the plaintext from the ciphertext which encrypted by this algorithm without the key. This paper presents an implementation of RFID roader system using the DES algorithm. An implemented system enhances the credibility of the encryption algorithm by using the Cipher Block Chining(CBC). Experimental results also show that the implemented system has better performance over the conventional commercial product.

  • PDF

Encryption Algorithm Technique for Device's key Protect in M2M environment (M2M 환경의 디바이스 키 보호를 위한 암호 알고리즘 응용 기법)

  • Choi, Do-Hyeon;Park, Jung-Oh
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.343-351
    • /
    • 2015
  • With the diverse services of the current M2M environment being expanded to the organizations, the corporations, and the daily lives, the possibility of the occurrence of the vulnerabilities of the security of the related technologies have become an issue. In order to solve such a problem of the vulnerability of the security, this thesis proposes the technique for applying the cryptography algorithm for the protection of the device key of the M2M environment. The proposed technique was based on the elliptic curve cryptography Through the key exchange and the signature exchange in the beginning, the security session was created. And the white box cipher was applied to the encryption that creates the white box table using the security session key. Application results cipher algorithm, Elliptic Curve Cryptography provides a lightweight mutual authentication, a session key for protecting the communication session and a conventional white-box cipher algorithm and was guaranteed the session key used to encrypt protected in different ways. The proposed protocol has secure advantages against Data modulation and exposure, MITM(Man-in-the-middle attack), Data forgery and Manipulation attack.

Design and Implementation of a Web Security System using a Chaos Cipher Algorithm (카오스 암호화 알고리즘을 이용한 웹 보안 시스템 설계 및 구현)

  • Lee, Bong-Hwan;Kim, Cheol-Min;Yun, Dong-Won;Chae, Yong-Ung;Kim, Hyeon-Gon
    • The KIPS Transactions:PartC
    • /
    • v.8C no.5
    • /
    • pp.585-596
    • /
    • 2001
  • In this paper, a new stream cipher algorithm based on the chaos theory is proposed and is applied to a Web security system. The Web security system is composed of three parts: certificate authority (CA), Web client, and Web server. The Web client and server system include a secure proxy client (SPC) and a secure management server (SMS), respectively, for data encryption and decryption between them. The certificate is implemented based on X.509 and the RSA public key algorithm is utilized for key creation and distribution to certify both the client and server. Once a connection is established between the client and server, outgoing and incoming data are encrypted and decrypted, respectively, using one of the three cipher algorithms: chaos, SEED, and DES. The proposed chaos algorithm outperforms the other two conventional algorithms in processing time and complexity. Thus, the developed Web security system can be widely used in electronic commerce (EC) and Internet banking.

  • PDF

Padding Oracle Attack on Block Cipher with CBC|CBC-Double Mode of Operation using the BOZ-PAD (BOZ-PAD 방법을 사용하는 블록암호 기반 CBC|CBC 이중 모드에 대한 패딩 오라클 공격)

  • Hwang, Seongjin;Lee, Changhoon
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.1
    • /
    • pp.89-97
    • /
    • 2015
  • In the various application environments on the internet, we use verified cipher algorithm to protect personal information of electronic commerce or application environments. Even so, if an application method isn't proper, the information you want to keep can be intercepted. This thesis studied about result of Padding Oracle Attack, an application environment which apply CBC|CBC operational mode based on block cipher and BOZ padding method.

Fault Injection Attack on Lightweight Block Cipher CHAM (경량 암호 알고리듬 CHAM에 대한 오류 주입 공격)

  • Kwon, Hongpil;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.5
    • /
    • pp.1071-1078
    • /
    • 2018
  • Recently, a family of lightweight block ciphers CHAM that has effective performance on resource-constrained devices is proposed. The CHAM uses a stateless-on-the-fly key schedule method which can reduce the key storage areas. Furthermore, the core design of CHAM is based on ARX(Addition, Rotation and XOR) operations which can enhance the computational performance. Nevertheless, we point out that the CHAM algorithm may be vulnerable to the fault injection attack which can reveal 4 round keys and derive the secret key from them. As a simulation result, the proposed fault injection attack can extract the secret key of CHAM-128/128 block cipher using about 24 correct-faulty cipher text pairs.

Development of Stream Cipher using the AES (AES를 이용한 스트림 암호 개발)

  • Kim, Sung-Gi;Kim, Gil-Ho;Cho, Gyeong-Yeon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.11
    • /
    • pp.972-981
    • /
    • 2013
  • Future aspects of the has turned into a network centric warfare(NCW). Organically combined wired and wireless networks in a variety of cross-of-the-art combat power factor utilization of information and communication technology is a key element of NCW implementation. At used various information in the NCW must be the confidentiality and integrity excellent then quick situation assessment through reliability the real-time processing, which is the core of winning the war. In this paper, NCW is one of the key technologies of the implementation of 128-bit output stream cipher algorithm is proposed. AES-based stream cipher developed by applying modified OFB mode the confidentiality and integrity as well as hardware implementation to the security and real-time processing is superior.

Impossible Differential Cryptanalysis on Lai-Massey Scheme

  • Guo, Rui;Jin, Chenhui
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.1032-1040
    • /
    • 2014
  • The Lai-Massey scheme, proposed by Vaudenay, is a modified structure in the International Data Encryption Algorithm cipher. A family of block ciphers, named FOX, were built on the Lai-Massey scheme. Impossible differential cryptanalysis is a powerful technique used to recover the secret key of block ciphers. This paper studies the impossible differential cryptanalysis of the Lai-Massey scheme with affine orthomorphism for the first time. Firstly, we prove that there always exist 4-round impossible differentials of a Lai-Massey cipher having a bijective F-function. Such 4-round impossible differentials can be used to help find 4-round impossible differentials of FOX64 and FOX128. Moreover, we give some sufficient conditions to characterize the existence of 5-, 6-, and 7-round impossible differentials of Lai-Massey ciphers having a substitution-permutation (SP) F-function, and we observe that if Lai-Massey ciphers having an SP F-function use the same diffusion layer and orthomorphism as a FOX64, then there are indeed 5- and 6-round impossible differentials. These results indicate that both the diffusion layer and orthomorphism should be chosen carefully so as to make the Lai-Massey cipher secure against impossible differential cryptanalysis.

High Performance HIGHT Design with Extended 128-bit Data Block Length for WSN (WSN을 위한 128비트 확장된 데이터 블록을 갖는 고성능 HIGHT 설계)

  • Kim, Seong-Youl;Lee, Je-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.124-130
    • /
    • 2015
  • This paper presents a high performance HIGHT processor that can be applicable for CCM mode. In fact, HIGHT algorithm is a 64-bit block cipher. However, the proposed HIGHT extends the basic block length to 128-bit. The proposed HIGHT is operated as 128-bit block cipher and it can treat 128-bit block at once. Thus, it can be applicable for the various WSN applications that need fast and ultralight 128-bit block cipher, in particular, to be operated in CCM mode. In addition, the proposed HIGHT processor shares the common logics such as 128-bit key scheduler and control logics during encryption and decryption to reduce the area overhead caused by the extension of data block length. From the simulation results, the circuit area and power consumption of the proposed HIGHT are increases as 40% and 64% compared to the conventional 64-bit counterpart. However, the throughput of the proposed HIGHT can be up to two times as fast. Consequently, the proposed HIGHT is useful for USN and handheld devices based on battery as well as RFID tag the size of circuit is less than 5,000 gates.