DOI QR코드

DOI QR Code

FRACTIONAL CHEBYSHEV FINITE DIFFERENCE METHOD FOR SOLVING THE FRACTIONAL BVPS

  • Khader, M.M. (Department of Mathematics, Faculty of Sceince, Benha University) ;
  • Hendy, A.S. (Department of Mathematics, Faculty of Sceince, Benha University)
  • Received : 2012.06.20
  • Accepted : 2012.09.25
  • Published : 2013.01.30

Abstract

In this paper, we introduce a new numerical technique which we call fractional Chebyshev finite difference method (FChFD). The algorithm is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. We tested this technique to solve numerically fractional BVPs. The proposed technique is based on using matrix operator expressions which applies to the differential terms. The operational matrix method is derived in our approach in order to approximate the fractional derivatives. This operational matrix method can be regarded as a non-uniform finite difference scheme. The error bound for the fractional derivatives is introduced. The fractional derivatives are presented in terms of Caputo sense. The application of the method to fractional BVPs leads to algebraic systems which can be solved by an appropriate method. Several numerical examples are provided to confirm the accuracy and the effectiveness of the proposed method.

Keywords

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1964.
  2. R. L. Bagley and P. J. Torvik, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech. 51 (1984), 294-298. https://doi.org/10.1115/1.3167615
  3. C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods, Springer-Verlag, New York, 2006.
  4. C. Clenshaw and A. Curtis, A method for numerical integration of an automatic computer, Numer. Math. 2 (1960), 197-205. https://doi.org/10.1007/BF01386223
  5. E. M. E. Elbarbary and M. El-Kady, Chebyshev finite difference approximation for the boundary value problems, Appl. Math. Comput. 139 (2003), 513-523. https://doi.org/10.1016/S0096-3003(02)00214-X
  6. E. M. E. Elbarbary and N. S. Elgazery, Flow and heat transfer of a micropolar fluid in an axisymmetric stagnation flow on a cylinder with variable properties and suction (numerical study), Acta Mechanica 176 (2005), 213-229. https://doi.org/10.1007/s00707-004-0205-z
  7. E. H. Doha, A. H. Bahrawy and S. S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. Math. Modeling 35 (2011), 5662-5672. https://doi.org/10.1016/j.apm.2011.05.011
  8. E. H. Doha, A. H. Bahrawy and S. S. Ezz-Eldien, A new Jacobi operational matrix: An application for solving fractional differential equations, Appl. Math. Modeling 35 (2012), in press.
  9. E. M. E. Elbarbary and M. S. El-Sayed, Higher order pseudo-spectral differentiation matrices, Applied Numerical Mathematics 55 (2005), 425-438. https://doi.org/10.1016/j.apnum.2004.12.001
  10. D. Funaro, Polynomial Approximation of Differential Equations, Springer Verlag, New York, 1992.
  11. M. Gulsu, Y. Ozturk and M. Sezer, On the solution of the Abel equation of the second kind by the shifted Chebyshev polynomials, Appl. Maths. and Comput. 217 (2011), 4827-4833. https://doi.org/10.1016/j.amc.2010.11.044
  12. I. Hashim, O. Abdulaziz and S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 674-684. https://doi.org/10.1016/j.cnsns.2007.09.014
  13. H. Jafari and V. Daftardar-Gejji, Solving linear and non-linear fractional diffusion and wave equations by Adomian decomposition method, Appl. Math. and Comput. 180 (2006), 488-497. https://doi.org/10.1016/j.amc.2005.12.031
  14. M. M. Khader, On the numerical solutions for the fractional diffusion equation, Communications in Nonlinear Science and Numerical Simulations 16 (2011), 2535-2542. https://doi.org/10.1016/j.cnsns.2010.09.007
  15. M. M. Khader, Numerical solution of nonlinear multi-order fractional differential equations by implementation of the operational matrix of fractional derivative, Studies in Nonlinear Sciences 2(1) (2011), 5-12.
  16. M. M. Khader and A. S. Hendy, The approximate and exact solutions of the fractionalorder delay differential equations using Legendre pseudospectral method, International Journal of Pure and Applied Mathematics 74(3) (2012), 287-297.
  17. A. K. Khalifa, E. M. E. Elbarbary and M. A. Abd-Elrazek, Chebyshev expansion method for solving second and fourth-order elliptic equations, Applied Mathematics and Computation 135 (2003), 307-318. https://doi.org/10.1016/S0096-3003(01)00333-2
  18. Q. M. Mdallal and M. Syam, A collocation-shooting method for solving fractional boundary value problems, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 3814-3822. https://doi.org/10.1016/j.cnsns.2010.01.020
  19. M. M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided spacefractional partial differential equations, Appl. Numer. Math. 56 (2006), 80-90. https://doi.org/10.1016/j.apnum.2005.02.008
  20. S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, London, 1993.
  21. N. H. Sweilam, M. M. Khader and R. F. Al-Bar, Numerical studies for a multi-order fractional differential equation, Physics Letters A 371 (2007), 26-33. https://doi.org/10.1016/j.physleta.2007.06.016
  22. N. H. Sweilam and M. M. Khader, Exact solutions of some coupled nonlinear partial differential equations using HPM, Computers and Mathematics with Applications 58 (2009), 2134-2141. https://doi.org/10.1016/j.camwa.2009.03.059
  23. N. H. Sweilam and M. M. Khader, A Chebyshev pseudo-spectral method for solving fractional integro-differential equations, ANZIAM 51 (2010), 464-475. https://doi.org/10.1017/S1446181110000830
  24. I. Timucin, Chebyshev collocation method for solving linear differential equations, Mathematical and Computational Applications 9 (2004), 107-115. https://doi.org/10.3390/mca9010107
  25. R. G. Voigt, D. Gottlieb and M. Y. Hussaini, Spectral Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1984.