• Title/Summary/Keyword: Chromatic number

Search Result 72, Processing Time 0.033 seconds

CHROMATIC NUMBER OF BIPOLAR FUZZY GRAPHS

  • TAHMASBPOUR, A.;BORZOOEI, R.A.
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.49-60
    • /
    • 2016
  • In this paper, two different approaches to chromatic number of a bipolar fuzzy graph are introduced. The first approach is based on the α-cuts of a bipolar fuzzy graph and the second approach is based on the definition of Eslahchi and Onagh for chromatic number of a fuzzy graph. Finally, the bipolar fuzzy vertex chromatic number and the edge chromatic number of a complete bipolar fuzzy graph, characterized.

ON GRAPHS WITH EQUAL CHROMATIC TRANSVERSAL DOMINATION AND CONNECTED DOMINATION NUMBERS

  • Ayyaswamy, Singaraj Kulandaiswamy;Natarajan, Chidambaram;Venkatakrishnan, Yanamandram Balasubramanian
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.843-849
    • /
    • 2012
  • Let G = (V, E) be a graph with chromatic number ${\chi}(G)$. dominating set D of G is called a chromatic transversal dominating set (ctd-set) if D intersects every color class of every ${\chi}$-partition of G. The minimum cardinality of a ctd-set of G is called the chromatic transversal domination number of G and is denoted by ${\gamma}_{ct}$(G). In this paper we characterize the class of trees, unicyclic graphs and cubic graphs for which the chromatic transversal domination number is equal to the connected domination number.

THE SPLIT AND NON-SPLIT TREE (D, C)-NUMBER OF A GRAPH

  • P.A. SAFEER;A. SADIQUALI;K.R. SANTHOSH KUMAR
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.511-520
    • /
    • 2024
  • In this paper, we introduce the concept of split and non-split tree (D, C)- set of a connected graph G and its associated color variable, namely split tree (D, C) number and non-split tree (D, C) number of G. A subset S ⊆ V of vertices in G is said to be a split tree (D, C) set of G if S is a tree (D, C) set and ⟨V - S⟩ is disconnected. The minimum size of the split tree (D, C) set of G is the split tree (D, C) number of G, γχST (G) = min{|S| : S is a split tree (D, C) set}. A subset S ⊆ V of vertices of G is said to be a non-split tree (D, C) set of G if S is a tree (D, C) set and ⟨V - S⟩ is connected and non-split tree (D, C) number of G is γχST (G) = min{|S| : S is a non-split tree (D, C) set of G}. The split and non-split tree (D, C) number of some standard graphs and its compliments are identified.

THE EQUITABLE TOTAL CHROMATIC NUMBER OF THE GRAPH $HM(W_n)$

  • Wang, Haiying;Wei, Jianxin
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.313-323
    • /
    • 2007
  • The equitable total chromatic number ${\chi}_{et}(G)$ of a graph G is the smallest integer ${\kappa}$ for which G has a total ${\kappa}$-coloring such that the number of vertices and edges in any two color classes differ by at most one. In this paper, we determine the equitable total chromatic number of one class of the graphs.

AN iP2 EXTENDED STAR GRAPH AND ITS HARMONIOUS CHROMATIC NUMBER

  • P. MANSOOR;A. SADIQUALI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.6
    • /
    • pp.1193-1207
    • /
    • 2023
  • In this paper, we introduce an iP2 extension of a star graph Sn for n ≥ 2 and 1 ≤ i ≤ n - 1. Certain general properties satisfied by order, size, domination (or Roman) numbers γ (or γR) of an iP2 extended star graph are studied. Finally, we study how the parameters such as chromatic number and harmonious chromatic number are affected when an iP2 extension process acts on the star graphs.

Subdivision of Certain Barbell Operation of Origami Graphs has Locating-Chromatic Number Five

  • Irawan, Agus;Asmiati, Asmiati;Zakaria, La;Muludi, Kurnia;Utami, Bernadhita Herindri Samodra
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.79-85
    • /
    • 2021
  • The locating-chromatic number denote by 𝛘𝐿(G), is the smallest t such that G has a locating t-coloring. In this research, we determined locating-chromatic number for subdivision of certain barbell operation of origami graphs.

The Chromatic Number Algorithm in a Planar Graph (평면의 채색수 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.19-25
    • /
    • 2014
  • In this paper, I seek the chromatic number, the maximum number of colors necessary when adjoining vertices in the plane separated apart at the distance of 1 shall receive distinct colors. The upper limit of the chromatic number has been widely accepted as $4{\leq}{\chi}(G){\leq}7$ to which Hadwiger-Nelson proposed ${\chi}(G){\leq}7$ and Soifer ${\chi}(G){\leq}9$ I firstly propose an algorithm that obtains the minimum necessary chromatic number and show that ${\chi}(G)=3$ is attainable by determining the chromatic number for Hadwiger-Nelson's hexagonal graph. The proposed algorithm obtains a chromatic number of ${\chi}(G)=4$ assuming a Hadwiger-Nelson's hexagonal graph of 12 adjoining vertices, and again ${\chi}(G)=4$ for Soifer's square graph of 8 adjoining vertices. assert. Based on the results as such that this algorithm suggests the maximum chromatic number of a planar graph is ${\chi}(G)=4$ using simple assigned rule of polynomial time complexity to color for a vertex with minimum degree.

A Procedure for Determining The Locating Chromatic Number of An Origami Graphs

  • Irawan, Agus;Asmiati, Asmiati;Utami, Bernadhita Herindri Samodra;Nuryaman, Aang;Muludi, Kurnia
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.31-34
    • /
    • 2022
  • The concept of locating chromatic number of graph is a development of the concept of vertex coloring and partition dimension of graph. The locating-chromatic number of G, denoted by χL(G) is the smallest number such that G has a locating k-coloring. In this paper we will discussed about the procedure for determine the locating chromatic number of Origami graph using Python Programming.

THE CHROMATIC NUMBER OF SOME PERMUTATION GRAPHS OVER SOME GRAPHS

  • LEE, JAEUN;SHIN, YOUNG-HEE
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.551-559
    • /
    • 2005
  • A permutation graph over a graph G is a generalization of both a graph bundle and a graph covering over G. In this paper, we characterize the F-permutation graphs over a graph whose chromatic numbers are 2. We determine the chromatic numbers of $C_n$-permutation graphs over a tree and the $K_m$-permutation graphs over a cycle.

  • PDF