• Title/Summary/Keyword: Chebyshev approximation

Search Result 35, Processing Time 0.022 seconds

Comparison of Matrix Exponential Methods for Fuel Burnup Calculations

  • Oh, Hyung-Suk;Yang, Won-Sik
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.172-181
    • /
    • 1999
  • Series expansion methods to compute the exponential of a matrix have been compared by applying them to fuel depletion calculations. Specifically, Taylor, Pade, Chebyshev, and rational Chebyshev approximations have been investigated by approximating the exponentials of bum matrices by truncated series of each method with the scaling and squaring algorithm. The accuracy and efficiency of these methods have been tested by performing various numerical tests using one thermal reactor and two fast reactor depletion problems. The results indicate that all the four series methods are accurate enough to be used for fuel depletion calculations although the rational Chebyshev approximation is relatively less accurate. They also show that the rational approximations are more efficient than the polynomial approximations. Considering the computational accuracy and efficiency, the Pade approximation appears to be better than the other methods. Its accuracy is better than the rational Chebyshev approximation, while being comparable to the polynomial approximations. On the other hand, its efficiency is better than the polynomial approximations and is similar to the rational Chebyshev approximation. In particular, for fast reactor depletion calculations, it is faster than the polynomial approximations by a factor of ∼ 1.7.

  • PDF

Comparing Solution Methods for a Basic RBC Model

  • Joo, Semin
    • Management Science and Financial Engineering
    • /
    • v.21 no.2
    • /
    • pp.25-30
    • /
    • 2015
  • This short article compares different solution methods for a basic RBC model (Hansen, 1985). We solve and simulate the model using two main algorithms: the methods of perturbation and projection, respectively. One novelty is that we offer a type of the hybrid method: we compute easily a second-order approximation to decision rules and use that approximation as an initial guess for finding Chebyshev polynomials. We also find that the second-order perturbation method is most competitive in terms of accuracy for standard RBC model.

ON ω-CHEBYSHEV SUBSPACES IN BANACH SPACES

  • Shams, Maram;Mazaheri, Hamid;Vaezpour, Sayed Mansour
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.601-606
    • /
    • 2008
  • The purpose of this paper is to introduce and discuss the concept of ${\omega}$-Chebyshev subspaces in Banach spaces. The concept of quasi Chebyshev in Banach space is defined. We show that ${\omega}$-Chebyshevity of subspaces are a new class in approximation theory. In this paper, also we consider orthogonality in normed spaces.

Chebyshev Approximation of Field-Effect Mobility in a-Si:H TFT (비정질 실리콘 박막 트랜지스터에서 전계효과 이동도의 Chebyshev 근사)

  • 박재홍;김철주
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.77-83
    • /
    • 1994
  • In this paper we numerically approximated the field-effect mobility of a-Si:H TFT. Field-effect mobility, based on the charge-trapping model and new effective capacitance model in our study, used Chebyshev approximation was approximated as the function of gate potential(gate-to-channel voltage). Even though various external factors are changed, this formula can be applied by choosing the characteristic coefficients without any change of the approximation formula corresponding to each operation region. Using new approximated field-effect mobility formula, the dependences of field-effect mobility on materials and thickness of gate insulator, thickness of a-Si bulk, and operation temperature in inverted staggered-electrode a-Si:H TFT were estimated. By this was the usefulness of new approximated mobility formula proved.

  • PDF

OPTIMAL STRATEGIES IN BIOECONOMIC DIFFERENTIAL GAMES: INSIGHTS FROM CHEBYSHEV TAU METHOD

  • Shahd H. Alkharaz;Essam El-Siedy;Eliwa M. Roushdy;Muner M. Abou Hasan
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.527-543
    • /
    • 2024
  • In the realm of differential games and bioeconomic modeling, where intricate systems and multifaceted interactions abound, we explore the precision and efficiency of the Chebyshev Tau method (CTM). We begin with the Weierstrass Approximation Theorem, employing Chebyshev polynomials to pave the way for solving intricate bioeconomic differential games. Our case study revolves around a three-player bioeconomic differential game, unveiling a unique open-loop Nash equilibrium using Hamiltonians and the FilippovCesari existence theorem. We then transition to numerical implementation, employing CTM to resolve a Three-Point Boundary Value Problem (TPBVP) with varying degrees of approximation.

TWO-SIDED BEST SIMULTANEOUS APPROXIMATION

  • Rhee, Hyang Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.705-710
    • /
    • 2010
  • Let $C_1(X)$ be a normed linear space over ${\mathbb{R}}^m$, and S be an n-dimensional subspace of $C_1(X)$ with spaned by {$s_1,{\cdots},s_n$}. For each ${\ell}$- tuple vectors F in $C_1(X)$, the two-sided best simultaneous approximation problem is $$\min_{s{\in}S}\;\max\limits_{i=1}^\ell\{{\parallel}f_i-s{\parallel}_1\}$$. A $s{\in}S$ attaining the above minimum is called a two-sided best simultaneous approximation or a Chebyshev center for $F=\{f_1,{\cdots},f_{\ell}\}$ from S. This paper is concerned with algorithm for calculating two-sided best simultaneous approximation, in the case of continuous functions.

ON $\varepsilon$-BIRKHOFF ORTHOGONALITY AND $\varepsilon$-NEAR BEST APPROXIMATION

  • Sharma, Meenu;Narang, T.D.
    • The Pure and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.153-162
    • /
    • 2001
  • In this Paper, the notion of $\varepsilon$-Birkhoff orthogonality introduced by Dragomir [An. Univ. Timisoara Ser. Stiint. Mat. 29(1991), no. 1, 51-58] in normed linear spaces has been extended to metric linear spaces and a decomposition theorem has been proved. Some results of Kainen, Kurkova and Vogt [J. Approx. Theory 105 (2000), no. 2, 252-262] proved on e-near best approximation in normed linear spaces have also been extended to metric linear spaces. It is shown that if (X, d) is a convex metric linear space which is pseudo strictly convex and M a boundedly compact closed subset of X such that for each $\varepsilon$>0 there exists a continuous $\varepsilon$-near best approximation $\phi$ : X → M of X by M then M is a chebyshev set .

  • PDF

GEOMETRIC CONIC SPLINE APPROXIMATION IN CAGD

  • Ahn, Young-Joon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.331-347
    • /
    • 2002
  • We characterize the best geometric conic approximation to regular plane curve and verify its uniqueness. Our characterization for the best geometric conic approximation can be applied to degree reduction, offset curve approximation or convolution curve approximation which are very frequently occurred in CAGD (Computer Aided Geometric Design). We also present the numerical results for these applications.

CONTINUITY OF ONE-SIDED BEST SIMULTANEOUS APPROXIMATIONS

  • Lee, Mun-Bae;Park, Sung-Ho;Rhee, Hyang-Joo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.743-753
    • /
    • 2000
  • In the space $C_1(X)$ of real-valued continuous functions with $L_1-norm$, every bounded set has a relative Chebyshev center in a finite-dimensional subspace S. Moreover, the set function $F\rightarrowZ_S(F)$ corresponding to F the set of its relative Chebyshev centers, in continuous on the space B[$C_1(X)$(X)] of nonempty bounded subsets of $C_1(X)$ (X) with the Hausdorff metric. In particular, every bounded set has a relative Chebyshev center in the closed convex set S(F) of S and the set function $F\rightarrowZ_S(F)$(F) is continuous on B[$C_1(X)$ (X)] with a condition that the sets S(.) are equal.

  • PDF

FRACTIONAL CHEBYSHEV FINITE DIFFERENCE METHOD FOR SOLVING THE FRACTIONAL BVPS

  • Khader, M.M.;Hendy, A.S.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.299-309
    • /
    • 2013
  • In this paper, we introduce a new numerical technique which we call fractional Chebyshev finite difference method (FChFD). The algorithm is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. We tested this technique to solve numerically fractional BVPs. The proposed technique is based on using matrix operator expressions which applies to the differential terms. The operational matrix method is derived in our approach in order to approximate the fractional derivatives. This operational matrix method can be regarded as a non-uniform finite difference scheme. The error bound for the fractional derivatives is introduced. The fractional derivatives are presented in terms of Caputo sense. The application of the method to fractional BVPs leads to algebraic systems which can be solved by an appropriate method. Several numerical examples are provided to confirm the accuracy and the effectiveness of the proposed method.