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CHROMATIC NUMBER OF THE ZERO-DIVISOR GRAPHS

OVER MODULES

Sang Cheol Lee and Rezvan Varmazyar

Abstract. Let R be a commutative ring with identity and let M be an

R-module. The main purpose of this paper is to calculate the chromatic
number of the zero-divisor graphs over modules.

1. Introduction

Let R be a commutative ring with identity and Z(R) be its set of zero-
divisors. The study of coloring of zero-divisor graphs of commutative rings
dates back to [3]. For the information about the zero-divisor graphs of com-
mutative rings, Γ(R), which is an undirected (simple) graph with vertices
Z(R)∗ = Z(R)\{0} and with two distinct vertices x and y adjacent if and
only if xy = 0, see [1–3], [7] and [9]. Recently, assigning a graph to a module
has received a good deal of attention from many authors, see for instance [4],
[6] and [8].

A graph is said to be connected if for each pair of distinct vertices x and
y, there is a finite sequence of distinct vertices x = x1, . . . , xn = y such that
each pair {xi, xi+1} is an edge. Such a sequence is said to be a path, and the
distance, d(x, y), between vertices x and y is the length of the shortest path
connecting them (d(x, y) = ∞ if there is no such path). The diameter of a
connected graph G is

diam (G) = sup{ d(x, y) |x and y are distinct vertices of G }.
If G = ∅, then diam (G) = −∞. The diameter is 0 if the graph consists of a
single vertex. A connected graph with more than one vertex has diameter 1
if and only if it is complete, that is, there exists an edge between each pair of
distinct vertices. We denote the complete graph with n vertices by Kn. A cycle
is a path of edges and vertices (without repeat) such that a vertex is reachable
from itself. In graph theory, the girth of a graph is the length of a shortest
cycle contained in the graph. If the graph does not contain any cycles (that is,
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it is an acyclic graph), its girth is defined to be infinity. The girth of a graph
G will be denoted by g G.

Throughout this paper, R will denote a commutative ring with identity and
M will denote a nonzero unitary R-module. For a subset S of M , we denote
the set of all nonzero elements of S by S∗.

Recall that an element x of M is called a:

- weak zero-divisor, if x = 0 or (x :R M)(y :R M)M = 0 for some
nonzero y ∈M with (y :R M) ⊂ R ((x :R M) = {r ∈ R | rM ⊆ Rx}).

- zero-divisor, if x = 0 or (x :R M) 6= 0 and (x :R M)(y :R M)M = 0 for
some nonzero y ∈M with 0 6= (y :R M) ⊂ R.

- strong zero-divisor, if x = 0 or (0 :R M) ⊂ (x :R M) and (x :R M)(y :R
M)M = 0 for some nonzero y ∈M with (0 :R M) ⊂ (y :R M) ⊂ R.

We denote Z(RM), Z(RM) and Z(RM), respectively for the set of weak
zero-divisors, zero-divisors and strong zero-divisors of M . It is clear that

Z(RM) ⊆ Z(RM) ⊆ Z(RM).

We associate (simple) graphs, Γ(RM), Γ(RM) and Γ(RM) to M with vertices
Z(RM)∗, Z(RM)∗ and Z(RM)∗, respectively, and two distinct vertices x and
y are adjacent if and only if (x :R M)(y :R M)M = 0. Hence

Γ(RM) ⊆ Γ(RM) ⊆ Γ(RM).

Let M be an R-module. If Γ(RM) contains a cycle, then we prove in Section
2 that g Γ(RM) ≤ 4 (see Theorem 2.5). In Section 3, we deal with the chromatic
number of the graph Γ(RM) of M . Our main result is as follows:

Let M1 and M2 be R-modules such that (0 :R M1) + (0 :R M2) = R. Then
the following hold.

(1) If Z(RM1)∗ = Z(RM2)∗ = ∅, then χ(Γ(M1 ⊕M2)) = 2.
(2) If Z(RM1)∗=∅ and Z(RM2)∗ 6= ∅, then χ(Γ(M1⊕M2))=χ(Γ(RM2))+1.
(3) If Z(RM1)∗ 6= ∅ and Z(RM2)∗=∅, then χ(Γ(M1⊕M2))=χ(Γ(RM1))+1.
(4) If Z(RM1)∗ 6= ∅ and Z(RM2)∗ 6= ∅, then

χ(Γ(M1 ⊕M2)) = χ(Γ(RM1)) + χ(Γ(RM2)) + k1k2,

where ki is the number of elements mt of Z(RMi)
∗ with the property that

(mt :R Mi)(mt :R Mi)Mi = 0 for i = 1, 2.
(5) Let Z(RM1) = M1 and Z(RM2) = M2. Let Γ(RM1) and Γ(RM2) be

complete zero-divisor graphs. If (x :R Mi)(x :R Mi)Mi = 0 for every element
x of Mi; i = 1, 2, then

χ(Γ(M1 ⊕M2)) = χ(Γ(RM1)) · χ(Γ(RM2)) + χ(Γ(RM1)) + χ(Γ(RM2))− 1.

Finally, in Section 4 we propose some results of the chromatic number of Zn

as a Z-module.
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2. Zero-divisor graphs of modules

Let M be an R-module. If M is faithful, then (0 : M) = 0 and so Γ(RM) =
Γ(RM). If M is not faithful, then Γ(RM) = Γ(RM).

Example 2.1. i) Let R = Z and M = Z2 ⊕ Z2. Then

((0, 1) :R M) = ((1, 0) :R M) = ((1, 1) :R M) = 2Z = annR(M).

Therefore Γ(RM) = Γ(RM) is a complete graph with three vertices and Γ(RM)
is an empty graph.

ii) Let R = Z and M = Z⊕ Z. Then (m :R M) = annR(M) for every m of
M . Hence Γ(RM) = Γ(RM) is an empty graph and Γ(RM) is complete with
vertices M∗.

iii) Let R = Z and M = Z2⊕Z3. Then annR(M) = 6Z, ((1, 0) :R M) = 3Z,
((0, 1) :R M) = ((0, 2) :R M) = 2Z and ((1, 1) :R M) = ((1, 2) :R M) = R.
Therefore (0, 1)− (1, 0)− (0, 2) is the graph of Γ(RM) = Γ(RM) = Γ(RM).

Proposition 2.2. Let M be an R-module. If x and y are adjacent in Γ(RM),
then for every u ∈ Rx and v ∈ Ry, u is adjacent to v.

Proof. Since (u :R M) ⊆ (x :R M) and (v :R M) ⊆ (y :R M) we get (u :R
M)(v :R M)M = 0, as needed. �

Next proposition shows when Γ(RM) has a cycle.

Proposition 2.3. Let M be an R-module. If Γ(RM) contains a path of length
4, then Γ(RM) contains a cycle.

Proof. Let x1 − x2 − x3 − x4 − x5 be a path of length 4 in Γ(RM). The proof
is complete if x2 is adjacent to x4. Assume that (x2 :R M)(x4 :R M)M 6= 0.
Hence Rx2 ∩ Rx4 6= 0. Let m ∈ Rx2 ∩ Rx4. If m = xi for some i; 1 ≤ i ≤ 5,
then by Proposition 2.2, we get a cycle. If m 6= xi for each i; 1 ≤ i ≤ 5, then
x1 −m− x3 − x2 − x1 or x5 −m− x3 − x4 − x5 is a cycle in Γ(RM). �

Corollary 2.4. Let M be an R-module. If Γ(RM) contains a path of length
4, then Γ(RM) contains a cycle.

Theorem 2.5. Let M be an R-module. Then Γ(RM) is a connected graph and
diam(Γ(RM)) ≤ 3. Moreover, if Γ(RM) contains a cycle, then g Γ(RM) ≤ 4.

Proof. The first part is similar to the proof of [6, Theorem 4.3].
Assume that Γ(RM) contains a cycle m1 −m2 − · · · −mt −m1 of length t.

If t ≤ 4, then the proof is completed. Now assume that t ≥ 5. Consider the
following cycle of length t. We will show that it can be shorten to a cycle of
length ≤ 4.
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•
m1

•
m2

•
m3

•
m4

•
m5

•
m6

•
u

•
mt−1

•
mt

•

•

If (m1 : M)(m3 : M)M = 0, then we get a cycle of length 3: m1 −m2 −
m3 −m1. Imagine (m1 : M)(m3 : M)M 6= 0. Now (m1 : M)(m3 : M)M ⊆
Rm1∩Rm3 implies that Rm1∩Rm3 6= 0. Thus we can take a nonzero element
u in Rm1 ∩ Rm3. Then Ru ⊆ Rm1 ∩ Rm3, so that (u : M)(mt : M)M = 0,
(u : M)(m2 : M)M = 0, and (u : M)(m4 : M)M = 0. Hence we get two cycles
of length 4: m1 −m2 − u−mt −m1 and m2 −m3 −m4 − u−m2. This shows
that g Γ(RM) ≤ 4. �

In view of the above theorem, we have the following result:

Corollary 2.6. Let M be an R-module. If Z(RM) 6= ∅, then Γ(RM) is a
connected graph and diam(Γ(RM)) ≤ 3. Moreover, If Γ(RM) contains a cycle,
then g Γ(RM) ≤ 4.

Recall that an R-module M is multiplication if N = (N : M)M for every
submodule N of M . Also, M is multiplication-like if (0 :R M) ⊂ (N :R M).
It is clear that every multiplication module is multiplication-like (See [4, 5] for
more results of multiplication and multiplication-like modules). In [4] it was
shown that Γ(RM) = Γ(RM) = Γ(RM) if and only if M is a multiplication-like
R-module. Furthermore, if R is not a field and M is not a simple module, then
Γ(RM) is the empty graph and Γ(RM) is a complete graph with vertices M∗.

3. Coloring of modules

We recall a coloring of a graph G to be an assignment of colors to the vertices
of G, one color to each vertex, so that adjacent vertices are assigned distinct
colors. If n colors are used, then the coloring is referred to as an n-coloring.
If there exists an n-coloring of a graph G, then G is called n-colorable. The
minimum n for which a graph G is n-colorable is called the chromatic number
of G, and is denoted by χ(G). A clique in a graph G, is a complete subgraph
of G. A maximum clique of a graph G, is a clique, such that there is no clique
with more vertices. The clique number, ω(G), of a graph G is the number of
vertices in a maximum clique in G.

We may consider an R-module M as a graph Γ0(RM) whose vertices are
elements of M such that two distinct vertices x and y of M are adjacent if and
only if (x :R M)(y :R M)M = 0. It is clear that Γ0(RM) is connected with
diam(Γ0(RM)) ≤ 2 and Γ(RM) is a subgraph of Γ0(RM).
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By the fact that Γ(RM) and Γ0(RM) are connected we can prove the fol-
lowing propositions by definitions of Γ0(RM), Γ(RM) and [3, Proposition 2.2].

Proposition 3.1. Let M be an R-module. Then the following hold.

(1) χ(Γ0(RM)) = 1 if and only if M = {0}.
(2) If M is multiplication, then χ(Γ(RM)) = 1 if and only if M ∼= Z4 or

M = Z2[x]/(x2).

In the graph Γ0(M) the zero element is adjacent to all x ∈ M so that
Γ0(M) is a star graph if and only if Z(RM) = {0}. Thus we have the following
proposition:

Proposition 3.2. Let M be an R-module. If Z∗(RM) = ∅, then χ(Γ0(M)) =
2.

Proposition 3.3. Let M be an R-module. If Z(RM) has at least 3 elements,
then χ(Γ(RM)) ≥ 2.

Let M1 and M2 be R-modules. Then

Z(RM1 ×M2) ∪ (M1 × Z(RM2)) ⊆ Z(R(M1 ⊕M2)),

but the equality does not hold in general even if (0 :R M1) + (0 :R M2) = R.
The example of this is given below.

Example 3.4. It is clear that (0 :Z Z4) + (0 :Z Z5) = Z. Notice that

Z(ZZ4)∗ × Z5 = {(2, 0), (2, 1), (2, 2), (2, 3), (2, 4)},
Z4 × Z(ZZ5)∗ = ∅,
Z(Z(Z4 ⊕ Z5))∗ = {(0, 1), (0, 2), (0, 3), (0, 4), (1, 0),

(2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (3, 0)}.

Then (Z(ZZ4)∗ × Z5) ∪ (Z4 × Z(ZZ5)∗) ( Z(Z(Z4 ⊕ Z5))∗.

Theorem 3.5. Let M1 and M2 be R-modules such that (0 :R M1) + (0 :R
M2) = R. Then the following hold.

(1) If Z(RM1)∗=Z(RM2)∗ = ∅, then χ(Γ(M1 ⊕M2)) = 2.
(2) If Z(RM1)∗=∅ and Z(RM2)∗ 6= ∅, then χ(Γ(M1⊕M2))=χ(Γ(RM2))+1.
(3) If Z(RM1)∗ 6= ∅ and Z(RM2)∗=∅, then χ(Γ(M1⊕M2))=χ(Γ(RM1))+1.

Proof. (1) Assume that Z(RM1)∗ = Z(RM2)∗ = ∅. Then for every mi ∈ M∗1
and mj ∈ M∗2 the element (0,mj) of Z(R(M1 ⊕M2))∗ is adjacent to (mi, 0).
Also there is no edge between (mi, 0) and (m′i, 0) where m′i ∈M∗1 and there is
no edge between (0, mj) and (0, m′j) where m′j ∈M∗2 . So we need two colors,
one for all vertices of the form (0, mj) and another for all vertices of the form
(mi, 0). Therefore χ(Γ(M1 ⊕M2)) = 2.

(2) Assume that Z(RM1)∗ = ∅, Z(RM2)∗ 6= ∅ and χ(Γ(RM2)) = t. So

Z(R(M1 ⊕M2))∗ = ((M1 × Z(RM2)) ∪ (0×M2))\{(0, 0)}.
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For every mj ∈ M2 we can color the vertices (0, mj) of Z(R(M1 ⊕M2))∗ by
t colors. Since for every mi ∈ M∗1 the vertex (mi, 0) of Z(R(M1 ⊕M2))∗ is
adjacent to all vertices of the form (0, mj) where mj ∈ M∗2 , we have to use
a new color to all vertices of the form (mi, 0). Also there is no edge between
all vertices of the form (mi, 0) and all vertices of the form (mi, mj) where
mi ∈ M∗1 and mj ∈ M2. Hence we can use that new color for all the vertices
of the form (mi, mj). Therefore we color the graph with t+ 1 colors.

(3) The proof is similar to that of the part (2). �

Even if Γ(M1) and Γ(M2) are complete graphs, Γ(M1⊕M2) is not complete
in general. If for every xi ∈ Z(RM1)∗ and yj ∈ Z(RM2)∗ we have (xi :R
M1)(xi :R M1)M1 = 0 and (yj :R M2)(yj :R M2)M2 = 0, then Γ(M1 ⊕M2) is
complete.

Theorem 3.6. Let M1 and M2 be R-modules such that (0 :R M1) + (0 :R
M2) = R. Let Z(RM1)∗ 6= ∅ and Z(RM2)∗ 6= ∅. Then

χ(Γ(M1 ⊕M2)) = χ(Γ(RM1)) + χ(Γ(RM2)) + k1k2,

where ki is the number of elements mt of Z(RMi)
∗ with the property that (mt :R

Mi)(mt :R Mi)Mi = 0 for i = 1, 2.

Proof. Let’s write χ(Γ(RM1)) and χ(Γ(RM2)) by t1 and t2, respectively. There
are 8 cases to consider for coloring Γ(M1 ⊕M2).

Case 1. We color all vertices of the form (0, yj) by t2 colors where yj ∈M∗2 .
Case 2. We color all vertices of the form (xi, 0) by t1 colors where xi ∈M∗1 .
Case 3. Consider the vertex (xi, yj) where xi ∈ M1\Z(RM1) and yj ∈

Z(RM2). This vertex is not adjacent to any vertex of the form (xt, ys) for
every xt ∈ M∗1 and ys ∈ M2. So we can color this vertex by t1 colors or by
the color of vertex (xi, 0). It is clear that if yj ∈M2\Z(RM2), then (xi, yj) 6∈
Z(R(M1 ⊕M2))∗.

Case 4. This is similar to case 3, we color all vertices of the form (xi, yj)
by t2 colors or by the color of vertex (0, yj) where xi ∈ Z(RM1) and yj ∈
M2\Z(RM2). Now, let xi ∈ Z(RM1)∗ and yj ∈ Z(RM2)∗. We have the
following cases.

Case 5. If (xi :R M1)(xi :R M1)M1 6= 0 and (yj :R M2)(yj :R M2)M2 6= 0,
then the vertex (xi, yj) is not adjacent to (0, yj) and (xi, 0). Hence we color
all vertices of the form (xi, yj) by the color of vertex (0, yj) or by the color of
vertex (xi, 0).

Case 6. If (xi :R M1)(xi :R M1)M1 = 0 and (yj :R M2)(yj :R M2)M2 6= 0,
then the vertex (xi, yj) is not adjacent to (0, yj). Hence we color all vertices
of the form (xi, yj) by the color of vertex (0, yj).

Case 7. If (xi :R M1)(xi :R M1)M1 6= 0 and (yj :R M2)(yj :R M2)M2 = 0,
then the vertex (xi, yj) is not adjacent to (xi, 0). Hence we color all vertices
of the form (xi, yj) by the color of vertex (xi, 0).

Case 8. If (xi :R M1)(xi :R M1)M1 = 0 and (yj :R M2)(yj :R M2)M2 = 0,
then we need a new color for all vertices of the form (xi, yj). Since the number
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of these vertices is k1k2 where ki is the number of elements mt of Z(RMi)
∗

with the property that (mt :R Mi)(mt :R Mi)Mi = 0 for i = 1, 2, we have

χ(Γ(M1 ⊕M2)) = χ(Γ(RM1)) + χ(Γ(RM2)) + k1k2. �

Corollary 3.7. Let M1 and M2 be R-modules such that (0 :R M1) + (0 :R
M2) = R. Let Z(RM1) = M1 and Z(RM2) = M2. Let Γ(RM1) and Γ(M2) be
complete zero-divisor graphs. If (x : Mi)(x : Mi)Mi = 0 for every element x of
Mi; i = 1, 2, then

χ(Γ(M1 ⊕M2)) = χ(Γ(RM1)) · χ(Γ(RM2)) + χ(Γ(RM1)) + χ(Γ(RM2))− 1.

Proof. In this case Γ(M1 ⊕M2) is a complete graph. Since (0, 0) 6∈ Z(R(M1 ⊕
M2))∗ this graph has (χ(Γ(RM1))+1) ·(χ(Γ(RM2))+1)−1 vertices, as needed.

�

4. Coloring of Zn as a Z-module

Let M = Zn and R = Z. It is clear that Zn is a multiplication Z-module, so

Γ(ZZn) = Γ(ZZn) = Γ(ZZn).

For every prime number p, χ(Γ(ZZp)) = 0.
In the following results, M will be treated as a Z-module.

Theorem 4.1. Let p be a prime number and M = Zpn . Then χ(Γ(RM)) =
pk − 1 if n = 2k and χ(Γ(RM)) = pk if n = 2k + 1.

Proof. It is clear that Z(M) = Rp and

0 = Rpn ⊂ Rpn−1 ⊂ Rpn−2 ⊂ · · · ⊂ Rp2 ⊂ Rp.
Let n = 2k. So (x :R Rpk)(y :R Rpk)Rpk = 0 for every x, y of Rpk. Hence Rpk

is an induced complete subgraph of Γ(RM), that is, Γ(RRp
k) = Kpk−1. It is

clear that all elements of Rpv are adjacent to all elements of Rpu where u+v ≥
n. There exist elements xi(1 ≤ i ≤ pk−pk−1) of Rpk such that xi 6∈ Rpt where
k + 1 ≤ t < 2k. Since (z :R M)(y :R M)M = 0 and (z :R M)(xi :R M)M 6= 0
for every z ∈ Rpj with 1 ≤ j < k and y ∈ Rpt, we can use the color of all
vertices xi to all elements of Rpj . Therefore χ(Γ(RM)) = ω(Γ(RM)) = pk − 1.

Now, let n = 2k + 1. It is clear that Γ(RRp
k+1) is an induced complete

subgraph of Γ(RM) and |Rpk+1| = pk. Hence χ(Γ(RRp
k+1)) = pk − 1. All

elements of Rpk are adjacent to all elements of Rpk+1, so we need a new color
for elements y ∈ Rpk \ Rpk+1. Therefore ω(Γ(RM)) = pk. Also, there exist
elements xi(1 ≤ i ≤ pk) of Rpk+1 such that xi 6∈ Rpt where k+ 2 ≤ t < 2k+ 1.
Since (z : M)(y : M)M = 0 and (z : M)(xi : M)M 6= 0 for every z ∈ Rpj with
1 ≤ j < k, and y ∈ Rpt with y 6= xi, we can use the color of all vertices xi to
all elements of Rj

p. Therefore χ(Γ(RM)) = pk = ω(Γ(RM)). �

Theorem 4.2. Let p1, p2, . . . , pn be distinct prime numbers and M = Zp1p2···pn .
Then

χ(Γ(RM)) = n.
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Proof. Let n = 2. Then Z(RM) = Rp1 ∪Rp2 implies that Γ(RM) is complete
bipartite. Thus χ(Γ(RM)) = 2.

Let n ≥ 3. Then Γ(RM) has (p1− 1)(p2− 1) · · · (pn−1− 1)(pn− 1) complete
subgraphs of order n with vertices all elements of the submodules Rp1p2p3 · · ·
pn−3pn−2pn−1, Rp1p2p3 · · · pn−3pn−2pn, Rp1p2p3 · · · pn−3pn−1pn, . . ., Rp1p3 · · ·
pn−2pn−1pn and Rp2p3 · · · pn−2pn−1pn. So we need n colors for coloring these
vertices. Since (xi :R M)(t :R M)M 6= 0 where xi ∈ Rp1p2 · · · pi−1pi+1 · · · pn
and t ∈ Rpj(j 6= i), 1 ≤ i, j ≤ n, we can use the color of xi to all elements of
Rpj . Also, (xik :R M)(u :R M)M 6= 0 and (xi :R M)(xik :R M)M 6= 0 where
xik ∈ Rp1p2 · · · pi−1pi+1 · · · pk−1pk+1pn and u ∈ Rpipk, we can use the color
of xi to all elements of Rpjpk and all elements of the form xik. By this way,
we can color all elements of Rp1p2 · · · pt1−1pt1+1 · · · pts−1pts+1 · · · ptl−1ptl+1 · · ·
pn−2pn−1pn with the color of xi or xtm where tm ∈ {1, 2, . . . , n}. Therefore we
need exactly n colors for coloring Γ(RM), that is, χ(Γ(RM)) = ω(Γ(RM)) =
n. �

Corollary 4.3. Let p1, p2, . . . , pn be distinct prime numbers and M = Zp1 ⊕
· · · ⊕ Zpn . Then

χ(Γ(RM)) = n.

Proof. (Method I) By the Chinese Remainder Theorem,

Zp1p2···pn
∼= Zp1 ⊕ Zp2 ⊕ · · · ⊕ Zpn .

Hence the results follows from Theorem 4.2.
(Method II) The vertices z1 = (α1, 0, . . . , 0), z2 = (0, α2, 0, . . . , 0), . . . , zn =

(0, . . . , 0, αn) form a clique in Γ(RM). So, we use color ci for zi. Now, the
vertex (u1, u2, . . . , un) is adjacent to zi if and only if ui = 0, 1 ≤ i ≤ n.
Therefore χ(Γ(RM)) = ω(Γ(RM)) = n. �

Theorem 4.4. Let p and q be distinct prime numbers and M = Zpnq. Then
χ(Γ(RM)) = pk if n = 2k and χ(Γ(RM)) = pk + 1 if n = 2k + 1.

Proof. It is clear that Z(RM) = Rp ∪ Rq and 0 ⊂ Rpn−1q ⊂ Rpn−2q ⊂ · · · ⊂
Rpq ⊂ Rq.

Let n = 2k. So (x :R Rpkq)(y :R Rpkq)Rpkq = 0 for every x, y of Rpkq.
Hence Rpkq is an induced complete subgraph of Γ(RM), that is, Γ(RRp

kq) =
Kpk−1. There exist elements xi(1 ≤ i ≤ pk−pk−1) of Rpkq such that xi 6∈ Rptq
where k + 1 ≤ t < 2k. Since (z :R M)(y :R M)M = 0 and (z :R M)(xi :R
M)M 6= 0 for every z ∈ Rpjq with 1 ≤ j < k, and y ∈ Rptq with y 6= xi, we
can use the color of all vertices xi to all elements of Rpjq. Since (a :R M)(b :R
M)M = 0 for every a ∈ Rpkq and b ∈ Rpk, we need a new color for all elements
of Rpk. Also, the elements of Rp2k are not adjacent to the elements of Rpk,
implies that we can use the color of vertices of Rpk to coloring vertices of Rp2k.
Therefore χ(Γ(RM)) = pk + 1− 1 = pk = ω(Γ(RM)).

Now, let n = 2k + 1. It is clear that Γ(RRp
k+1q) is an induced complete

subgraph of Γ(RM) and χ(Γ(RRp
k+1q)) = pk−1. Since (x :R M)(y :R M)M =
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(z :R M)(y :R M)M = (z :R M)(x :R M)M = 0 for every x ∈ Rpkq, y ∈
Rpk+1q and z ∈ Rps where k ≤ s < 2k+1 we need two new colors for elements
of Rpkq and Rps. Also, there exist elements xi(1 ≤ i ≤ pk − pk−1) of Rpk+1q
such that xi 6∈ Rptq where k + 2 ≤ t < 2k + 1. Since (z :R M)(y :R M)M = 0
and (z :R M)(xi :R M)M 6= 0 for every z ∈ Rpjq with 1 ≤ j < k + 1, and
y ∈ Rpt with y 6= xi, we can use the color of all vertices xi to all elements of
Rpjq. Therefore χ(Γ(RM)) = pk + 1 = ω(Γ(RM)). �

In this section, we calculated the chromatic numbers of the zero-divisor
graphs of Zn as a Z-module, in cases that n has several kinds of standard
prime factorizations. We think that there is a formal method to calculate
χ(Γ(RZn)).
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