DOI QR코드

DOI QR Code

A Procedure for Determining The Locating Chromatic Number of An Origami Graphs

  • Irawan, Agus (Information System, Institut Bakti Nusantara, PSDKU) ;
  • Asmiati, Asmiati (Department of Mathematics, Faculty of Mathematics and Natural Sciences, Lampung University) ;
  • Utami, Bernadhita Herindri Samodra (Information System, Institut Bakti Nusantara, PSDKU) ;
  • Nuryaman, Aang (Department of Mathematics, Faculty of Mathematics and Natural Sciences, Lampung University) ;
  • Muludi, Kurnia (Computer Sciences, Faculty of Mathematics and Natural Sciences, Lampung University)
  • Received : 2022.09.05
  • Published : 2022.09.30

Abstract

The concept of locating chromatic number of graph is a development of the concept of vertex coloring and partition dimension of graph. The locating-chromatic number of G, denoted by χL(G) is the smallest number such that G has a locating k-coloring. In this paper we will discussed about the procedure for determine the locating chromatic number of Origami graph using Python Programming.

Keywords

References

  1. F. Harary and R. Melter, On the metric dimention of a graph, Ars Combinatoria, Vol. 2, pp. 191-195, 1976.
  2. P. Slater, Leaves of trees, Congressus Numerantium, Vol. 14, pp. 549-559, 1975.
  3. V. Saenpholphat and P. Zhang, Conditional resolvability: a survey, International Journal of Mathematics and Mathematical Sciences, vol.38, pp.1997-2017, 2004. https://doi.org/10.1155/S0161171204311403
  4. G. Chartrand, D. Erwin, M. A, Henning, P. J. Slater, P. Zhang, The locating-chromatic number of a graphs, Bulletin of the Institute of Combinatorics and its Applications, vol. 36, pp.89-101, 2002.
  5. G. Chartrand, D. Erwin, M. A, Henning,P. J. Slater, P. Zhang, Graf of order n with locating-chromatic number n - 1, Discrate Mathematics, vol.269, no.1-3, pp.65 - 79, 2003. https://doi.org/10.1016/S0012-365X(02)00829-4
  6. Y S Putri, L Yulianti1 , and Yanita, On the locating chromatic number of some Buckminsterfullerene-type graphs, Journal of Physics: Conference Series, 1836, pp.1 - 7, 2021.
  7. E. Rahimah, L. Yulianti and D. Welyyanti, Determination the locating-chromatic number of thorn graph from a wheel graph W3, Jurnal Matematika UNAND, vol.VII , pp.1 - 8, 2018.
  8. Asmiati, I. K. S. G. Yana, and L. Yulianti, On The Locating Chromatic Number of Certain Barbell Graphs, International Journal of Mathematics and Mathematical Sciences, pp.1-5, 2018.
  9. Asmiati, I. K. S. G. Yana, and L. Yulianti, On the locating chromatic number of subdivision of barbell graphs containing generalized petersen graph, International Journal of Computer Science and Network Security, Vol. 19 No. 7 pp. 45-50, 2019.
  10. S. Nabila, A. N. M.Salman, The Rainbow Conection Number of Origami Graphs and Pizza Graphs, Procedia Computer Science, 74, pp.162-167, 2015. https://doi.org/10.1016/j.procs.2015.12.093
  11. A. Irawan, Asmiati, L. Zakaria, K. Muludi, The locatingchromatic number of origami graphs, Algorithms, vol.14, no.167, pp.1-15, 2021.
  12. A. Irawan, Asmiati, L. Zakaria, K. Muludi and B. H. S. Utami, Subdivision of Certain Barbell Operation of Origami Graphs has Locating-Chromatic Number Five, International Journal of Computer Science and Network Security, Vol. 21 No. 9 pp. 79-85, 2021. https://doi.org/10.22937/IJCSNS.2021.21.9.9