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ON GRAPHS WITH EQUAL CHROMATIC TRANSVERSAL

DOMINATION AND CONNECTED DOMINATION NUMBERS

Singaraj Kulandaiswamy Ayyaswamy, Chidambaram Natarajan,

and Yanamandram Balasubramanian Venkatakrishnan

Abstract. Let G = (V, E) be a graph with chromatic number χ(G). A
dominating set D of G is called a chromatic transversal dominating set
(ctd-set) if D intersects every color class of every χ-partition of G. The
minimum cardinality of a ctd-set of G is called the chromatic transversal
domination number of G and is denoted by γct(G). In this paper we
characterize the class of trees, unicyclic graphs and cubic graphs for which
the chromatic transversal domination number is equal to the connected
domination number.

1. Introduction

All the graphs considered in this paper unless otherwise specifically stated
are finite, connected and simple and are consistent with the terminology used
in Harary [4]. Let G = (V,E) be a simple graph of order p. For a subset S

of V , N(S) denotes the set of all vertices adjacent to some vertex in S and
N [S] = N(S) ∪ S.

A vertex v of G is called a support if it is adjacent to a pendant vertex. Any
vertex of degree greater than one is called an internal vertex. A graph G is
called a unicyclic graph, if G contains exactly one cycle.

A subset D ⊆ V is a dominating set, if every v ∈ V − D is adjacent to
some u ∈ D. The domination number γ = γ(G) is the minimum cardinality of
a dominating set of G. A dominating set D is called a connected dominating

set if the induced subgraph 〈D〉 is connected. The minimum cardinality of a
connected dominating set is called the connected domination number and is
denoted by γc(G) or simply γc.

The minimum number of colors required to color the vertices of G such that
no two adjacent vertices receive the same color is called the chromatic number

of G and is denoted by χ(G). By a χ-partition of G, we mean the partition
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{V1, V2, . . . , Vχ(G)} of V (G) where each Vi is the color class representing the
color i for i = 1, 2, . . . , χ(G).

A dominating setD is said to be a chromatic transversal dominating set (ctd-
set) if D intersects every color class of every χ-partition of G. The cardinality
of a minimum ctd-set is called the chromatic transversal domination number

of G and is denoted by γct(G).

Example 1.

✈

✈ ✈

✈

✈

v1

v2 v3

v4

v5

The two χ-partitions are {{v1}, {v3, v5}, {v2, v4}} and {{v1}, {v3}, {v2, v4, v5}}.
Therefore, the possible ctd-sets are D1 = {v1, v2, v3} and D2 = {v1, v3, v4}.
Hence, γct(G) = 3.

If a graphG has a critical vertex, say u, then {u} is a color class of some color
partition of G and consequently u will be in every ctd-set of G. For example,
if G is a cycle of odd length, say n, then γct = n itself. The parameter γct
for a few well known graphs was computed by L. Benedict et al. [8]. S. K.
Ayyaswamy et al. [2] characterized graphs for which γct = 2.

Theorem 1 ([7]). Let G be a connected bipartite graph of order p ≥ 3 with

partition (V1, V2) of V , where |V1| ≤ |V2|. Then γct(G) = γ(G) + 1 if and only

if every vertex in V1 has at least two pendant neighbors.

Theorem 2 ([1]). Let G be a unicyclic graph with a cycle C of length n ≥ 5
and let X be the set of all vertices of degree 2 in C. Then γ(G) = γc(G) if and
only if the following conditions hold good:

(a) Every vertex of degree at least 2 in V −N [X ] is a support.

(b) 〈X〉 is connected and |X | ≤ 3.
(c) If 〈X〉 = P1 or P3, both vertices in N(X) of degree greater than 2 are

supports and if 〈X〉 = P2, at least one vertex in N(X) of degree greater

than 2 is a support.

Theorem 3 ([1]). For a tree T of order p ≥ 3, γ(T ) = γc(T ) if and only if

every internal vertex of T is a support.

Theorem 4 ([7]). For a tree T , γct(T ) = γ(T ) + 1 if and only if either T is

K2 or T satisfies the condition that whenever v is a support vertex, then each
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vertex w with d(v, w) even is also a support vertex and each support vertex has

at least two pendant neighbors. Otherwise γct(G) = γ(G).

2. Main results

In this section we characterize trees, unicyclic graphs and cubic graphs for
which γct = γc. We now characterize trees.

2.1. Trees

By a double star we mean a tree obtained by attaching the centres of two
given stars by an edge.

Theorem 5. For a tree T of order p ≥ 3, γct(T ) = γc(T ) if and only if either

every internal vertex of T is a support or T is a double star.

Proof. Suppose γct(T ) = γc(T ).
If γct(T ) = γ(T ), then γ(T ) = γc(T ) and so every internal vertex of T is a

support by Theorem 3.
If γct(T ) = γ(T )+1, then by Theorem 4, T is K2 or it satisfies the condition

that whenever v is a support then each vertex w with d(v, w) even is also a
support and each support has at least two pendant neighbors.

Claim 1. T has exactly two supports.
Suppose there are three support vertices, say u, v and w such that d(u, v) =

2r1 and d(v, w) = 2r2 for r1, r2 ≥ 1.

Case 1. Let r1 = r2 = 1. Then γct(T ) = 4 whereas γc(T ) = 5.

Case 2. Let r1 6= 1 and r2 6= 1. Leaving the neighbors of u, v and w, there
are two paths Pl and Pm where l = 2r1 − 3 and m = 2r2 − 3 which are
dominated by

⌈

2r1−3
3

⌉

and
⌈

2r2−3
3

⌉

vertices respectively. Therefore γct(T ) =

3 +
⌈

2r1−3
3

⌉

+
⌈

2r2−3
3

⌉

but γc(T ) = 2r1 + 2r2 + 1.

Case 3. Let r1 = 1 and r2 6= 1. Then γct(T ) = 3+
⌈

2r2−3
3

⌉

and γc(T ) = 3+2r2.

Thus in all cases γct(T ) < γc(T ). Therefore T has exactly two support
vertices.

Claim 2. d(u, v) = 2, where u and v are the support vertices of T .
If not, let d(u, v) = 2r , r ≥ 2. Then γct(T ) =

⌈

2r−3
3

⌉

+ 2, whereas γc(T ) =
2r + 1. Therefore γct(T ) < γc(T ) for all r ≥ 2. Thus d(u, v) = 2 and conse-
quently T is a double star.

The converse is obvious. �

2.2. Unicyclic graphs

We now characterize unicyclic graphs for which γct = γc.

Theorem 6. Let G = (V,E) be a connected unicyclic graph with an even cycle

C of length n and let (V1, V2) be the χ-partition of V such that |V1| ≤ |V2| .
Then γct(G) = γc(G) if and only if either (i) or (ii) holds good:
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(i) |V1| = 2 and both vertices of V1 have at least two pendant neighbors.

(ii) (a) Every vertex of degree at least two in V −N [X ] is a support, where

X is the set of all vertices of degree 2 in C.

(b) 〈X〉 is connected and |X | ≤ 3.
(c) 〈X〉 = P1 or P3, both vertices in N(X) of degree greater than 2 are

supports and if 〈X〉 = P2, at least one vertex in N(X) of degree greater

than 2 is a support.

Proof. Let us assume that γct(G) = γc(G). As G is bipartite by Thoerem 1,
γct(G) is either γ(G) or γ(G) + 1.

Case 1. Let γct(G) = γ(G) + 1. Then by Theorem 1, every vertex in V1 has
at least two pendant neighbors and γct(G) = |V1| + 1. But for a connected
bipartite graph, γc = 2 |V1| − 1. This implies |V1| = 2.

Case 2. Let γct(G) = γ(G). Then by Theorem 2, the conditions (a), (b) and
(c) in (ii) hold good.

The converse is obvious. �

Theorem 7. Let G be a unicyclic graph with an odd cycle C of length, say m.

Let X be the set of all vertices of degree 2 in C, F be the set of all internal

vertices in V (G) − V (C) and S be the set of all vertices in F which are not

supports of leaves in G. Then γct(G) = γc(G) if and only if one of the following

conditions hold:

(i) If |X | = 0, S = φ.

(ii) If |X | = 1 or |X | ≥ 2 such that no two vertices are adjacent, then

|S| = 1.
(iii) If |X | ≥ 2 and at least two vertices of X are adjacent, then |S| = 2 or

S = {v1, v2, v3} such that

(∗) 〈S〉 is the path v1v2v3 and deg(v2) = 2 in G.

Proof. As we know every vertex v in an odd cycle C is a χ-critical vertex, {v}
forms a color class of some χ-partition of G. This implies every ctd-set contains
all the vertices of C. Also every ctd-set of G contains all supports of leaves of
G.

Every γc-set of G contains F and m− r vertices of C where r = 0, 1, 2 and
this r depends on the nature of the set X . For example, if 〈X〉 is connected
and |X | = 2, then γc(G) = m− 2 + |F |.

Assume that γct(G) = γc(G).

Case 1. Let |X | = 0. Then γc(G) = m+ |F |. We claim that S = ∅; otherwise
|V (C)| and |F | − 1 number of vertices in V (G) − V (C) will form a ctd-set of
G so that γct(G) ≤ m+ |F | − 1 < γc(G), a contradiction.

Case 2. Let |X | = 1 or |X | ≥ 2 and no two vertices in X are adjacent. Then
γc(G) = m− 1 + |F |.
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Claim: |S| = 1. Clearly S 6= ∅. Otherwise γct(G) = m + |F | > γc(G).
Suppose |S| ≥ 2. Then every γct-set of G will contain at most |F | − 2 vertices
in V (G)− V (C) and so γct(G) ≤ m− 2 + |F | < γc(G), a contradiction.

Case 3. Let |X | ≥ 2 and at least two vertices in X are adjacent. Then
γc(G) = m− 2 + |F |.

Claim: |S| = 2 or S = {v1, v2, v3} such that v1v2v3 is a path and deg(v2) = 2.
If |S| = 0 or 1, then clearly γct(G) = m + |F | and m + |F | − 1 respectively.
So, assume that |S| ≥ 4. Then at least |F | − 3 vertices of V (G) − V (C) will
be in every ctd-set of G and so γct(G) ≤ m − 3 + |F | < γc(G), which is a
contradiction.

Next, suppose that |S| = 3 and S does not satisfy the condition (∗). Then
there are two possibilities:

(i) either v1 and v2 are not adjacent or v2 and v3 are not adjacent.
(ii) deg(v2) > 2.

(i) implies there is a support vertex between v1 and v2 or between v2 and v3.
For example, if there is a support vertex u between v1 and v2, then u will be in
every γct-set of G dominating v1 and v2. As |S| = 3, clearly v3 will be adjacent
to a support vertex of a leaf. Therefore, γct(G) ≤ m− 3 + |F | < γc(G).

Now, come to the case deg(v2) > 2. Then v2 has neighbors other than v1
and v2 which are support vertices of leaves, say u1 ∈ N(v2)− {v1, v3}.

①

①

①

① ①

①

① ①

①

① ①
❏
❏
❏
❏
❏
❏

u v1

v2 v3 w

u1

In this case v1, v2 and v3 are dominated by u, u1 and w, respectively and so
γct(G) ≤ m − 3 + |F | < γc(G). Thus γct(G) = γc(G) and |S| = 3 implies
condition (∗).

Thus if |S| = 3, then 〈S〉 is a path v1v2v3 with deg(v2) = 2.
The converse is obvious. �

2.3. Cubic graphs

Theorem 8. For a cubic bipartite graph G, γct(G) = γc(G) if and only if

G = K3,3.

Proof. Let us assume that γct(G) = γc(G). As G has no supports with at least
two pendant vertices, γct(G) = γ(G). Therefore γc(G) = γ(G) and so G is
K3,3. �
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Let G be a connected cubic graph with at least one odd cycle. We know
χ(G) = 3. If X is a transversal of a χ-partition of G, then clearly X will have
an odd cycle as an induced subgraph. Otherwise there exists a χ-partition of
G in which the vertices of X can be colored with two colors. Therefore, every
ctd-set contains at least one odd cycle and hence a γct-set being a minimum
ctd-set will contain an odd cycle C of smallest length, say m and a γ-set S of
G

′

= G − N [C] where by a γ-set of G
′

we mean a least subset S of G which

dominates all the vertices of G
′

. This implies γct(G) = |V (C)|+ |S| = m+ |S|.

Let D be a γc-set of G. Then we define T = D ∩ (V (G
′

)∪ (N(C)−C))− S

and l = m− |D ∩ V (C)|.

Theorem 9. Let G be a connected cubic graph with at least one odd cycle and

let C be an odd cycle of smallest length, say m. Then γct(G) = γc(G) if and

only if there exists a γc-set D of G such that |T | = l.

Proof. Let us assume that γct(G) = γc(G).
Suppose there exists no γc-set D such that |T | = l. Therefore γc(G) = |D| =

m + |T | − l + |S|. If |T | − l > 0, then γc(G) > γct(G). On the other hand, if
|T | − l < 0, then γc(G) < γct(G). Thus, in both cases γct(G) 6= γc(G).

Conversely, assume that there exists a γc-set D of G such that D contains a
γ-set S of G

′

and m− l number of vertices of C. If T = l, then γc(G) = |D| =
m− l + |T |+ |S| = m+ |S| = γct(G). �

Open problems

1. Can we improve Theorem 9 in terms of graph structure?
2. Characterize block graphs and cactus graphs for which γct = γc.
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