
1032   Rui Guo and Chenhui Jin © 2014        ETRI Journal, Volume 36, Number 6, December 2014 
http://dx.doi.org/10.4218/etrij.14.0113.1335 

The Lai-Massey scheme, proposed by Vaudenay, is a 
modified structure in the International Data Encryption 
Algorithm cipher. A family of block ciphers, named  
FOX, were built on the Lai-Massey scheme. Impossible 
differential cryptanalysis is a powerful technique used to 
recover the secret key of block ciphers. This paper studies 
the impossible differential cryptanalysis of the Lai-Massey 
scheme with affine orthomorphism for the first time. 
Firstly, we prove that there always exist 4-round 
impossible differentials of a Lai-Massey cipher having a 
bijective F-function. Such 4-round impossible differentials 
can be used to help find 4-round impossible differentials of 
FOX64 and FOX128. Moreover, we give some sufficient 
conditions to characterize the existence of 5- , 6- , and 7-
round impossible differentials of Lai-Massey ciphers 
having a substitution-permutation (SP) F-function, and 
we observe that if Lai-Massey ciphers having an SP F-
function use the same diffusion layer and orthomorphism 
as a FOX64, then there are indeed 5- and 6-round 
impossible differentials. These results indicate that both 
the diffusion layer and orthomorphism should be chosen 
carefully so as to make the Lai-Massey cipher secure 
against impossible differential cryptanalysis. 
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I. Introduction 

1. Background 

Nowadays, the most powerful known attacks on block 
ciphers are differential cryptanalysis [1] and linear 
cryptanalysis [2]. These attacks have been efficiently applied to 
many known ciphers. Therefore, many block cipher structures 
with a provable security against differential cryptanalysis and 
linear cryptanalysis have been studied [3]–[8]. However, a 
provable security against differential cryptanalysis and linear 
cryptanalysis is not enough to prove the security of block 
ciphers, because other different cryptanalyses may be applied 
in the future. For instance, the 3-round Feistel structure, whose 
round functions are bijective, has a provable security against 
differential cryptanalysis and linear cryptanalysis [9], but there 
exists a 5-round impossible differential characteristic, which 
means that impossible differential cryptanalysis [10] may be 
much more powerful than differential cryptanalysis and linear 
cryptanalysis. Thus, it is necessary to evaluate the ability of 
each block cipher to resist also impossible differential 
cryptanalysis. 

Impossible differential cryptanalysis, proposed by Biham 
and Knudsen, is one of the most popular cryptanalytic tools for 
use against block ciphers. The main idea behind impossible 
differential cryptanalysis is to use an impossible differential that 
shows that a particular differential characteristic can not occur 
for the correct key, which means that if these differential 
characteristics are satisfied under the tested key, then it cannot 
be the correct one. Moreover, impossible differential 
cryptanalysis has shown its superiority over differential 
cryptanalysis in many block ciphers, such as International Data 
Encryption Algorithm (IDEA) [11], Skipjack [12], AES [13], 
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FOX family [14], and so on. 
Obtaining the longest impossible differential is the key step 

of impossible differential cryptanalysis, and several methods 
have made use of the miss-in-the-middle method to do just that. 
Another method used to obtain the longest impossible 
differential is the u-method [15] proposed by Kim and others. 
Although the u-method can be used, in general, to find 
impossible differentials of various block ciphers, information 
relating to block ciphers is often lost in the process and hence 
some longer impossible differentials cannot be found by this 
method. Luo and others extended the idea of the u-method and 
proposed a more general method; namely, the UID-method 
[16]. The UID-method removes some limitations of the u-
method and harnesses more inconsistent conditions to evaluate 
impossible differentials. Wu and others [17] introduced a novel 
tool to search impossible differentials for word-oriented block 
ciphers with bijective S-boxes. This tool generalizes both the u-
method and the UID-method. However, those methods are so 
general that some information is often lost during calculating 
the impossible differentials. Hence, once again, some longer 
impossible differentials cannot be found by using those 
methods. 

In this paper, we mainly focus on impossible differential 
cryptanalysis of the Lai-Massey cipher (The block ciphers are 
defined by iterating the Lai-Massey scheme [18]) with affine 
orthomorphism. The Lai-Massey scheme was originally 
derived from the IDEA [19] cipher. In 2004, instancing the Lai-
Massey scheme’s F-function with an SPS structure and 
orthomorphism [20] as ( , ) ( , ),or x y y x y= ⊕ Junod and 
Vaudenay designed the FOX [21] family of block ciphers, also 
named “IDEA NXT.” Thus far, existing analysis results 
indicate that the FOX family of ciphers is secure enough from 
such attacks as differential cryptanalysis [14]–[22], integral 
attacks [23], fault attacks [24], and so on [21]. Moreover, Yun 
and others introduced the notion of a quasi-Feistel network [25], 
which is a generalization of the Feistel network and contains 
the Lai-Massey scheme as an instance. They proved that the 
Lai-Massey scheme and Feistel structure have the same 
pseudorandom properties [26] and decorrelation property [27]; 
however, they didn’t precisely present the ability of the Lai-
Massey cipher to resist linear and differential cryptanalysis; 
integral attacks; statistical attacks; slide and related-key attacks; 
and so on. This paper firstly evaluates the Lai-Massey cipher’s 
ability to resist impossible differential cryptanalysis. By 
carefully analyzing the properties of the linear transformations, 
we found that the existence of impossible differentials in a Lai-
Massey cipher is not only related to the diffusion layer of the  
F-function but also strongly related to the orthomorphism. 
Compared with the Feistel cipher [28], our results indicate that 

Lai-Massey cipher is much more powerful to resist impossible 
differential cryptanalysis. 

2. Contribution and Outline  

The contribution of this paper presents the original 
evaluation on the impossible differentials of Lai-Massey 
ciphers for the first time. Firstly, we prove that 4-round 
impossible differential always exist if the F-function is bijective. 
Secondly, we give some sufficient conditions to characterize 
the existence of 5-, 6-, and 7-round impossible differentials of 
Lai-Massey ciphers having a substitution-permutation (SP) F-
function and observe that if the Lai-Massey ciphers having an 
SP F-function use the same diffusion layer and orthomorphism 
as a FOX64, then there are indeed 5- and 6-round impossible 
differentials. 

This paper is organized as follows. In Section II, we will 
describe the Lai-Massey scheme along with some 
preliminaries. The existence of the impossible differentials of 
the Lai-Massey cipher having either an SP or an SPS F-
function will be discussed in Section III. Section IV concludes 
this paper. 

II. Preliminaries 

1. Lai-Massey Scheme  

Definition 1 [18]. Let (G, +) be a group. If : G Gσ →  and 
( )x x xσ→ −  are both permutations, then σ is an 

orthomorphism on G. 

Definition 2 [18]. Let (G, +) be a group. Given r F-functions, 

1, , ,rf f…  and an orthomorphism on G, σ, we can define an 

r-round Lai-Massey cipher that is a permutation on G2 and that 

is denoted as 

1 0 0

2 0 1 0 0 0 1 0 0

LM ( , , )( , )

LM [ , , ][ ( ( )), ( )].
r

r

f f x y

f f x f x y y f x yσ= + − + −
…

…

Its round functions are defined as 

1 1( , ) ( ( ( )), ( )),i i i i i i i i i ix y x f x y y f x yσ+ + = + − + −  

where 1 1( , )i ix y G G+ + ∈ ×  denotes the output of the ith round 

of the Lai-Massey cipher. 
In this paper, let group G = {0, 1}n. We define the group 

operation + as the bit-wise exclusive OR ⊕. Then, the round 
function can be rewritten as  

1 1( , ) ( [ ( ]), ( )).i i i i i i i i i ix y x f x y y f x yσ+ + = ⊕ ⊕ ⊕ ⊕  

In particular, to ensure the similarity of encryption and 
decryption of the Lai-Massey cipher, the σ in the last round is 
always omitted. 
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2. Description of FOX 

FOX is a family of block ciphers designed by Junod and 
Vaudenay in 2004, which is the result of a joint project with the 
company MediaCrypt AG in Switzerland. FOX adopts a 
modified structure of the Lai-Massey Scheme, which can be 
proven to have sound pseudorandom properties in the Luby-
Rackoff paradigm, as well as having decorrelation in hesitance 
properties. FOX has two versions, both have a variable number 
of rounds, the exact number of which being dependent upon 
key sizes. The first one, FOX64/k/r, has a 64-bit block size 
with a variable key length — a multiple of 8 and up to 256 bits. 
The second, FOX128/k/r, uses a 128-bit block size with 
variable key length and round number. The original FOX 
design suggests these two ciphers should be iterated for 16 
rounds. The round function of FOX uses a substitution-
permutation-substitution (SPS) structure with three layers of 
sub-key addition. The key schedule of FOX is very complex as 
it uses the round function as a compress function to generate 
sub-keys from the master key. Here, we give only a brief 
description of the F-function, f, of FOX64, for further details 
we refer you to [21]. 

The round function, f, comprises three main parts: a 
substitution part, denoted sigma4; a diffusion part, denoted 
mu4; and a round key addition part. Let f : {0, 1}32 × {0, 1}64 

→{0, 1}32, for a 32-bit input x∈{0, 1}32 and a 64-bit round key 
k = k0|| k1, we have 

0 1 0( , ) 4( 4( 4( )) ) .f x k sigma mu sigma x k k k= ⊕ ⊕ ⊕  

The substitution transformation sigma4: {0, 1}32 →{0, 1}32 

comprises four parallel applications of a nonlinear bijective  
S-box for different input bytes. The linear permutation 
transformation mu4: [GF(256)]4 → [GF(256)]4 considers an 
input (x0, x1, x2, x3) as a column vector (x0, x1, x2, x3)

T over 
[GF(256)]4 and multiplies it with a maximum distance 
separable (MDS) matrix to output a column vector of the same 
size. The branch number of the MDS matrix is five. The MDS 

matrix is defined as follows: 

1 1

1 1
,

1 1

1 1

Z

Z

Z

Z

α
α

α
α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

where 1 1Z α −= ⊕  and α is a root of the irreducible 

polynomial 8 7 6 5 4 3( ) 1m x x x x x x x= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ over 

GF(2). 

Moreover, the σ transformation used in FOX64 is the linear 

orthomorphism ( , ) ( , ),or a b b a b= ⊕  which satisfies the 

following properties.  
Property 1 [21]. The orthomorphsim ( , ) ( , )or x y y x y= ⊕  

and its inverse transformation ( , ) ( , )io x y x y x= ⊕  have the 
following properties: 
■ 2 ( , ) ( , ),or x y io x y=  

2 ( , ) ( , ).io x y or x y=  
■ ( , ) ( , ) ( , ) (0, 0).io x y or x y x y⊕ ⊕ =  
■ ( , ) ( , )or x y x y=  if and only if ( , ) (0, 0).x y =  

■ 3 ( , ) ( , )or x y x y= . 

3. Notation and Definitions 

Throughout this paper, we use the following notations: 
■ GF(q) denotes a Galois field with q elements. 
■ #T denotes a cardinal number of the set T. 
■ f gD  or fg denotes a composite function of f and g. 
■

,i jA  denotes the element in the ith row and jth column of 
matrix A. 

■ ∆f(∆X) denotes the output difference of the input difference, 
∆X, for the F-function f. 

■ ∆S(∆X) denotes the output difference of the input difference 
∆X for the nonlinear transform layer S. 
In this section, we give the definition and properties of the χ-

function and then give the definition of the Hamming weight. 

Definition 3 (χ-function). For m≥1, let : (2 ) (2),mGF GFδ →  

: ( (2 )) ( (2)) ,m n nGF GFχ →  and : ( (2 )) (2),m n
i GF GFχ →  

for 1 ,i n≤ ≤ then define 

0 if 0,
( )

1 if 0,

x
x

x
δ

=⎧
= ⎨ ≠⎩

 

1 1( , ... , ) ( ), ... , ( )n nx x x xχ δ δ= , 

and 

1( , ... , ) ( )i n ix x xχ δ= . 

Therefore, for ( (2 )) ,m nX GF∈ ( ) 1i Xχ =  means that there 

is some non-zero value at the ith position. Let ( (2 ))m n
ie GF∈  

be a vector such that ( ) ,i i ie Eχ =  where ( (2))n
iE GF∈  is 

a vector whose ith component is one, while other [ej = 0 (j ≠ i)] 

components are zero. The χ-function adheres to the following 

properties outlined in Property 2: 
Property 2 [28]. 
A. For any difference ( (2 )) ,m nX GFΔ ∈  we have 

( ( )) ( ).S X Xχ χΔ Δ = Δ  

B. Let 1( , ... , )nP p p= , where pi is the ith column vector of 

diffusion layer P, then if ∆X = ei, we have 

( ( )) ( ( )) ( )i i iP S e P e pχ χ χΔ = =D . 

C. Let 1( , ... , ),nX x x=  1( , ... , ),nY y y=  1 .i n≤ ≤  if    

xi = 0, then ( ) ( ) ( )i i iX Y Y yχ χ δ⊕ = = . 

Definition 4 [28]. Let 1( , ... , ) ( (2 ))m n
nX x x GF= ∈ , then 
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define the number of nonzero components in X by ( )w X =  

#{ | 0, 1 }ii x i n≠ ≤ ≤ . 

In this paper, we only consider the Lai-Massey scheme with 

affine orthomorphism :{0, 1} {0, 1} ,n nσ →  let Iτ σ= ⊕  

(I denotes the identical transformation), then ,στ τσ=  and 

we can list the properties of σ and τ as follows: 
Property 3.   

(1) 2 1( )Iσ τ τ−⊕ = ;     (2) 2 1( )Iτ σ σ−⊕ = ;  

(3) 1 1( ) ;I Iσ τ σ− −⊕ =    (4) 2 2 .Iσ σ τ σ⊕ ⊕ ⊕ =  

Proof. We only prove (3); the proof of the others is a trivial 

exercise. Due to the fact that 
1σ −

 is also an affine 

orthomorphism [20] and ,Iτ σ= ⊕  we have 1 1( )Iσ τ σ− −⊕ =  
1 1( ) .I Iσ σ τ σ− −⊕ =                               ■ 

III. Impossible Differentials Analysis of the Iterative 
   Lai-Massey Scheme 

By comprehensively analyzing the properties of the diffusion 
layer and the σ transformation on the Lai-Massey ciphers, 
some sufficient conditions will be presented that characterize 
the existence of 4-round impossible differentials of a Lai-
Massey cipher having a bijective F-function and that 
characterize the existence of 5-, 6-, and 7-round impossible 
differentials of a Lai-Massey cipher having an SP F-function. 
Let ∆i (i = 1, 2, … , r) denote the input difference of the ith 
round. Using the miss-in-the-middle technique, we try to find 
the impossible differential of a Lai-Massey cipher and obtain 
several results as follows.  

1. Analysis on 4-Round Lai-Massey Cipher Having a 
   Bijective F-function 

Proposition 1. Let the F-function of a Lai-Massey cipher    

be bijective, then 1 1 2( ( ), ( )) ( ( ), ( ))τ α τ α σ α σ α− − →/  is a     

4-round impossible differential of the cipher, where 0α ≠ . 

Proof. As described in Fig. 1, from the encryption direction,  

if 1 1
1 ( ( ), ( )),τ α τ α− −Δ =  then 1 1

2 ( ( ), ( ))στ α τ α− −Δ =   

and 2 1 1
3 ( ( ) ( ), ( ) ),σ τ α σ β τ α β− −Δ = ⊕ ⊕ where 

1 1( ) ( )στ α τ α α− −⊕ =  and 2 ( )fβ α= Δ  are the input 

difference and output difference of f2, respectively. Moreover, 

due to the fact that the F-function is bijective and α is nonzero, 

we have 0β ≠ . By Property 3, we know that 
2 1 1

2 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ),

I

σ τ α σ β τ α β

σ τ α τ β
τ α τ β

− −

−

⊕ ⊕ ⊕

= ⊕ ⊕
= ⊕

 

which is the input difference of the third F-function, f3. 

 

Fig. 1. Impossible differential of 4-round Lai-Massey cipher 
having a bijective round function. 

τ–1(α) τ–1(α) τ–1(α)⊕β σ(α) 

σ(α)
Contradiction! 

τ(α)⊕τ(β) 

σ2(α)

σ(α) 

f4

σ

f3 f2f1

σ σσ
τ–1(α) στ–1(α)

β≠ 0 τ(α) 

α 

σ2τ–1(α)⊕σ(β) 

 
 

From the decryption direction, if the output difference of the 
fourth round is 2( ( ), ( ))σ α σ α , then 4 ( ( ), ( ))σ α σ αΔ = , 

and the input difference of f3 is ( ) ( )α σ α τ α⊕ = . Therefore, 

by 0,β ≠ ( ) ( ) ( )τ α τ β τ α⊕ =  is a contradiction. Hence, 
1 1 2( ( ), ( )) ( ( ), ( ))τ α τ α σ α σ α− − →/  is a 4-round impossible 

differential.                                      ■ 
From Proposition 1, we can obtain a new kind of impossible 

differential of a 4-round FOX cipher as the following corollary. 
Corollary 1. Let ( , ) ( , )or x y y x y= ⊕ , then we have the 
following: 
■ If 

32{0, 1} \{0}α ∈ , then ( , ) ( ( ), )orα α α α→/  is a 4-round 
impossible differential of FOX64.  

■ If 
32{0, 1} \{0}α ∈  and 

32{0, 1} ,β ∈  then ( , , , )α α β β →/  
( ( ), , ( ), )or orα α β β  is a 4-round impossible differential 
of FOX128. 
In [14], Wu proved that (0 0 , 0 0 ) ( , )a a a a bcbd bcbd→/  is 

a 4-round impossible differential of FOX64, where each a, b, c, 
and d denote one byte, and 0.a ≠  In addition, they presented 
a chosen plaintexts impossible differential cryptanalysis of the 
FOX64. In Corollary 1, the only requirement is that 0,α ≠  
which implies that perhaps we can present a distinct known 
plaintexts attack on FOX, which is a more realistic model. 
Moreover, for a Feistel scheme, if the F-function is bijective, 
then it will have a 5-round impossible differential. In 
Proposition 1, we know that the Lai-Massey scheme only has a 
4-round impossible differential if the F-function is bijective. 

2. Analysis on 5-Round Lai-Massey Cipher Having an SP
Round Function 

 From now on, let σΜ and τΜ denote the corresponding 
matrix of the linear transformation σ andτ, respectively. 
Proposition 2. Let 1 1P Pφ σ− −= , 1 1( )Pϕ τ σ− −= ⊕ , for   
1  ≤  I  ≤  n. If there exists 1 j i n≤ ≠ ≤  such that ( ( )) 0j ieχ τ =  
and either ( ( )) 0,j ieχ φ = ( ( )) 1j ieχ ϕ =  or ( ( )) 1,j ieχ φ =  

( ( )) 0,j ieχ ϕ =  then ( , )i ie e →/ 1 2 1( ( ), ( ))i ie eτ σ τ σ− −  is a 
5-round impossible differential of the Lai-Massey cipher 
having an SP structure. 
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Fig. 2. Impossible differential of 5-round Lai-Massey cipher having an SP round function. 

ei⊕β 

τ(τ(ei)⊕β) = (σ –1 ⊕ I)(ei)⊕(σ –1⊕I)(γ)

f4 

σ 

f3 f2 f1 

σσ σ 
ei σ(ei) 

σ2(ei)⊕σ (β)

f5 

σ

ei ei τ –1σ(ei)⊕γ τ –1σ (ei) 

τ  –1σ (ei)

τ  –1σ2(ei)

τ (ei) 
β = Δf2(τ(ei)) 

τ(τ(ei)⊕β) 

σ –1τ –1(ei)⊕σ  –1(γ) 

τ –1(ei)⊕γ τ –1(ei)

γ =Δf4(ei)

τ –1σ (ei) 

ei 

 

Proof. As described in Fig. 2, if the input difference is (ei, ei), 

then the input difference of f2 will be ( ) ( ).i i ie e eσ τ⊕ =  Let 

( ( ))iP S eβ τ= Δ  denote the output difference of f2, then 3Δ =  
2( ( ) ( ), ),i ie eσ σ β β⊕ ⊕  and the input difference of f3 is 

2 ( ) ( ) ( ( ) )i i ie e eσ σ β β τ τ β⊕ ⊕ ⊕ = ⊕ . 

Then, 1 1
5 ( ( ), ( )),i ie eτ σ τ σ− −Δ =  and the input difference of 

f4 is 1 1 1( ) ( ) ( ) ( ) .i i i ie e I e eτ τ σ τ σ− − −⊕ = ⊕ = Let 

( )iP S eγ = Δ  denote the output difference of f4, then 
1 1

4 ( ( ) , ( ) ),i ie eτ γ τ σ γ− −Δ = ⊕ ⊕  from which we know that 

the input difference of f3 is  
1 1 1 1

1 1

( ) ( ) ( )

( )( ) ( )( ).

i i

i

e e

I e I

σ τ σ γ τ σ γ

σ σ γ

− − − −

− −

⊕ ⊕ ⊕

= ⊕ ⊕ ⊕
 

Thus, the following equation holds: 

1 1( ( ) ) ( )( ) ( )( );i ie I e Iτ τ β σ σ γ− −⊕ = ⊕ ⊕ ⊕ namely, 

1 2 1( ( )) ( ) ( ) ( )( ),i i iP S e I P S e I eτ τ σ τ σ− −Δ = ⊕ Δ ⊕ ⊕ ⊕  

which implies that ( ( )) ( ) ( ),i i iS e S e eτ φ ϕΔ = Δ ⊕  

where 
1 1 2 1 1 1( ) ( )P I Pϕ τ τ σ τ σ− − − − −= ⊕ ⊕ = ⊕ and φ =  

1 1 1 1 1( ) .P I P P Pτ σ σ− − − − −⊕ =  Moreover, we have 

( ( ( ))) ( ( ) ( )).i i iS e S e eχ τ χ φ ϕΔ = Δ ⊕  
From Property 2, we know ( ( ( ))) ( ( ))i iS e eχ τ χ τΔ = . If 

there exists 1 j i n≤ ≠ ≤  such that either ( ( )) 0,j ieχ φ =  
( ( )) 1j ieχ ϕ =  or ( ( )) 1,j ieχ φ = ( ( )) 0,j ieχ ϕ =  then we have 

( ( ) ( )) 1.j i iS e eχ φ ϕΔ ⊕ =  Meanwhile, if ( ( )) 0,j i ieχ τ≠ =  then 
this is a contradiction. Thus, 1 2 1( , ) ( ( ), ( ))i i i ie e e eτ σ τ σ− −→/  is 
a 5-round impossible differential.                     ■ 

The following example implies that if the Lai-Massey 
ciphers having an SP structure use the same σ function and 
diffusion layer P as FOX64, then they will have a 5-round 
impossible differential. 

Example 1. By the definition and property of the 
orthomorphism or in FOX64, we have 

0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1

Mor

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

,   

1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

Mio

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

1 1 1
1 1

1 1
1 1

ZP Z
Z

α
α

α
α

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

,  1

a c d e
a d e cP a e c d
b a a a

−

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

where 1 1,Z α −= ⊕  and a, b, c, and d are four distinct 
nonzero elements in GF(28). 

From Proposition 2, here 
1 1( ) ,M M MP or io I P P io Pφ − −= ⊕ =  

1 ( ) 0M M MP or or io Iϕ −= ⊕ ⊕ = , and 

1

1 0 1 0 1 1 1
0 1 0 1 1 1
1 0 0 0 1 1
0 1 0 0 1 1

1 1 0 1
1 1 0

1 1 1
1 1

* * * *
* * * * .* * * *
* * (1 ) *

M

a c d e
a d e c ZP io P a e c d Z
b a a a Z

a c d e Z
a d e c Z Z
a e c d
b a a a Z

a Z

α
α

α
α

α α
α α

α
α

−

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

⊕ ⊕ ⊕⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⊕ ⊕ ⊕= ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟⊕⎝ ⎠

 

So, 4 3( ( )) 0,eχ τ =  4 3( ( )) (1 ) 0,e a Zχ φ = ⊕ ≠  and 

4 3( ( )) 0.eχ ϕ =  Thus, 3 3 3 3( , ) ( , ( ))e e e io e→/  is a 5-round 

impossible differential.  

3. Analysis on 6-Round Lai-Massey Scheme Having an SP 
Round Function 

Proposition 3. For 1 i n≤ ≤ , let  

, ,

, ,

{ | [( ) 0, ( ) 0]

[( ) 0, ( ) 0]},
i M k i M k i

M k i M k i

k P

P

τ τ
τ τ

Ω = = ≠

∨ ≠ =

D
D

 

,{ | 0},i k ik φΛ = =  ,{ | 0},i k ik ϕΓ = ≠ 1 #( )i in = Ω Λ∩ , 
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Fig. 3. Impossible differential of 6-round Lai-Massey cipher 
having an SP round function. 

τ –1(ei) 

τ–1(ei) τ–1(ei) 

P°S 

σ  

σ  

σ  

P°S 

P°S 

P°S 

P°S 

P°S 

σ  

σ  

σ  

 (σ –1⊕I)(ei)⊕(σ –1⊕I)PΔS(ei) 

σ τ–1(ei) τ–1(ei) 

PΔS(ei) 

σ2τ –1(ei)⊕σPΔS(ei) τ –1(ei)⊕PΔS(ei) 

PΔS[τ (ei)⊕τ PΔS(ei)] 

σ (ei)⊕τ 2[PΔS(ei)⊕ei]⊕τPΔS[τ (ei)⊕τPΔS(ei)] 

τ –1(ei)⊕PΔS(ei) τ –1σ(ei)⊕PΔS(ei)

PΔS(ei)

τ –1σ(ei) τ –1σ(ei)

τ –1σ2(ei) τ –1σ(ei)

 

 

and 2 # ,in = Γ  where 1 1 1( )M M MPφ τ σ σ− − −= ⊕  and ϕ =  
1 1( ) .M MP Pσ τ− − ⊕  If n1 > n2, then 1 1( ( ), ( ))i ie eτ τ− − →/  
2( ( ), ( ))i ie eσ σ  is a 6-round impossible differential of a Lai-

Massey cipher having an SP structure. 
Proof. As described in Fig. 3 and similar to Proposition 2, 

when 1 1
1 ( ( ), ( )),i ie eτ τ− −Δ =  we conclude that the input 

difference of f4 is 
3 1 2

1

2

( ) ( ) [ ( ) ( )]

[ ( ) ( )] ( ) ( )

( ) [ ( ) ]

[ ( ) ( )].

i i i i

i i i i

i i i

i i

e P S e P S e P S e

P S e P S e e P S e

e P S e e

P S e P S e

σ τ σ σ τ τ

τ τ τ

σ τ
τ τ τ

−

−

⊕ Δ ⊕ Δ ⊕ Δ

⊕ Δ ⊕ Δ ⊕ ⊕ Δ

= ⊕ Δ ⊕
⊕ Δ ⊕ Δ

 

From the decryption direction, if the output difference of the 
sixth round is 2( ( ), ( )),i ie eσ σ  then 

1
6 ( ( ) ( ),i ie P S eτ −Δ = ⊕ Δ  

1 ( ) ( )).i ie P S eτ σ− ⊕ Δ  Therefore, the input difference of f4 is  

2 1 1 1

2 1 1

1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( ) ( ).

i i i i

i i

i i

e P S e e P S e

I e I P S e

I e I P S e

σ τ σ σ τ σ

σ τ σ σ

σ σ

− − − −

− − −

− −

⊕ Δ ⊕ ⊕ Δ

= ⊕ ⊕ ⊕ Δ

= ⊕ ⊕ ⊕ Δ

 

Thus, the following equation holds: 
2

1 1

( ) [ ( ) ] [ ( ) ( )]

( )( ) ( ) ( ).

i i i i i

i i

e P S e e P S e P S e

I e I P S e

σ τ τ τ τ

σ σ− −

⊕ Δ ⊕ ⊕ Δ ⊕ Δ

= ⊕ ⊕ ⊕ Δ
 

Accordingly, 

1 2 1 2

[ ( ) ( )]

( )( ) ( ) ( ).

i i

i i

P S e P S e

I e I P S e

τ τ τ

σ σ τ σ τ− −

Δ ⊕ Δ

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ Δ
 

Thus, we obtain 

1 1 1

1 1

[ ( ) ( )] ( )( )

( ) ( ).

i i i

i

S e P S e P e

P P S e

τ τ τ σ σ

σ τ

− − −

− −

Δ ⊕ Δ ⊕ ⊕

= ⊕ Δ
 

For 1 i n≤ ≤  and a linear transformation P, let  

, ,

, ,

{ | [( ) 0, ( ) 0]

[( ) 0, ( ) 0]},
i M k i M k i

M k i M k i

k P

P

τ τ
τ τ

Ω = = ≠

∨ ≠ =

D
D

 

,{ | 0},i k ik φΛ = =  ,{ | 0},i k ik ϕΓ = ≠ 1 #( ),i in = Ω Λ∩  

2 # ,in = Γ  1 1 1( ),M M MPφ τ σ σ− − −= ⊕  

and 

1 1( )M MP Pϕ σ τ− −= ⊕ . 

Assume that there exist
11, ... , .n i ik k ∈ Ω Λ∩  Since 

11, ... , ,n ik k ∈ Λ  for any 1(1 ),jk j n≤ ≤  we have 
1 1 1( ( )( )) ( ( )) 0,

j jk i k iP e eχ τ σ σ χ φ− − − ⊕ = =  by Property 2-A, 

then  
1 1 1( [ ( ) ( )] ( )( ))

( ( ( ) ( )))

( ( ) ( )).

j

j

j

k i i i

k i i

k i i

S e P S e P e

S e P S e

e P S e

χ τ τ τ σ σ

χ τ τ

χ τ τ

− − −Δ ⊕ Δ ⊕ ⊕

= Δ ⊕ Δ

= ⊕ Δ

 

Moreover, due to 
11, ... , ,n ik k ∈ Ω  for any 1(1 ),jk j n≤ ≤  

there are 

, , ,

, , ,

( ( ) ( ))

(( ) ( )) 1 if ( ) 0 and ( ) 0,

(( ) ( )) 1 if ( ) 0 and 0.

j

j j j j

j j j j

k i i

k M k i i M k i k i

k M k i i M k i k i

e P S e

e P

P S e P

χ τ τ

χ τ τ τ

χ τ τ τ

⊕ Δ

= ≠ =⎧⎪= ⎨ Δ = ≠ =⎪⎩

D

D D
 

For 11 ,j n≤ ≤  we have ( ( ) ( )) 1,
jk i ie P S eχ τ τ⊕ Δ =  which 

means that 1( ( ( ) ( ))) ,i iw e P S e nχ τ τ⊕ Δ ≥  so  

1 1 1
1( ( [ ( ) ( )] ( )( ))) .i i iw S e P S e P e nχ τ τ τ σ σ− − −Δ ⊕ Δ ⊕ ⊕ ≥  

On the other hand, assume that there exist some 

21, ... , ,n ik k ∈ Γ  by Property 2-B, then 
1 1

1 1

1 1

2

( ( ( ) ( )))

( ( ( ) ( )))

( ( ) ( ))

.

i

i

i

w P P S e

w P P e

w P P e

n

χ σ τ

χ σ τ

σ τ

− −

− −

− −

⊕ Δ

= ⊕

= ⊕

=

 

Hence, if n1 > n2, then 1 1 2( ( ), ( )) ( ( ), ( ))i i i ie e e eτ τ σ σ− − →/  

is a 6-round impossible differential.                    ■ 

The following example implies that if the Lai-Massey 
ciphers having an SP structure use the same σ function and 
diffusion layer as FOX64, then they will have 6-round 
impossible differentials. 

Example 2. Similar to Example 1, by the definition and 
property of the orthomorphism or in FOX64, we have 



1038   Rui Guo and Chenhui Jin ETRI Journal, Volume 36, Number 6, December 2014 
http://dx.doi.org/10.4218/etrij.14.0113.1335 

1 1 1 1( )M M M MP io or io P orφ − − − −= ⊕ =  and 
1 1( ) 0;M MP or io Pϕ − −= ⊕ =  

hence, n2 = 0. Moreover, we have 

1 1 0 1
1 1 0

1 1 1
1 1

M

Z
Z Zio P

Z

α α
α α

α
α

⊕ ⊕ ⊕⎛ ⎞
⎜ ⎟⊕ ⊕ ⊕= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

and         1

0
M

d e a d c e
e c a e c dP or c d a c d e
a a a b

−

⊕ ⊕⎛ ⎞
⎜ ⎟⊕ ⊕= ⎜ ⎟⊕ ⊕⎜ ⎟⊕⎝ ⎠

. 

We have 4,4( ) 0,Mio = 4,4( ) 1,Mio P =  and 4,4φ =  
1

4,4( ) 0,MP or− =  which implies that 1 1.n ≥  Thus,  

4 4 4 4( ( ), ( )) ( ( ), ( ))or e or e io e or e→/  is a 6-round impossible 

differential. 

4. Analysis on 7-Round Lai-Massey Scheme Having an SP 
Round Function 

Proposition 4. For 1 , , ,i j k n≤ ≤  let 1
,{ | ( )i M M k ik σ τ−Ω = =  

1
,0; ( ) 0},M M k iPσ τ− = 1 1 2 1 2( ),M M M M M MA P τ σ σ σ σ σ− − − −= ⊕ ⊕ ⊕  

and 1 1 2 2( ) .M M M MB P I Pτ σ σ σ− − −= ⊕ ⊕  If iΩ ≠ Ο/  and there 

exist any ik ∈ Ω  such that , ,{ , } {0, 0}k i k ia b = and 
1( [ ( ) ( )]) 1,k i iP P S e P S eχ σ τ τ− Δ ⊕ Δ =  then 

1 1( ( ), ( ))i ie eτ τ− − →/  
2( ( ), ( ))i ie eσ σ  is a 7-round impossible differential of the Lai-

Massey cipher having an SP structure, where ,( ) ,i j n nA a ×=  

,( ) ,i j n nB b ×=  and ai and bi denote the ith column vectors of A 

and B, respectively. 
Proof. As described in Fig. 4, from the encryption direction, if 

1 1
1 ( ( ), ( )),i ie eτ τ− −Δ =  then the input difference of f3 is 

2 1 1( ) ( ( )) ( ) ( )

( ( )).
i i i i

i i

e P S e e P S e

e P S e

σ τ σ τ
τ

− −⊕ Δ ⊕ ⊕ Δ
= ⊕ Δ

 

Let [ ( ) ( )]i iP S e P S eλ τ τ= Δ ⊕ Δ denote the output difference 

of f3. Accordingly, the input difference of f4 is  
3 1 2 1

2

( ) ( ) ( ) ( )

( ) [ ( ) ] .

i i i i

i i i

e P S e e P S e

e P S e e

σ τ σ σλ λ τ

σ τ τλ

− −⊕ Δ ⊕ ⊕ ⊕ ⊕ Δ

= ⊕ Δ ⊕ ⊕
 

From the decryption direction, if the output difference of the 
seventh round is 

2( ( ), ( )),i ie eσ σ  then 
1

6 ( ( ) ( ),i ie P S eτ −Δ = ⊕ Δ  
1 ( ) ( )).i ie P S eτ σ− ⊕ Δ  We denote the output difference of f5 as 

1[ ( ( ))]i iP S e P S eβ σ τ−= Δ ⊕ Δ . From Property 3, the input 

difference of f4 is 
1 1 1 1 1

2 1 1 2 1

2 1 2 1

[ ( ) ( ) ] ( ) ( )

( )( ) ( ) ( ) ( )

[ ]( ) ( ) ( ) ( ) .

i i i i

i i

i i

e P S e e P S e

e I P S e I

I e I P S e I

σ σ τ σ β β τ σ

σ τ τ σ σ σ β

σ σ σ σ β

− − − − −

− − − − −

− − − −

⊕ Δ ⊕ ⊕ ⊕ ⊕ Δ

= ⊕ ⊕ ⊕ Δ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ Δ ⊕ ⊕

 

Thus, the following equation holds: 

 

Fig. 4. Impossible differential of 7-round Lai-Massey cipher 
having an SP round function. 
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β ⊕τ –1σ(ei)⊕PΔS(ei)

β =PΔS[σ –1τ(ei⊕PΔS(ei))]

 
 

2

2 1 2 1

( ) [ ( ) ]

( )( ) ( ) ( ) ( ) ,

i i i

i i

e P S e e

I e I P S e I

σ τ τλ

σ σ σ σ β− − − −

⊕ Δ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ Δ ⊕ ⊕
 

which means that  
1

2 1 2 2 2

2 1 2 2 2

( )

( )( ) ( ) ( )

( )( ) ( ) ( )

i i

i i

I

I e I P S e

e I P S e

τλ σ β

σ σ σ τ σ σ

σ σ σ σ σ σ

−

− − −

− − −

⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ Δ

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ Δ

 

and 
1 1

2 1 2 2 2

[ ( ) ( )] [ ( ( ))]

( )( ) ( ) ( ).

i i i i

i i

P S e P S e P S e P S e

e I P S e

τ τ τ σ τ σ τ

σ σ σ σ σ σ

− −

− − −

Δ ⊕ Δ ⊕ Δ ⊕ Δ

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ Δ
 

For 1 , ,i j k n≤ ≤  and linear transformation P, let 

1 1
, ,{ | ( ) 0; ( ) 0},i M M k i M M k ik Pσ τ σ τ− −Ω = = =

1 1 2 1 2( ),M M M M M MA P τ σ σ σ σ σ− − − −= ⊕ ⊕ ⊕  

and 1 1 2 2( ) .M M M MB P I Pτ σ σ σ− − −= ⊕ ⊕  If iΩ ≠ Ο/  and there 

exist any ik ∈ Ω  such that , ,{ , } {0,0},k i k ia b =  then we have 

1

1

1

( [ ( ( ))])

( ( ) ( ) [ ( ) ( )])

( [ ( ) ( )]).

k i i

k i i i i

k i i

S e P S e

A e B S e P P S e P S e

P P S e P S e

χ σ τ

χ σ τ τ

χ σ τ τ

−

−

−

Δ ⊕ Δ

= ⊕ Δ ⊕ Δ ⊕ Δ

= Δ ⊕ Δ

 

Here,  
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1

1

( [ ( ( ))])

( ( ( )))

0,

k i i

k i i

S e P S e

e P S e

χ σ τ

χ σ τ

−

−

Δ ⊕ Δ

= ⊕ Δ
=

 

which contradicts 1( [ ( ) ( )]) 1.k i iP P S e P S eχ σ τ τ− Δ ⊕ Δ =  

Therefore, the above proposition holds.                ■ 

Toy Example. Let the σ function be an or transformation 
used in FOX64 and choose a diffusion layer P as follows:  

0 1 0 1
1 1 0 1
0 0 1 0
0 0 1 1

P

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 1

1 1 0 0
1 0 1 1
0 0 1 0
0 0 1 1

P−

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

Here, 
2 1 2 2 2( ) 0;M M M M M Mor or or or or I or− − −⊕ ⊕ ⊕ = ⊕ ⊕ =  thus, 

A = B = 0. Moreover, we have 

0 1 1 1
1 1 1 0
0 1 0 1
1 1 0 1

Mio P

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

0 0 1 0
0 0 1 1
0 1 1 1
1 1 1 0

Mor P

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

and 

1

0 0 0 1
1 0 1 1
0 1 1 1
1 0 0 1

MP or P−

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

We have 1,1 1,1( ) 0, ( ) 0,M Mor or P= =  and 1,1 1,1{ , } {0, 0}.a b =  

Moreover, 4,1( ) 0,Mio = 4,1( ) 1,Mio P = 1
1,4( ) 1,P orP− =  

1
1,1( ) 0,P orP− = 1

1,2( ) 0,P orP− =  and 1
1,3( ) 0,P orP− =  

from which 1
1 1 1( [ ( ) ( )]) 1.P orP S io e ioP S eχ − Δ ⊕ Δ =  Thus, 

1 1 1 1( ( ), ( )) ( ( ), ( ))or e or e io e or e→/  is a 7-round impossible 

differential of this special Lai-Massey cipher having an SP 
structure. 

IV. Conclusion 

In this paper, we presented an impossible differential 
cryptanalysis on Lai-Massey ciphers. By comprehensively 
analyzing the properties of the diffusion layer and the σ 
function on the Lai-Massey ciphers, we gave some sufficient 
conditions that characterized the existence of 4-round 
impossible differentials of Lai-Massey cipher having a 
bijective F-function and 5-, 6-, 7-round impossible differentials 
of Lai-Massey ciphers having an SP F-function. These results 
indicate that both the diffusion layer and the σ function should 
be chosen carefully so as to make the Lai-Massey cipher secure 
against impossible differential cryptanalysis, and the 
propositions presented in this paper should be considered when 
designing a block cipher. Moreover, the problem of how to 
suitably design the diffusion layer and σ function of a Lai-
Massey scheme so as to resist cryptanalyses is still an open one. 

References 

[1] E. Biham and A. Shamir, “Differential Cryptanalysis of DES-like 

Cryptosystems,” Advances in Cryptology - CRYPTO’90, LNCS 

537, Berlin, Germany: Springer-Verlag, 1991, pp. 2–21. 

[2] M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” 

Advances in Cryptology - EUROCRYPT’93, LNCS 765, Berlin, 

Germany: Springer-Verlag, 1994, pp. 386–397. 

[3] K. Nyberg and L.R. Knudsen, “Provable Security against 

Differential Cryptanalysis,” Advances in Cryptology - 

CRYPTO’92, LNCS 740, Berlin, Germany: Springer-Verlag, 

1993, pp. 566–574. 

[4] S. Hong et al., Provable Security against Differential and Linear 

Cryptanalysis for the SPN Structure, FSE’00, LNCS 1978, Berlin, 

Germany: Springer-Verlag, 2001, pp. 273–283. 

[5] S. Hong et al., “Provable Security for 13 Round Skipjack-like 

Structure,” Inf. Proc. Lett., vol. 82, no. 5, 2002, pp. 243–246. 

[6] M. Matsui, New Structure of Block Ciphers with Provable 

Security against Differential and Linear Cryptanalysis, FSE’96, 

LNCS 1039, Berlin, Germany: Springer-Verlag, 1996, pp. 205–

218. 

[7] K. Nyberg, “Generalized Feistel Networks,” Advances in 

Cryptology - ASIACRYPT’96, LNCS 1163, Berlin, Germany: 

Springer-Verlag, 1996, pp. 91–104. 

[8] J. Sung et al., “Provable Security for the Skipjack-like Structure 

against Differential Cryptanalysis and Linear Cryptanalysis,” 

Advances in Cryptology - ASIACRYPT’00, LNCS 1976, Berlin, 

Germany: Springer-Verlag, 2000, pp. 274–288. 

[9] K. Aoki and K. Ohta, “Strict Evaluation of the Maximum 

Average of Differential Probability and the Maximum Average of 

Linear Probability,” IEICE Trans. Fundam. Electron., Commun. 

Comput. Sci., no. 1, 1997, pp. 2–8. 

[10] L.R. Knudsen, “DEAL-A 128-bit Block Cipher,” Department 

Infometrics, University of Bergen, Norway, Technical Report 151, 

1998. 

[11] E. Biham, A. Biryukov, and A. Shamir, Miss-in-the-Middle 

Attacks on IDEA, Khufu, and Khafre, Knudsen, FSE’99. LNCS 

1636, Berlin, Germany: Springer-Verlag, 1999, pp. 124–138.  

[12] E. Biham, A. Biryukov, and A. Shamir, “Cryptanalysis of 

Skipjack Reduced to 31 Rounds Using Impossible Differentials,” 

EUROCRYPT’99. LNCS 1592, Berlin, Germany: Springer-

Verlag, 1999, pp. 12–23. 

[13] J. Daemen and V. Rijmen, The Design of Rijndael: AES, 

Advanced Encryption Standard, New York, USA: Springer-

Verlag, 2002. 

[14] Z. Wu et al., “Impossible Differential Cryptanalysis of FOX,” 

Proc. Int. Conf., LNCS 6163, Beijing, China, 2009, pp. 236–249. 

[15] J. Kim et al., “Impossible Differential Cryptanalysis for Block 

Cipher Structures,” INDOCRYPT 2003, LNCS 2904, Berlin, 

Germany: Springer-Verlag, 2003, pp. 82–96.  



1040   Rui Guo and Chenhui Jin ETRI Journal, Volume 36, Number 6, December 2014 
http://dx.doi.org/10.4218/etrij.14.0113.1335 

[16] Y. Luo et al., “A Unified Method for Finding Impossible 

Differentials of Block Cipher Structures,” Inf. Sci., vol. 263, Apr. 

1, 2014, pp. 211–220. 

[17] S. Wu and M. Wang. “Automatic Search of Truncated Impossible 

Differentials for Word-Oriented Block Ciphers,” INDOCRYPT 

2012, LNCS 7668, Berlin, Germany: Springer-Verlag, 2012, pp. 

283–302. 

[18] S. Vaudenay, “On the Lai-Massey Scheme,” Advances in 

Cryptology-ASIACRYPT’99, LNCS 1716, Berlin, Germany: 

Springer-Verlag, 1999, pp. 8–19. 

[19] X. Lai and J.L. Massey, “A Proposal for a New Block Encryption 

Standard,” Advances in Cryptology EUROCRYPT’90, LNCS 473, 

Berlin, Germany: Springer-Verlag, 1991, pp. 389–404. 

[20] L. Mittenthal, “Block Substitutions Using Orthomorphic 

Mappings,” Adv. Appl. Math., vol. 16, no. 1, Mar. 1995, pp. 59–

71. 

[21] P. Junod and S. Vaudenay, FOX: A New Family of Block Ciphers, 

Selected Areas in Cryptography-SAC 2004, LNCS 2595, Berlin, 

Germany: Springer-Verlag, 2004, pp. 131–146. 

[22] J. Chen et al., “Differential Collision Attack on Reduced FOX 

Block Cipher,” China Commun., vol. 9, no. 7, 2012, pp. 71–76. 

[23] W. Wu, W. Zhang, and D. Feng, “Integral Cryptanalysis of 

Reduced FOX Block Cipher,” Information Security and 

Cryptology, LNCS 3935, Berlin, Germany: Springer-Verlag, 2006, 

pp. 229–241. 

[24] R. Li et al., “Fault Analysis Study of the Block Cipher FOX64,” 

Multimedia Tools and Applications, vol. 63, no. 3, Apr. 2013, pp. 

691–708. 

[25] A. Yun, J.H. Park, and J. Lee, “On Lai-Massey and Quasi-Feistel 

Ciphers,” Design Codes Cryptography, vol. 58, 2011, pp. 45–72. 

[26] M. Luby and C. Rackoff, “How to Construct Pseudorandom 

Permutations from Pseudorandom Functions,” SIAM J. Comput., 

vol. 17, no. 2, 1988, pp. 373–386. 

[27] S. Vaudenay, “Provable Security for Block Ciphers by 

Decorrelation,” Proc. Annual Symp. Theoretical Aspects. Comput. 

Sci., Paris, France, 1998, pp. 249–275. 

[28] Y. Wei et al., “Impossible Differential Cryptanalysis on Feistel 

Ciphers with SP and SPS Round Functions,” in Appl. 

Cryptography Netw. Security, Berlin, Germany: Springer-Verlag, 

2010, pp. 105–122. 

 

 

 
 
 
 
 
 
 
 

Rui Guo received his PhD degree in 

cryptography from the Information Science and 

Technology Institute, Zhengzhou, China, in 

2014. His research interests include the design 

and analysis of block ciphers. His works have 

been published in several journals and 

cryptology conferences. 

 

Chenhui Jin is a professor at the Information 

Science and Technology Institute, Zhengzhou, 

China. His research interests include cryptology 

and information security. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
  


