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Abstract

The locating-chromatic number denote by x; (G), is the smallest
t such that G has a locating t-coloring. In this research, we
determined locating-chromatic number for subdivision of certain
barbell operation of origami graphs.
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1. Introduction

The concept of partition dimension was introduced by
Chartrand et al. [1] as the development of the concept of
metric dimension. The application of metric dimension can
be found in robotic navigation [2], chemical data
classification [3], and the optimization of threat detecting
sensors [4]. The locating-chromatic number was first
discovered by Chartrand et al. [5] in 2002, with obtained
two graph concepts, coloring vertices and partition
dimension of a graph. The locating-chromatic number
denote by x;(G), is the smallest t such that G has a
locating t-coloring. Next, investigated the locating-
chromatic number for a path graph B,, a cycle graph C,,,
and double star graph S, ;. Furthermore, Chartrand et al.
[6] characterized all graphs of order n with locating-
chromatic number n — 1. Baskoro and Asmiati [7]
characterized all trees with locating-chromatic number 3.

The locating-chromatic number of the join of graphs
was introduced by Behtoei and Anbarloei [8]. Purwasih et
al. [9], obtained locating-chromatic number for a
subdivision of a graph on one edge. For graph with
dominant vertices have been studied in [10]. In [11],
Asmiati found the locating-chromatic number of non-
homogeneous caterpillar and firecrackers graph, [12]
certain barbell graphs By, , and Bp(p, 1y. In 2019, Irawan et
al. [13] obtained the locating-chromatic number for certain
operation of generalized Petersen graphs sP(4,2) .
Furthermore, in [14] determined the locating-chromatic
number for sP(n,1), origami graphs [15] and certain
barbell origami graphs [16]. The locating-chromatic
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number of a graph is a newly interesting topic to study
because there is no general theorem for determining the
locating-chromatic number of any graph. In this research,
we specifying about locating-chromatic number for
subdivision of certain barbell operation of origami graphs,
called Bj,. This study is a continuation of previous
research.

The following definition of the locating-chromatic
number of a graph, dominant vertices, origami graph, and
certain barbell origami graphs is taken from [5, 17, 18, 16].
We use some theorems that is basics to work out a lower
bound of the locating-chromatic number of a graph is
taken from [5, 15]. The set of neighbours of a vertex [ in G,
denoted by N(1).

Theorem 1.1. [5] Let ¢ be a locating coloring in a
connected graph G. If k and [ are distinct vertices of G
such that d(k,w) =d(l,w) for all we V(G) —{k, 1},
then c(k) # c(l) . In particular, if k and [ are non-
adjacent vertices of Gsuch that N(k) += N(1), then c(k) #

c(D).

Theorem 1.2. [15] Let 0,, be an origami graph for n > 3.
The locating chromatic number of an origami graphs 0,, is
4 for n=3 and 5 otherwise.

2. Results and Discussion

In this section, we will discuss the locating-chromatic
number for subdivision of certain barbell operation of
origami graphs, denoted by Bg, .

Theorem 2.1. Let By be a subdivision of certain barbell

operation of origami graphs forn > 3,s > 1. Then the
locating-chromatic number of B is five, x,(B5,) = 5.

Proof. Let Bj be a subdivision of certain barbell
operation of origami graphs for n >3, s>1, with
V(BS,) = (i Unsis Viy Vi Wi Wit 0 € {1, .., 3} U {x;:
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i€{l,..,s}} and E(Bj ) = {uw;, uvy, viwy, Uy,
Williy1: € {1, ., 3} U {UnsiWhiis Unt iVnsis Vnt i Wntis
Untillnsivn Wnaillnsiv: 0 E{L on =11 U {upx,
XsUpy1t U {xixiii €4{1,...,s — 11}

To prove the theorem, we will be divided into two
cases :

Cases 1. Forn =3

First, we determine lower bound of x,(Bg,) . Since
subdivision of certain barbell operation of origami graphs,
containing origami graphs Os, then by Theorem 1.2.
X.(B5,) = 4. Next, we will show that 4 colors are not
enough. Origami graph Bj, there are six complete graph
with four vertices, denote by K, . Without loss of
generality, we assign three colors for any K, in Bg,, and
then the six vertices are dominant vertices. As a result, if
we use four colors it is not enough because there are more
than one K, in Bg_. So x,(Bg,) = 5.

Next, we determined the upper bound of x,(Bj,) <
5. To show that x,(B5,) < 5, consider the 5-coloring ¢
on Bp, as follow,
Cy = {ug, wy, ug, vs};
Cy = {uy, wy, ws};
Cs = {uy, vy, Ws, Us, Uy, U6} U {x;|for odd i,i = 1};
C, = {us, vy, wy, we} U {x;|foreveni,i > 2};
Cs = {vs};

The coloring ¢ will create partition [T on V(Bg,). We
shall show that the color codes of all vertices in Bp, are
diferent. We have cp(uy) =1(0,2,1,1,1) ; cpuy) =
(1,1,0,1,2) ; cn(us) =(1,2,1,0,1) ; cnlu,) =
(1,0,1,1,s + 3); cq(us) = (1,1,1,0,s + 4); cp(ug) =
((0,1,1,1,s + 4) ; cn(vy) =(1,3,2,0,1) ; cnlvy) =

(1,3,0,1,2) ; cnlvs) =(2,0,1,1,3) ; cpv) =
(2,1,1,0,s + 4); cqn(vs) =(0,1,2,1,s + 5); cq(vg) =
(1,2,1,0,s + 5) ; cpwy) =1(1,3,2,1,0) ; cplwy) =
0,2,1,1,2) ; cnws) =(1,1,1,0,2) ; cplw,) =

(2,1,0,1,s + 4); cn(ws) = (1,0,2,1,s + 5); cn(wg) =
(1,1,0,1s + 4). For s=1, we have cp(x;) = (i +

1,1,1,0,i + 2) For i odd, i <[3|. s = 2, we have
()= (0 + Li + 1,1,0,i + 2). Forieven,i < [3],
s =22, we have cp(x;)) = (i + 1,i + 1,0,1,i + 2).
Fori odd, i > EJ,S > 2, we have cy(x;) = (s — i +
2,s — i+ 1,1,0,i + 2). Forieven, i > EJ, s =2,
wehavecp(x;) = (s — i+ 2,s — i+ 1,0,1,i + 2).

Since the color codes of all vertices Bj, are diferent,
thus ¢ is a locating coloring. So X, (B5,) < 5.

Case 2. Forn = 4

First, we determine lower bound of x,(Bp,) for n > 4.
Since subdivision of certain barbell operation of origami
graphs, containing origami graphs O,,, then by Theorem
1.2 it is clear that x; (B3, ) = 5.

To show the upper bound for the locating-chromatic
number for subdivison of certain barbell operation of
origami graphs x,(Bp, ) =5 for n > 4. Let us diferent
some subcases.

Subcase 2.1. (odd n), for E] odd, n > 5

Let ¢ be a coloring for subdivison of certain barbell
operation of origami graph Bg_, for E] odd, n =5 we
make the partition [T of V(Bg, ) :

G =mll<i<n}U{upk;

C, = {ylforoddi,3<i<n} U {vforeveni,2<i<
n—1} U {u,y; |foroddi,3 <i< E] — 2} U {uyylfor
oddi,[gl +2<i<n} U {v,y|foreveni,2 <i<n-—
1} U {x;|for even i,i = 2};

C; = {u;lforeveni,2 <i < E] — 1} U {y|for even i, E]
+3<i<n—-1}U {ylforoddi,1<i<n} U {u,yl
foreveni,2 <i< n—1} U {v,lforoddi,1 <i < n};
Cy = {u} U f{w,ll <i<n}u{xlforoddi,i = 1};

€ = g} © B

For E] odd n = 5, the color codes of all the vertices
of V(B3,) are :

cn(uy) =

0, for 2™ ordinate,eveni,3<i<nn=5
for 37 ordinate, even i,2 < i < E] —-1,n=>=5
for 37 ordinate, even i, E] +3<i<n—-1,n=9
for 4" ordinate,i = 1
for 5" ordinate, i = E] +1

2, for 374 ordinate, i = E] +1

i—1, for 4t" ordinate,2 < i < E],n >5

n—i+1, for 4™ ordinate, E] +1<i<nn=5

i— H —1, for 5 ordinate, H +1<i<nn=5

2 2

E] —i+1, for5%" ordinate,2 <i < E]n >5

E] -1, for 5t" ordinate, i = 1

1, otherwise.
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cn(vy) =
0,

1,

cn(Ung) =
i—1,
n—i+1,
0,

for 2™ ordinate,eveni,2 <i<n—1,n=>=5
for 37 ordinate,odd i, 1 <i<nn=5
for 2™ ordinate, i = 1

for 37 ordinate, i = E] +1

for 4" ordinate, 2 < i < E]n >5
for 4t" ordinate, B] +1<i<nn=5
for 5t" ordinate, i = 1

for 52" ordinate, 2 < i < E],n >5

for 5t" ordinate, E] +1<i<nn=5

otherwise.

for 15¢ ordinate,1 <i<nn=5
for 2™ ordinate, i = 1

for 37 ordinate, i = [;—l]

for 4" ordinate,1 < i < E] ,n=5

for 4t" ordinate, E] +1<i<nn=5
for 5t" ordinate, 1 < i < E] ,n=5

for 5t ordinate, E] +1<i<nn=5

otherwise.

for 15¢ ordinate,2 < i < [g]n >5

for 15¢ ordinate, E] +1<i<nn=5

for 15¢ ordinate,i = 1

for 2™ ordinate, odd i,3 < i < E] -2,n=>9
for 2™ ordinate, odd i, B] +2<i<nn=5

for 37 ordinate,eveni,3<i<n-—1,n>5
for 5t" ordinate, i = E] +1

for 15¢ ordinate, i = [g]
for 2"? ordinate, i = [E]
2
for 5t" ordinate,1 < i < E] -1,n=5

for 5" ordinate, E] +1<i<nn=5

otherwise.

cn(Wne) =
i,
n—i+?2,
0,
2,
3,
E] —i+1,
i—[5]+1
1,

cn(Wnyi) =
i
n—i+1,
2,
0,
Hi
[
1,

en(x) =
s—i+1,
i+1,
1,
s—i+2,
i+ [g] -2,
s—i+ [g] +
0,

for 15¢ ordinate,2 < i < E] ,n=5

for 15¢ ordinate, E] +1<i<nn=>5

for 2"? ordinate,eveni,2 <i<n—1,n=>5
for 37 ordinate,odd i, 1 <i<nn=5
for 2™ ordinate, i = 1

for 2™ ordinate, i = [El
2
for 5t" ordinate,1 < i < E] ,n=5

for 5t" ordinate, B] +1<i<nn=5

otherwise.

for 15 ordinate,2 < i < E] ,n>5
for 15¢ ordinate, E] +1<i<nn=5
for 2™ ordinate,i = 1 and i = E]

for 4" ordinate,1 <i <n,n=>5

for 5t" ordinate, 1 < i < E] -1,n=>=>5

for 5t" ordinate, E] <i<nn=5

otherwise.

s

for 15¢ ordinate, i > IEJ ,S =2
s

for 15¢ ordinate, i < IEJ ,S =2

s
rd i i —
for 3"* ordinate, i < lZJ

for 15¢ ordinate,i = s
for 2"? ordinate,odd i ,i > 1
for 4" ordinate, even i, i > 2

s
rd i i -
for 3"* ordinate, i > lZJ

s
th . . hd
for 5** ordinate, i < [2]

S
th . . 2
1, for 5" ordinate,i > [2]

otherwise.

Since for odd n all vertices have different color codes,
c is a locating coloring for subdivison of certain barbell
operation of origami graphs Bj_, so that x, (B3, ) < 5, for

E] odd,n = 5.

Subcase 2.2. (odd n), for E] even,n =7

Let ¢ be a coloring for subdivison of certain barbell

operation of origami graph Bj , for E] even, n =7 we
make the partition Il of V(Bp, ) :
G =mll<i<n}U{upk;
C, = {ylforoddi,3<i<n} U {vforeveni,2<i<
n—1} U {u,lforeveni,2 <i< E] -2} U {upyl
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foreveni,[zl+2S i<n—1} U {v,,lforoddi, 1< en(wy) =
) 2 } Wnil 0, for 15 ordinate, 1 < i <n,n>7
i<n} . . 2, for 2™ ordinate, i = 1
C; = {u;|foreveni,2 <i < [;] — 2} U {w;|for even i, [E] for 37 ordinate, i = E]
<i < — . [ <i< .
t2si i n 1} U {v;lfor odd i, 1 < i _,n} U il i for 4t" ordinate, 2 < i < [E],n >7
foroddi, 3 <i< n} U {v,ylforeveni,2 <i<n-1} 2
U {x;|for even i,i > 2}; n—i+1, for 4" ordinate, E] +1<i<nn=>7
_ N <i< ‘ AP
Cy = {u} U {wyi[1 < 1<} U {x;lforodd i, i = 1}; [2] -1 for 5" ordinate,1 < i < [E],n >7
C5={un 1}U{u n}. 2 2
31+ n+[3] . [n th -1 n )
Al b +1, for5 ordmate,2 +1<is<nn=>7
. 1, otherwise.
For E] even n = 7, the color codes of all the vertices
S .
of V(Bg,,) are : e (ner) =
i—1, for 15¢ ordinate,2 < i < [E] n=7
cn(u) = N 2
0, for 2"? ordinate,odd i,3<i<nn=>7 n—i+1, for 1% ordinate, [E] +1<i<nn=7
for 37 ordinate, even i,2 < i < E] -2,n=>7 0, for 15¢ ordinate,i = 1
for 374 ordinate, even i, E] +2<i<n—-1,n>7 for 2™ ordinate, even i,2 < i < E] -2,n=7
for 4" ordinate,i = 1 for 2" ordinate,eveni, |=|+2<i<n—-1,n>7
- 2
for 5t" ordinate, i = H for 37 ordinate,odd i,3 <i<nn=>7
. . n
2, for 3¢ ordinate,i = [3] for 5" ordinate, i = [*|
. . n
i-1, for 4t" ordinate,2 < i < E],n >7 2, for 2"¢ ordinate, i = [;]
n . . . n
n—i+1, for4" ordinate, E] +1<is<nnz=7 [5] - L for 5" ordinate, 1 < i < [5] —Ln=7
. n . n .
i— E]’ for 5 ordinate, E] +1<i<nn=7 i— [;], for 5¢" ordinate, [;] +1<isnn=7
1, otherwise.
E -1, for 5t" ordinate, 1 < i < E] -1,n=>7
1, otherwise. cn(Wnyi) =
i, for 15 ordinate,2 < i < E] -1,n>7
cn(vy) = i st ordi n <i<nnz
0, for 2™ ordinate,eveni,2 <i<n-—-1,n>7 n-it2 for 1°" ordinate, [2] tlsisnnz7
for 37 ordinate odd i,1 <i<nn=>7 0, for 2™ordinate,odd i,1 <i<nn=>7
2, for 2 ordinate, i = 1 for 37¢ ordinate,eveni,2 <i<n-1,n=7
3 for 37 ordinate, i = [2] 2, for 3" ordinate, i = 1
2 = 3, for 2% ordinate, i = [2]
i, for 4" ordinate,1 < i < [5] n=7 . 2 .
n H —i+1, for5" ordinate,1<i< H =7
n—i+2, for4™ ordinate, [;] +1<is<nn=7 2 . 2
n = i— [2] +1, for 5% ordinate, [—] +1<i<nn=>7
H —i+1, for5™ ordinate,1<i < [—] n=7 2 ) 2
2 2 1, otherwise.
i— E] +1, for 5" ordinate, E] +1<is<nn=7
1, otherwise. cn(Wnyi) = .
i for 15 ordinate,1 < i < [El,n >7
n—i+1, for 15 ordinate, B] +1<i<nn>7
2, for 2™ ordinate, i = E]
for 3" ordinate, i = 1
0, for 4t" ordinate,1 <i <n,n>7
B] -1 for 5t ordinate, 1 < i < E] -1,n>7

i— E] +1, for 5! ordinate, E] <isnn=7

1, otherwise.
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cn(x;) =
s—i+1, for 15¢ ordinate, i > EJ ,s =2
i+1, for 15¢ ordinate, i < EJ ,s =2
1, for 15¢ ordinate,i = s
for 37 ordinate, odd i,i > 1
for 4" ordinate, even i,i > 2
i for 2% ordinate, i < E]
s—i+2, for2™ ordinate,i > E]
2, for 374 ordinate,s = 1
i+ E] —2, for5™ ordinate,i < E]
s—i+ E], for 5t" ordinate, i > E]
0, otherwise.

Since for odd n all vertices have different color codes,
c is a locating coloring for subdivison of certain barbell
operation of origami graphs By, , so that x,(Bg,) < 5, for

n
H even,n = 7.
2

Subcase 2.3. (even n), for 2 odd, n > 6

Let ¢ be a coloring for subdivison of certain barbell
operation of origami graph Bj_, for % odd, n = 6 we make
the partition 1 of V(B3 ) :
CG=wll<i<Z-1U{wls+1<i<n}u{upg;
C, = {ylforoddi,3<i<n-—-1} U {vforeveni, 2 <
i <n} U {uyylforeveni,2 <i <n} U {v,,lforodd i,
1<i<n-1}

C; = {y;l|foreveni,2 <i<n} U {yforoddi,3<i<
n—1}U {u,lforoddi,3<i<n-—-1} U {v,,,|for
eveni,2 <i<n} Uf{xlforoddi,i > 1};

Co= U} U w1 Si<>—1 U (wpyls+1<i<
n} U {x;|foroddi,i = 2};

Cs = {W;} V] {Wn_'_%}.

Forg odd n = 6, the color codes of all the vertices of
V(Bg,) are :

cn(uy) =
0, for 2"? ordinate,odd i,3<i<n—-1,n>=6
for 374 ordinate,eveni,2 < i <n,n =6
for 4t ordinate,i = 1
2, for 37 ordinate, i = 1
n
i—1, for 4" ordinate, 2 < i < 5 >6
n
n—i+1, f0r4thordinate,5+1siSn,n26
n
——i+1, for5t ordinate,lSiSE,n26
. n h . n .
i- 5 for 5¢ ord1nate,5+1SlSn,n26

1, otherwise.

cn(vy) =
3,
0,
i,
n—i+2,
S-i+2,
i—-+1,
2
1,
cn(wy) =
0,
2,
i,
n—i+1,
Toi+1,
2
n
L_E+1'
1,
cn(Ungi) =
i—1,
n—i+1,
0,
2,

e i+ 1
2 T
n
i >

1,
cn(Vnsd) =
i,
n—i+2,
0,

3,

e i+ 1
2 T
i n+1
i > ,
1,

for 2"? ordinate,i = 1

for 2™ ordinate,eveni,2 <i<nn =6
for 37¢ ordinate,odd i, 1 <i<n-1n=6
for 4t" ordinate, 1 < i < g,n >6

for 4th ordinate,g +1<i<nn=6

for 5t" ordinate, 1 < i < %— 1L,n=>6

for 5th ordinate,g <i<nn=6

otherwise.

for 15¢ ordinate,1 < i < g— 1L,n=6

for 15t ordinate,g +1<i<nn=6
n
2
for 2™? ordinate,i = 1
for 4" ordinate, 1

5th

for ordinate, i =

A
IA

for 4th ordinate,g +1<
for 5t ordinate, 1 < i < n
for 5" ordinate,g +1<i<nn=

otherwise.

n
for 15¢ ordinate,2 < i < 7 >6

n
for 15t ordinate,f <i<nn=6

for 2™ ordinate,eveni,2 <i<nn=6
for 37 ordinate,odd i,3<i<n—-1,n=6
for 15¢ ordinate,i = 1

for 3% ordinate, i = 1
n
for 5t" ordinate, 1 < i < S >6
n
for 5" ordinate,z+ 1<i<nn=6

otherwise.

n
for 15¢ ordinate,2 < i < 7 >6

n
for 15t ordinate,i +1<i<nn=6

for 2™ ordinate,odd i,1<i<n—1,n>6
for 37 ordinate, eveni,2 < i <n,n =6
for 2"? ordinate, i = 1

n
for 5t" ordinate, 1 < i < 5~ 1L,n=6

n
for 5t" ordinate,= <i<nn=6
2

otherwise.

&3
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cn(Wpy) =

i, for 15¢ ordinate,1 < i < g,n >6

n—i+1, forl“ordinate,g-klSiSn,n26

2, for 2™ ordinate, i = 1

0, for 4" ordinate, 1 < i < g— 1Ln=6
for 4th ordinate,g +1<i<nn=6
for 5t" ordinate,i = ;

g—i+1, f0r5th0rdinate,1SiSg—l,n26

i—§+1, forSthordinate,%+1Si£n,n26

1, otherwise.

cn(x;) =

s—i+1, for1% ordinate,i > EJ ,s=>2

i+1, for 15t ordinate, i < EJ ,s =2

0, for 37 ordinate, even i,i > 2
for 4" ordinate,odd i,i > 1

i, for 2"? ordinate, i < E] ,§ =2

s—i+2 for2™ ordinate,i > E] , S =2

i +%— 1 for 5% ordinate, i < E],s =2

s—i +g for 5t" ordinate, i > E] ,s =2

1, otherwise.

Since for odd n all vertices have different color codes,
c is a locating coloring for subdivison of certain barbell
operation of origami graphs By, so that x, (Bg, ) < 5, for
~ odd,n > 6.

Subcase 2.4. (even n), for g even, n > 4
Let ¢ be a coloring for subdivison of certain barbell
operation of origami graph Bj , % even, n = 4 we make
the partition I1 of V(B3 ) :
C=wll<i<Z—1U{wls+1<i<n}u{ung}
C, ={ylforoddi,1<i<n-—1} U {ylforeveni,2 <
i<n} U {u,ylforoddi,3 <i<n} U {v,,|foreveni
,1<i<n-1}
C; ={ylforeveni,2 <i<n-2} U {yforoddi, 1<
i<n—1} U {u,lforeveni,3<i<n—-1} U {v,4l
foroddi,2 <i <n}u{x|foroddi,i = 1}
Co={un} U Wil 1 SIS U (Wil 3+2<i<n)
U {x;|for eveni,i = 2}.
s = {W%} U {Wn+§+1}-

Forg even n = 4, the color codes of all the vertices of
V(Bs,,) are :

cnuy) =
0,
i,
n—i,
n .
E_l+1'
n
i- -,
2
1,
cn(vy) =
0,
i+1,
n—i+1,
Zoi+2
. n
l—;+1,
1,
cn(wy) =
0,
2,
i+1,
n—i,
Toi+1,
i—-+1,
2
1,
Cl‘[(un+i)=
i—1,
n—i+1,
0,
2,
n .
E_l+1'
. n
-
2
1,

for 2™ ordinate,odd i,1<i<n-—1n=>4
for 37 ordinate,eveni,2 <i <n,n =4
for 4" ordinate,i = n
for 4" ordinate,1 < i <

for 5th ordinate,g +1<i<nn=4

otherwise.

for 2™ ordinate,eveni,2 < i <n,n =4
for 37 ordinate,odd i,1<i<n-1,n>4
for 4" ordinate,1 < i < g,n >4
. n .
for 4" ordinate,=+1<i<nn =>4
2
for 5t" ordinate,1 < i < g -1,n>4
. n .
for 5" ordinate,~ < i <n,n >4
2

otherwise.

for 15 ordinate,1 < i < g —-1,n>4

for 15¢ ordinate,g +1<is<nn=4

. . n
for 5t" ordinate, i =

N3N

for 15¢ ordinate, i =
for 37 ordinate, i = n

for 4" ordinate, 1 < i < ;,n >4

for 4th ordinate,g <i<n-1n=>4
for 5" ordinate, 1 < i < %,n >4
for 5th 0rdinate,§+ 1<i<nn=>4

otherwise.

for 15¢ ordinate,2 < i < g,n >4

for 15¢ ordinate,% +1<i<nn=4

for 2"? ordinate,eveni,2 < i <n,n > 4
for 37 ordinate,odd i,3<i<n-1,n>4
for 15¢ ordinate,i = 1

for 374 ordinate, i = 1

for 5t" ordinate,1 < i < %,n

for 5th ordinate,g +1<i<nn=>4

otherwise.



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021 85

cn(Vpsi) = "
i, for 15¢ ordinate,2 < i < Ss+tin>4

n—i+2, for1st ordinate,§+ 2<i<nn=>4%

0, for 2™ ordinate,odd i,1<i<n-—1,n=>4
for 3" ordinate,eveni,2 < i <n,n =>4

3, for 2"? ordinate, i = 1
%—i+3, for 5" ordinate,lsisg,n24
i— g, for 5t ordinate,g +1<i<nn=4
1, otherwise.
en(Wpa) =

. . . n
i, for 15¢ ordinate,1 < i < on=4
n—i+1, forl“ordinate,g+1Si£n,n24
0, for 4" ordinate,1 < i < g,n >4

for 4" ordinate,% +2<i<nn=4

for 5t" ordinate, i = g +1

2, for 4" ordinate, i = ; +1

g—i+2, for 5th ordinate,lsisg,nztl

i— g, for 5t" ordinate,% +2<i<nn=4

1, otherwise.

cn(x;) =

s—i+1, for 15t ordinate, i > EJ ,s > 2

i+1, for 15¢ ordinate, i < EJ ,s =2
for 2™ ordinate, i < E] ,§>2

s—i+2, for 2"? ordinate, i > E],s >2

0, for 37 ordinate, odd i,i > 1
for 4" ordinate, eveni,i > 2

i+ % for 5t" ordinate, i < E] ,§ =2

s—i+§+ 1, for 5% ordinate,i > E],SZ 2

1, otherwise.

Since for odd n all vertices have different color codes,
c is a locating coloring for subdivison of certain barbell
operation of origami graphs By, , so that x, (B3, ) < 5, for

% even , n = 4. This completes the proof of the theorem. [
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