• 제목/요약/키워드: Chemical mechanical planarization

검색결과 231건 처리시간 0.023초

pH level 및 slurry 입도가 langasite wafer의 chemical mechanical planarization에 미치는 영향 (Effect of pH level and slurry particle size on the chemical mechanical planarization of langasite crystal wafer)

  • 조현
    • 한국결정성장학회지
    • /
    • 제15권1호
    • /
    • pp.34-38
    • /
    • 2005
  • Langasite 단결정 wafer의 chemical mechanical planarization 공정에서 pH level 및 slurry 입도가 가공속도 및 평탄화도에 미치는 영향을 조사하였다. 낮은 pH level 조건하에서 더 높은 가공속도 값이 얻어진 반면에 평탄화도는 colloidal silica slurry의 평균입경에 의해 좌우됨을 확인하였다. 0.045 ㎛의 비정질 silica 입자를 함유한 슬러리를 사용하였을 때 표면에 잔류 scratch 형성이 없이 가장 좋은 가공성을 확보할 수 있었다. 가공속도와 평탄화도는 effective particle number에 대한 강한 의존성을 나타내었으며, effective particle number가 낮은 조건하에서 가공속도는 더 낮은 분포를 나타내었으나 평탄화도는 더 우수한 경향성을 확인하였다.

유체윤활을 고려한 화학기계적 연마 공정에서의 연마대상과 패드 사이의 유동장 해석 (Hydrodynamic Lubrication Model for Chemical Mechanical Planarization)

  • 김기현;오수익;전병희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.207-210
    • /
    • 2003
  • The chemical mechanical planarization (CMP) process is a method of planarizing semiconductor wafers with a high degree of success. However, fundamental mechanisms of the process are not fully understood. Several theoretical analyses have been introduced, which are focused on kinematics, von Mises stress distributions and hydrodynamic lubrication aspects. This paper is concerned with hydrodynamic lubrication theory as the chemical mechanical planarization model; the three-dimensional Reynolds equation is applied to predict slurry film thickness and pressure distributions between the pad and the wafer. This paper classifies geometry of wafer into 3 types and focuses on the differences between them.

  • PDF

전기화학-기계적 평탄화에 관한 연구 동향 분석 (Analysis of Research Trends on Electrochemical-Mechanical Planarization)

  • 이현섭;김지훈;박성민;추동엽
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.213-223
    • /
    • 2021
  • Electrochemical mechanical planarization (ECMP) was developed to overcome the shortcomings of conventional chemical mechanical planarization (CMP). Because ECMP technology utilizes electrochemical reactions, it can have a higher efficiency than CMP even under low pressure conditions. Therefore, there is an advantage in that it is possible to reduce dicing and erosions, which are physical defects in semiconductor CMP. This paper summarizes the papers on ECMP published from 2003 to 2021 and analyzes research trends in ECMP technology. First, the material removal mechanisms and the configuration of the ECMP machine are dealt with, and then ECMP research trends are reviewed. For ECMP research trends, electrolyte, processing variables and pads, tribology, modeling, and application studies are investigated. In the past, research on ECMP was focused on basic research for the development of electrolytes, but it has recently developed into research on tribology and process variables and on new processing systems and applications. However, there is still a need to increase the processing efficiency, and to this end, the development of a hybrid ECMP processing method using another energy source is required. In addition, ECMP systems that can respond to the developing metal 3D printing technology must be researched, and ECMP equipment technology using CNC and robot technology must be developed.

Chemical Mechanical Polishing (CMP) 공정을 이용한 Mutilevel Metal 구조의 광역 평탄화에 관한 연구 (A Study for Global Planarization of Mutilevel Metal by CMP)

  • 김상용;서용진;김태형;이우선;김창일;장의구
    • 한국전기전자재료학회논문지
    • /
    • 제11권12호
    • /
    • pp.1084-1090
    • /
    • 1998
  • As device sizes are scaled down to submicron dimensions, planarization technology becomes increasingly important for both device fabrication and formation of multilevel interconnects. Chemical mechanical polishing (CMP) has emerged recently as a new processing technique for achieving a high degree of planarization for submicron VLSI applications. The polishing process has many variables, and most of which are not well understood. The factors determine the planarization performance are slurry and pad type, insert material, conditioning technique, and choice of polishing tool. Circuit density, pattern size, and wiring layout also affect the performance of a CMP planarization process. This paper presents the results of studies on CMP process window characterization for 0.35 micron process with 5 metal layers.

  • PDF

전기화학 기계적 연마를 이용한 Cu 배선의 평탄화 (Planarization of Cu intereonnect using ECMP process)

  • 정석훈;서현덕;박범영;박재홍;이호준;오지헌;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.79-80
    • /
    • 2007
  • Copper has been used as an interconnect material in the fabrication of semiconductor devices, because of its higher electrical conductivity and superior electro-migration resistance. Chemical mechanical polishing (CMP) technique is required to planarize the overburden Cu film in an interconnect process. Various problems such as dishing, erosion, and delamination are caused by the high pressure and chemical effects in the Cu CMP process. But these problems have to be solved for the fabrication of the next generation semiconductor devices. Therefore, new process which is electro-chemical mechanical planarization/polishing (ECMP) or electro-chemical mechanical planarization was introduced to solve the. technical difficulties and problems in CMP process. In the ECMP process, Cu ions are dissolved electrochemically by the applying an anodic potential energy on the Cu surface in an electrolyte. And then, Cu complex layer are mechanically removed by the mechanical effects between pad and abrasive. This paper focuses on the manufacturing of ECMP system and its process. ECMP equipment which has better performance and stability was manufactured for the planarization process.

  • PDF

CMP 공정을 이용한 Multilevel Metal 구조의 평탄화 연구 (Planarization of Multi-level metal Structure by Chemical Mechanical Polishing)

  • 김상용;서용진;김태형;이우선;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.456-460
    • /
    • 1997
  • As device sizes are scaled to submicron dimensions, planarization technology becomes increasing1y important, both during device fabrication and during formation of multilevel interconnects and wiring. Chemical Mechanical Polishing (CMP) has emerged recently as a new processing technique for achieving a high degree of planarization for submicron VLSI applications. This paper is presented the results of CMP process window characterization studies for 0.35 micron process with 6 metal layers.

  • PDF

The Effect of Mechanical Properties of Polishing Pads on Oxide CMP(Chemical Mechanical Planarization)

  • Hong, Yi-Koan;Eom, Dae-Hong;Kang, Young-Jae;Park, Jin-Goo;Kim, Jae-Seok;Kim, Geon;Lee, Ju-Yeol;Park, In-Ha
    • KSTLE International Journal
    • /
    • 제5권1호
    • /
    • pp.32-35
    • /
    • 2004
  • The purpose of this study is to investigate the effects of the structure and mechanical properties of laser-processed pads on their polishing behavior such as their removal rate and WIWNU (within wafer non-uniformity) during the chemical mechanical planarization (CMP) process. The holes on the pad acted as the reservoir of slurry particles and enhanced the removal rate. Without grooves, no effective removal of wafers was possible. When the length of the circular-type grooves was increased, higher removal rates and lower wafer non-uniformity were measured. The removal rate and non-uniformity linearly increased as the elastic modulus of the top pad increased. Higher removal rates and lower non-uniformity were measured as the hardness of the pad increased.

구리 CMP 적용을 위한 산성 콜로이드 실리카를 포함한 준무연마제 슬러리 연구 (A Study on Semi Abrasive Free Slurry including Acid Colloidal Silica for Copper Chemical Mechanical Planarization)

  • 김남훈;김상용;서용진;김태형;장의구
    • 한국전기전자재료학회논문지
    • /
    • 제17권3호
    • /
    • pp.272-277
    • /
    • 2004
  • The primary aim of this study is to investigate new semi-abrasive free slurry including acid colloidal silica and hydrogen peroxide for copper chemical-mechanical planarization (CMP). In general, slurry for copper CMP consists of colloidal silica as an abrasive, organic acid as a complex-forming agent, hydrogen peroxide as an oxidizing agent, a film forming agent, a pH control agent and several additives. We developed new semi-abrasive free slurry (SAFS) including below 0.5% acid colloidal silica. We evaluated additives as stabilizers for hydrogen peroxide as well as accelerators in tantalum nitride CMP process. We also estimated dispersion stability and Zeta potential of the acid colloidal silica with additives. The extent of enhancement in tantalum nitride CMP was verified through anelectrochemical test. This approach may be useful for the application of single and first step copper CMP slurry with one package system.

Blanket Wafer의 CMP특성에 Slurry가 미치는 영향 (Effect of slurry on CMP characteristics of Blanket Wafer)

  • 김경준;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.172-176
    • /
    • 1996
  • The rapid structural change of ULSI chip includes minimum features, multilevel interconnection and large diameter wafers. Demands for the advanced chip structure necessitates the development of enhanced deposition, etching and planarization techniques. Planarization refers to a process that make rugged surfaces flat and uniform. One of the emerging technologies for planarization is chemical mechanical polishing(CMP). Chemical and mechanical removal actions occur during CMP, and both appear to be closely interrelated. The purpose of this study is the optimal application of the slurry to the various types of device materials during CMP. We investigates the effect of slurry on CMP characteristics for thermal oxide and sputtered Al blanket wafers. Results from the polishing rate and the uniformity of residual film include mechanical and chemical reactions between several set of slurry and work material.

  • PDF