• Title/Summary/Keyword: Chip Design

Search Result 2,167, Processing Time 0.029 seconds

Voltage-Mode 1.5 Gbps Interface Circuits for Chip-to-Chip Communication

  • Lee, Kwang-Jin;Kim, Tae-Hyoung;Cho, Uk-Rae;Byun, Hyun-Geun;Kim, Su-Ki
    • ETRI Journal
    • /
    • v.27 no.1
    • /
    • pp.81-88
    • /
    • 2005
  • In this paper, interface circuits that are suitable for point-to-point interconnection with an over 1 Gbps data rate per pin are proposed. To achieve a successful data transfer rate of multi-gigabits per-second between two chips with a point-to-point interconnection, the input receiver uses an on-chip parallel terminator of the pass gate style, while the output driver uses the pullup and pulldown transistors of the diode-connected style. In addition, the novel dynamic voltage level converter (DVLC) has solved such problems as the access time increase and valid data window reduction. These schemes were adopted on a 64 Mb DDR SRAM with a 1.5 Gbps data rate per pin and fabricated using a 0.10 ${\mu}m$ dual gate oxide CMOS technology.

  • PDF

Test sequence control chip design of logic test using FPGA (FPGA를 이용한 logic tester의 test sequence control chip 설계 및 검증)

  • Kang, Chang-Hun;Choi, In-Kyu;Choi, Chang;Han, Hye-Jin;Park, Jong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.376-379
    • /
    • 2001
  • In this paper, I design the control chip that controls inner test sequence of Logic Tester to test chip. Logic tester has the thirteen inner instructions to control test sequence in test. And these instructions are saved in memory with test pattern data. Control chip generates address and control signal such as read, write signal of memory. Before testing, necessary data such as start address, end address, etc. are written to inner register of control chip. When test started, control chip receives the instruction in start address and executes, and generates address and control signals to access tester' inner memory. So whole test sequence is controlled by making the address and control signal in tester's inner memory. Control chip designs instruction's execution blocks, respectively. So if inner instruction is added from now on, a revision is easy. The control chip will be made using FPGA of Xilinx Co. in future.

  • PDF

Two-dimensional Chip-load Analysis for Automatic Feedrate Adjustment (이송률 자동조정을 위한 2차원 칩로드 해석)

  • 배석형;고기훈;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.155-167
    • /
    • 2000
  • To be presented is two-dimensional chip-load analysis for cutting-load smoothing which is needed in unmanned machining and high speed machining of sculptured surfaces. Cutter-engagement angle and effective cutting depth are defined as chip-loads which are the geometrical measures corresponding to cutting-load while machining. The extreme values of chip-loads are geometrically derived in the line-line and line-arc-line blocks of the two-dimensional NC-codes. AFA(automatic feedrate adjustment) strategy for cutting-load smoothing is presented based on the chip-load trajectories.

  • PDF

Design and Fabrication of the System in Package for the Digital Broadcasting Receiver (디지털 방송 수신용 System in Package 설계 및 제작)

  • Kim, Jee-Gyun;Lee, Heon-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.107-112
    • /
    • 2009
  • This paper describes design and fabrication issues of the SiP(System in Package) one-chip for a portable digital broadcasting receiver. It includes RF tuner chip, demodulator chip and passive components for the receiver system. When we apply the SiP one-chip technology to the broadcasting receiver, the system board size can be reduced from $776mm^2$ to $144mm^2$. SiP one-chip has an advantage that the area reduces more 81% than separated chips. Also the sensitivity performance advances -1dBm about 36 channels in the RF weak electric field, the power consumption reduces about 2mW and the C/N keeps on the same level.

Design of Expandable 32x32 MBAM Neuro-chip (확장 가능한 32X32 MBAM Neuro-chip의 설계)

  • 최윤경;박정배;이수영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.6
    • /
    • pp.86-92
    • /
    • 1993
  • In this paper, we present a VLSI chip design of Multi-layer Bidirectionsl Associative Memory with good error-correction performance. The MBAM neural chip utilizes inner product implementation schems with binary storage and analog calculation.. Multi-layer can be constructed by direct cascading of these chips, and the number of neurons is expandable by parallel connection of these chips. We made proto-type chips and interface board to test the expansion. Currently the Chip has 32 input nodes, 32 output nodes, and can store up to 48 patterns, 32x48x2 SRAMs are included in the chip.

  • PDF

A Study on a Knowledge-Based Design System for Chip Encapsulation (반도체 칩의 캡슐화 성형을 위한 지식형 설계시스템에 관한 연구)

  • 허용정;한세진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.99-106
    • /
    • 1998
  • In this paper, we have constructed an expert system for semiconductor chip encapsulation which combines a knowledge-based system with CAE software. The knowledge-base module includes heuristic and pre analysis knowledge for evaluation and redesign. Evaluation of the initial design and generation of redesign recommendations can be developed from the rules as applied to a given chip package. The CAE programs can be used for simulating the filling and packing stage of encapsulation process. The expert system is a new tool which enables package design or process conditions with high yields and high productivity.

  • PDF

System-on-chip single event effect hardening design and validation using proton irradiation

  • Weitao Yang;Yang Li;Gang Guo;Chaohui He;Longsheng Wu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1015-1020
    • /
    • 2023
  • A multi-layer design is applied to mitigate single event effect (SEE) in a 28 nm System-on-Chip (SoC). It depends on asymmetric multiprocessing (AMP), redundancy and system watchdog. Irradiation tests utilized 70 and 90 MeV proton beams to examine its performance through comparative analysis. Via examining SEEs in on-chip memory (OCM), compared with the trial without applying the multi-layer design, the test results demonstrate that the adopted multi-layer design can effectively mitigate SEEs in the SoC.

Design and Fabrication of Multilayer Chip Band Pass Filter for Mob ice Communication (이동통신용 적층형 칩 대역통과 필터의 설계 및 제작)

  • 윤중락;박종주;이석원;이헌용
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.19-24
    • /
    • 1999
  • The multilayer chip band pass filter for mobile communication is fabricated and designed. The size, insertion loss, center frequency and band width of multilayer chip filter are 4.5$\times$4.4$\times$1.8[mm], 3.0[dB] and 700[MHz]$\pm$15[MHz] respectively. The chip filter using $BiNbO_4$with CuO 0.06wt% +$V_2O_5$.lwt% was fabricated by screen printing with Ag electrode after tape casting. Insertion loss and center frequency of the fabricated chip filter are 2.58[dB] and 692.5$\pm$15[MHz] respectively. The center frequency was lower 7.5[MHz] than design result, but other characteristics of chip filter were similar to the ruts ultras of design result.

  • PDF

A Study on the Chip Flow Using Finite Element Method (유한요소법을 이용한 칩유동에 관한 연구)

  • 김경우;김우순;최현민;채왕석;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.891-894
    • /
    • 2001
  • In this work, an effort is made to investigate the behavior of a chip, from its initial flow to its final breaking stage. The expression for chip flow in grooved tools is verified analytically using FEM. Cutting parameters like velocity and depth of cut have a profound influence on chip flow behavior. Chip curling increases and, for a given tool geometry, effectiveness of the groove increases with increasing depth of cut. The feasibility of tool design using FEM simulations is also demonstrated. Optimization of tool geometry results in better chip control.

  • PDF

A Study on the Chip Flow Using Finite Element Method (유한요소법을 이용한 칩유동에 관한 연구)

  • Kim, Gyeong-U;Kim, Dong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.101-106
    • /
    • 2001
  • In this work, an effort is made to investigate the behavior of a chip, from its initial flow to its final breaking stage. The expression for chip flow in grooved tools is verified analytically using FEM. Cutting parameters like velocity and depth of cut have a profound influence on chip flow behavior. Chip curling increases and, for a given tool geometry, effectiveness of the groove increases with increasing depth of cut. The feasibility of tool design using FEM simulations is also demonstrated. Optimization of tool geometry results in better chip control.

  • PDF