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CHROMATIC NUMBER OF THE ZERO-DIVISOR GRAPHS
OVER MODULES

SANG CHEOL LEE AND REZVAN VARMAZYAR

ABSTRACT. Let R be a commutative ring with identity and let M be an
R-module. The main purpose of this paper is to calculate the chromatic
number of the zero-divisor graphs over modules.

1. Introduction

Let R be a commutative ring with identity and Z(R) be its set of zero-
divisors. The study of coloring of zero-divisor graphs of commutative rings
dates back to [3]. For the information about the zero-divisor graphs of com-
mutative rings, I'(R), which is an undirected (simple) graph with vertices
Z(R)* = Z(R)\{0} and with two distinct vertices = and y adjacent if and
only if zy = 0, see [1-3], [7] and [9]. Recently, assigning a graph to a module
has received a good deal of attention from many authors, see for instance [4],
[6] and [8].

A graph is said to be connected if for each pair of distinct vertices x and
y, there is a finite sequence of distinct vertices x = x1,...,x, = y such that
each pair {z;,x;4+1} is an edge. Such a sequence is said to be a path, and the
distance, d(x,y), between vertices « and y is the length of the shortest path
connecting them (d(z,y) = oo if there is no such path). The diameter of a
connected graph G is

diam (G) = sup{ d(z,y) | and y are distinct vertices of G }.

If G = (), then diam (G) = —oo. The diameter is 0 if the graph consists of a
single vertex. A connected graph with more than one vertex has diameter 1
if and only if it is complete, that is, there exists an edge between each pair of
distinct vertices. We denote the complete graph with n vertices by K,,. A cycle
is a path of edges and vertices (without repeat) such that a vertex is reachable
from itself. In graph theory, the girth of a graph is the length of a shortest
cycle contained in the graph. If the graph does not contain any cycles (that is,
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it is an acyclic graph), its girth is defined to be infinity. The girth of a graph
G will be denoted by g G.

Throughout this paper, R will denote a commutative ring with identity and
M will denote a nonzero unitary R-module. For a subset S of M, we denote
the set of all nonzero elements of S by S*.

Recall that an element x of M is called a:

- weak zero-divisor, if z = 0 or (x :g M)(y :r M)M = 0 for some
nonzero y € M with (y:g M) C R ((z:g M) ={r € R|rM C Rz}).
- zero-divisor, if x =0 or (x :g M) # 0 and (x :g M)(y:g M)M =0 for

some nonzero y € M with 0 # (y :r M) C R.
- strong zero-divisor, if t =0 or (0:p M) C (x :g M) and (x :g M)(y :r
M)M = 0 for some nonzero y € M with (0:g M) C (y:g M) C R.

We denote Z(grM), Z(gM) and Z(gM), respectively for the set of weak
zero-divisors, zero-divisors and strong zero-divisors of M. It is clear that

Z(rM) C Z(rM) C Z(rM).

We associate (simple) graphs, T(rM), T(rM) and T'(rM) to M with vertices
Z(gM)*, Z(rgM)* and Z(rM)*, respectively, and two distinct vertices z and
y are adjacent if and only if (z :g M)(y :g M)M = 0. Hence

D(rM) CT(gM) CT(rM).

Let M be an R-module. If I'(g M) contains a cycle, then we prove in Section
2 that g (rM) < 4 (see Theorem 2.5). In Section 3, we deal with the chromatic
number of the graph I'(xk M) of M. Our main result is as follows:

Let M7 and Ms be R-modules such that (0:g My) + (0 :g M) = R. Then
the following hold.
(1) If Z(rM:)* = Z(rMa)* =0, then x(L(M, & My)) = 2.
(2) IfZ(RMl)* :Q) and Z(RMQ)* 75 @, then X(E(Ml @Mz)) :X(E(RMQ))'F]”
(3) IfZ(RMl)* 7é (Z) and Z(RM2>* :@, then X(E(Ml @Mz)) :X(E(RM1>)+1~
(4) If Z(rMy)* # 0 and Z(rMz)* # 0, then

X(L(M; ® Mz)) = x(L(rM1)) + x(L(rMz2)) + k1k2,

where k; is the number of elements m; of Z(grM;)* with the property that
(my :g M;)(my :g M;)M; =0 for i =1,2.

(5) Let Z(RMI) = M, and Z(RMQ) = M. Let E(RMl) and E(RMQ) be
complete zero-divisor graphs. If (z :g M;)(x :r M;)M; = 0 for every element
x of My; 1 =1, 2, then

X(L(My @ My)) = x(L(rM1)) - x(L(rM2)) + x(L(rM:1)) + x(L(rMz)) — 1.

Finally, in Section 4 we propose some results of the chromatic number of Z,
as a Z-module.
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2. Zero-divisor graphs of modules

Let M be an R-module. If M is faithful, then (0: M) =0 and so I'(g M) =
T(rM). If M is not faithful, then T'(rM) = L'(rM).

Example 2.1. i) Let R =7Z and M = Zy & Zy. Then
((0,1) :g M) = ((1,0) :g M) = ((1,1) :g M) = 2Z = annr(M).

Therefore I'(gk M) = L'(g M) is a complete graph with three vertices and I'(z M)
is an empty graph.

ii) Let R=Z and M =Z & Z. Then (m :g M) = annr(M) for every m of
M. Hence I'(xk M) = I'(gM) is an empty graph and I'(zM) is complete with
vertices M*.

iii) Let R =Z and M = Zy ®Zs. Then anng(M) = 6Z, ((1,0) :r M) = 3Z,
((0,1) :p M) = ((0,2) :g M) = 2Z and ((1,1) :r M) = ((1,2) :r M) = R.
Therefore (0,1) — (1,0) — (0,2) is the graph of ['(xkM) =T'(gM) = T'(gM).

Proposition 2.2. Let M be an R-module. If x and y are adjacent in L'(rM),
then for every u € Rx and v € Ry, u is adjacent to v.

Proof. Since (u :g M) C (x :g M) and (v :g M) C (y :r M) we get (u :r
M)(v:g M)M =0, as needed. O

Next proposition shows when I'(g M) has a cycle.

Proposition 2.3. Let M be an R-module. IfT'(rM) contains a path of length
4, then T(rM) contains a cycle.

Proof. Let ©1 — 9 — x3 — x4 — x5 be a path of length 4 in I'(gM). The proof
is complete if 25 is adjacent to x4. Assume that (z2 :g M)(xg :g M)M # 0.
Hence Rxo N Rxy # 0. Let m € Rxo N Rxy. If m = x; for some ;1 < ¢ < 5,
then by Proposition 2.2, we get a cycle. If m # z; for each i;1 < i < 5, then
Ty —M — T3 — Ty — Ty OF Ty — M — &3 — T4 — &5 1S a cycle in L(gM). O

Corollary 2.4. Let M be an R-module. If T(rM) contains a path of length
4, then T(grM) contains a cycle.

Theorem 2.5. Let M be an R-module. Then I'(rM) is a connected graph and
diam(L(gM)) < 3. Moreover, if L(rM) contains a cycle, then gT(rM) < 4.

Proof. The first part is similar to the proof of [6, Theorem 4.3].

Assume that T'(gM) contains a cycle m; — mg — - -+ — my —my of length ¢.
If ¢ < 4, then the proof is completed. Now assume that ¢ > 5. Consider the
following cycle of length t. We will show that it can be shorten to a cycle of
length < 4.



394 S. C. LEE AND R. VARMAZYAR
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If (my : M)(ms : M)M = 0, then we get a cycle of length 3: m; — mg —
ms — my. Imagine (my : M)(mg : M)M # 0. Now (my : M)(mg : M)M C
Rmy N Rmg implies that Rmq N Rm3 # 0. Thus we can take a nonzero element
uwin Rmy N Rmg. Then Ru C Rmy N Rmg, so that (u : M)(m: : M)M = 0,
(w:M)(mg : M)M =0, and (u: M)(my4 : M)M = 0. Hence we get two cycles
of length 4: m; — mo —u — my — mq and my — mz — my — u — mo. This shows

that g L(pM) < 4. O
In view of the above theorem, we have the following result:

Corollary 2.6. Let M be an R-module. If Z(rgM) # 0, then T(rM) is a
connected graph and diam(T(rM)) < 3. Moreover, If T(rM) contains a cycle,
then gT(rM) < 4.

Recall that an R-module M is multiplication if N = (N : M)M for every
submodule N of M. Also, M is multiplication-like if (0 :g M) C (N :g M).
It is clear that every multiplication module is multiplication-like (See [4,5] for
more results of multiplication and multiplication-like modules). In [4] it was
shown that T'(rM) = T'(rM) = L(gM) if and only if M is a multiplication-like
R-module. Furthermore, if R is not a field and M is not a simple module, then
T(rM) is the empty graph and I'(g M) is a complete graph with vertices M*.

3. Coloring of modules

We recall a coloring of a graph G to be an assignment of colors to the vertices
of GG, one color to each vertex, so that adjacent vertices are assigned distinct
colors. If n colors are used, then the coloring is referred to as an n-coloring.
If there exists an n-coloring of a graph G, then G is called n-colorable. The
minimum n for which a graph G is n-colorable is called the chromatic number
of G, and is denoted by x(G). A cligue in a graph G, is a complete subgraph
of G. A mazximum clique of a graph G, is a clique, such that there is no clique
with more vertices. The cligue number, w(G), of a graph G is the number of
vertices in a maximum clique in G.

We may consider an R-module M as a graph I'g(gM) whose vertices are
elements of M such that two distinct vertices x and y of M are adjacent if and
only if (x :g M)(y :r M)M = 0. Tt is clear that T'o(gM) is connected with
diam(To(rM)) < 2 and T'(gM) is a subgraph of T'o(gM).
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By the fact that T'(rM) and T'o(gM) are connected we can prove the fol-
lowing propositions by definitions of I'g(g M), I'(gM) and [3, Proposition 2.2].
Proposition 3.1. Let M be an R-module. Then the following hold.

(1) x(To(rM)) =1 if and only if M = {0}.
(2) If M is multiplication, then x(T(rM)) = 1 if and only if M = Z4 or
M = Zslz]/(2?).
In the graph I'o(M) the zero element is adjacent to all x € M so that

To(M) is a star graph if and only if Z(rM) = {0}. Thus we have the following
proposition:

Proposition 3.2. Let M be an R-module. If Z*(gM) =0, then x(To(M)) =
2.

Proposition 3.3. Let M be an R-module. If Z(rM) has at least 3 elements,
then x(L(rM)) > 2.

Let M7 and M5 be R-modules. Then
Z(rMy x Ma) U (M) x Z(rM3)) € Z(r(My & My)),
but the equality does not hold in general even if (0 :g M7) + (0 :g M2) = R.
The example of this is given below.
Example 3.4. It is clear that (0 :z Z4) + (0 :z Zs) = Z. Notice that
Z(ZZ4)* X L5 = {(Qa O)’ (27 1)v (27 2)a (27 3)’ (27 4)}7
Zy % Z(zZs5)" =0,
Z(Z(Z4 @Z5))* = {(07 1)’ (0’ 2)7 (07 3)’ (07 4)’ (17 O)’
(2,0), (2, 1), (2,2), (2,3),(2,4), (3,0)}.
Then (Z(ZZZL)* X Z5) U (Z4 X Z(ZZS)*) g Z(Z(Zél (S5) Z5))*
Theorem 3.5. Let My and My be R-modules such that (0 :g My) + (0 :g
Ms) = R. Then the following hold.
(1) If Z(rM1)*=Z(rM2)* = 0, then x(L(M1 & Ms)) = 2.

(2) If Z(rM1)* =0 and Z(rM2)* # 0, then x(L(M1®My)) =x(L(rM2))+1.
(3) If Z(rM1)* # 0 and Z(rMz)* =0, then x(L(M1®My)) = x(L(rM))+1.

Proof. (1) Assume that Z(gM1)* = Z(gM2)* = 0. Then for every m; € M;
and m; € M5 the element (0,m;) of Z(g(My @ Ms))* is adjacent to (m;, 0).
Also there is no edge between (m;,0) and (m}, 0) where m; € M; and there is
no edge between (0, m;) and (0, m;) where m; € M3. So we need two colors,
one for all vertices of the form (0, m;) and another for all vertices of the form
(my, 0). Therefore x(T(M; @ Ms)) = 2.

(2) Assume that Z(gM1)* =0, Z(rM2)* # 0 and x(L(gMs2)) =t. So

Z(r(My @ My))™ = (My x Z(rMz)) U (0 x M2))\{(0, 0)}.
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For every m; € My we can color the vertices (0, m;) of Z(r(M; @& Ms))* by
t colors. Since for every m; € My the vertex (my, 0) of Z(r(M1 ® M3))* is
adjacent to all vertices of the form (0, m;) where m; € My, we have to use
a new color to all vertices of the form (m;, 0). Also there is no edge between
all vertices of the form (m;, 0) and all vertices of the form (m;, m;) where
m; € M{ and m; € M,. Hence we can use that new color for all the vertices
of the form (m;, m;). Therefore we color the graph with ¢ 4 1 colors.

(3) The proof is similar to that of the part (2). O

Even if I'(M;) and I'(Ms) are complete graphs, I'(M; ® Ms) is not complete
in general. If for every z; € Z(gM1)* and y; € Z(rMa2)* we have (z; :r
Ml)(xi ‘R Ml)Ml =0 and (y,] ‘R Mg)(yj ‘R MQ)MQ = 07 then E(Ml (&5) MQ) is
complete.

Theorem 3.6. Let My and My be R-modules such that (0 :r Mi)+ (0 :g
M) = R. Let Z(gM1)* # 0 and Z(gM3)* # 0. Then

X(L(My @ My)) = x(L(rM1)) + x(L(rMa)) + kiks,

where k; is the number of elements m; of Z(grM;)* with the property that (my :gr
Mz)(mt ‘R Mz)Mz =0 fOTi = 1, 2.

Proof. Let’s write x(L(grM;)) and x(T(gMaz)) by t1 and to, respectively. There
are 8 cases to consider for coloring I'(M; @ Ms).

Case 1. We color all vertices of the form (0, y;) by ¢ colors where y; € Mj.

Case 2. We color all vertices of the form (z;, 0) by ¢; colors where z; € M;.

Case 3. Consider the vertex (z;, y;) where z; € M{\Z(rM;) and y; €
Z(rMs). This vertex is not adjacent to any vertex of the form (¢, ys) for
every x; € M; and ys € Ms. So we can color this vertex by t; colors or by
the color of vertex (x;, 0). It is clear that if y; € M>\Z(gMz), then (z;, y;) ¢
Z(r(M; © My))*.

Case 4. This is similar to case 3, we color all vertices of the form (z;, y;)
by ta colors or by the color of vertex (0,y;) where z; € Z(gM;) and y; €
Mo\Z(rM3). Now, let x; € Z(gMy)* and y; € Z(rMs)*. We have the
following cases.

Case 5. If (.Tz ‘R Ml)($7 ‘R Ml)Ml 7& 0 and (yj ‘R Mg)(yj ‘R MQ)MQ 7é 0,
then the vertex (z;, y;) is not adjacent to (0, y;) and (z;, 0). Hence we color
all vertices of the form (z;,y;) by the color of vertex (0, y;) or by the color of
vertex (x;, 0).

Case 6. If (Z‘i ‘R Ml)(xz ‘R Ml)Ml = 0 and (y] ‘R MQ)(y] ‘R MQ)MQ 7é 0,
then the vertex (z;, y;) is not adjacent to (0, y;). Hence we color all vertices
of the form (z;, y;) by the color of vertex (0, y;).

Case 7. If ((El ‘R Ml)(xz ‘R Ml)Ml 7é 0 and (yj ‘R MQ)(yj ‘R MQ)MQ = O,
then the vertex (x;, y;) is not adjacent to (x;, 0). Hence we color all vertices
of the form (z;, y;) by the color of vertex (z;, 0).

Case 8. If (Ii ‘R Ml)(mz ‘R Ml)Ml =0 and (yj ‘R Mg)(yj ‘R Mg)Mg = 0,
then we need a new color for all vertices of the form (z;,y;). Since the number
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of these vertices is kiko where k; is the number of elements m; of Z(rM;)*
with the property that (my :g M;)(my :r M;)M; =0 for i = 1, 2, we have

X(L(My & My)) = x(L(rM1)) + xX(L(rMz2)) + k1ks. O

Corollary 3.7. Let My and My be R-modules such that (0 :p My) + (0 :g
Mg) =R. Let E(RMl) == Ml and Z(RMQ) = MQ. Let E(RMl) and E(MQ) be
complete zero-divisor graphs. If (x : M;)(z : M;)M; = 0 for every element x of
M;;i=1, 2, then

XMy & My)) = x(L(rM1)) - Xx(L(rM2)) + x(L(rM1)) + x(L(rM2)) — 1.

Proof. In this case I'(M; @ Ms) is a complete graph. Since (0,0) € Z(r(M1 @
Ms))* this graph has (x(L(rM1))+1)- (x(L(rMz))+1) — 1 vertices, as needed.
(]

4. Coloring of Z,, as a Z-module

Let M =7Z, and R = Z. It is clear that Z,, is a multiplication Z-module, so
T(2Zn) = T(2Zn) = L(zZn).
For every prime number p, x(I'(zZ,)) = 0.
In the following results, M will be treated as a Z-module.

Theorem 4.1. Let p be a prime number and M = Zpn. Then x(T'(gM)) =
pF —1ifn =2k and x(T(rM)) = p* if n = 2k + 1.

Proof. It is clear that Z(M) = Rp and
0=Rp"C Rp" *C Rp"2cC---C Rp*>C Rp.

Let n = 2k. So (z :gr Rp*)(y :r Rp*)Rp* = 0 for every z,y of Rp*. Hence Rp”
is an induced complete subgraph of I'(gM), that is, ['(r Rp*) = Kpr_q. It is
clear that all elements of Rp” are adjacent to all elements of Rp* where u+v >
n. There exist elements x;(1 < i < p¥ —pk~=1) of Rp* such that x; ¢ Rp' where
k+1<t<2k. Since (z:g M)(y:g M)M =0 and (2 :g M)(z; :rg M)M #0
for every z € Rp/ with 1 < j < k and y € Rp', we can use the color of all
vertices x; to all elements of Rp’. Therefore x(I'(rM)) = w(T'(rM)) = p* — 1.

Now, let n = 2k + 1. It is clear that I'(g Rp**!) is an induced complete
subgraph of I'(gkM) and |Rp**!| = p*. Hence x(I'(rRp**!)) = p* — 1. All
elements of Rp* are adjacent to all elements of Rp**!, so we need a new color
for elements y € Rp® \ Rp**!l. Therefore w(I'(rM)) = p*. Also, there exist
elements z;(1 < i < p*) of Rp**! such that x; ¢ Rp' where k+2 <t < 2k + 1.
Since (z: M)(y: M)M =0 and (z : M)(x; : M)M # 0 for every 2z € Rp’ with
1<j <k, and y € Rpt with y # z;, we can use the color of all vertices x; to
all elements of RJ. Therefore x(I'(rM)) = p* = w(T'(rM)). O

Theorem 4.2. Letpi,po,...,pn be distinct prime numbers and M = Zp, p,...p,, -
Then

X(L(rM)) = n.
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Proof. Let n = 2. Then Z(gM) = Rp; U Rpy implies that T'(gM) is complete
bipartite. Thus x(T'(gM)) = 2.

Let n > 3. Then I'(gM) has (p1 —1)(p2 —1) -+ (pn—1 — 1)(pn, — 1) complete
subgraphs of order n with vertices all elements of the submodules Rpipaps - - -
Pn—3Pn—2Pn—1, Bp1p2ps - - Pn—3Pn—2Dn, Rp1p2ps - Dn—3Pn—1Pn, - - -, Bp1ps -+
Prn—2Pn—1Pn and Rpops -« Pp_opn_1Pn. S0 we need n colors for coloring these
vertices. Since (z; :g M)(t :g M)M # 0 where x; € Rp1pa -+ Di—1Pit1"** Dn
and t € Rp;(j #1),1 <1i,j < n, we can use the color of z; to all elements of
Rp;. Also, (xik :r M)(u:r M)M # 0 and (z; :r M)(zix :r M)M # 0 where
ZTix € Rp1pa- - pic1Pit1 Pe—1Pk+1Pn and u € Rp;p, we can use the color
of x; to all elements of Rp;p, and all elements of the form z;,. By this way,
we can color all elements of Rp1ps - - - Pty —1Dt1+1 *  Dto—1Pto+1 " - Ptj—1Dt,+1 -

Dn—2Pn—1Pn With the color of x; or x; , where t,,, € {1,2,...,n}. Therefore we
need exactly n colors for coloring I'(r M), that is, x(T'(rM)) = w(['(gM)) =
n. (I

Corollary 4.3. Let p1,p2,...,pn be distinct prime numbers and M = Z,, ©
<@ Zp,. Then

X(L(rM)) = n.
Proof. (Method I) By the Chinese Remainder Theorem,
ZP1P2'“Pn = Zpl ® sz CRRRNS an'

Hence the results follows from Theorem 4.2.
(Method II) The vertices 21 = («1,0,...,0), 22 = (0,2,0,...,0),...,2, =

(0,...,0,cy) form a clique in I'(zgM). So, we use color ¢; for z;. Now, the
vertex (u1,us,...,un) is adjacent to z; if and only if u; = 0, 1 < i < n.
Therefore x(T'(rgM)) = w(T'(rM)) = n. O

Theorem 4.4. Let p and q be distinct prime numbers and M = Zynq. Then
X(T(rM)) = p* if n =2k and x(T'(rM)) =p* +1 if n = 2k + 1.

Proof. Tt is clear that Z(rM) = RpURq and 0 C Rp"~'q C Rp"2qC --- C
Rpq C Rq.

Let n = 2k. So (z :r Rp*q)(y :r Rp*q)Rp*q = 0 for every x,y of RpFq.
Hence Rp¥q is an induced complete subgraph of I'(r M), that is, T'(rRp¥q) =
K,r_1. There exist elements 2;(1 <14 < pF —pk=1) of Rp¥q such that z; & Rp'q
where k +1 < t < 2k. Since (z :g M)(y :g M)M =0 and (z :g M)(x; :r
M)M # 0 for every z € Rp/q with 1 < j < k, and y € Rp'q with y # z;, we
can use the color of all vertices z; to all elements of Rp/q. Since (a:g M)(b:g
M)M = 0 for every a € Rp¥*q and b € Rp*, we need a new color for all elements
of Rp¥. Also, the elements of Rp?* are not adjacent to the elements of Rp”,
implies that we can use the color of vertices of Rp* to coloring vertices of Rp?*.
Therefore x(['(rM)) = p* +1 -1 = pF = w(T(gM)).

Now, let n = 2k + 1. It is clear that I'(rRp**!q) is an induced complete
subgraph of I'(r M) and x(T'(rRp*1q)) = p*—1. Since (z :x M)(y :r M)M =
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(2 :r M)(y :r M)M = (2 :g M)(z :r M)M = 0 for every x € RpFq, y €
Rp*tlq and z € Rp® where k < s < 2k+1 we need two new colors for elements
of Rp¥q and Rp®. Also, there exist elements x;(1 < i < p* — pF~1) of RpFtlq
such that z; ¢ Rp'q where k+2 <t < 2k + 1. Since (z :g M)(y :r M\)M =0
and (2 :p M)(z; :r M)M # 0 for every z € Rp/q with 1 < j < k + 1, and
y € Rpt with y # x;, we can use the color of all vertices x; to all elements of
Rp’q. Therefore x(T'(rM)) = p* + 1 = w(T'(gM)). O

In this section, we calculated the chromatic numbers of the zero-divisor
graphs of Z, as a Z-module, in cases that n has several kinds of standard
prime factorizations. We think that there is a formal method to calculate

X(T(RrZy)).
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