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GEOMETRIC CONIC SPLINE
APPROXIMATION IN CAGD

YouNG JoON AHN

ABSTRACT. We characterize the best geometric conic approxima-
tion to regular plane curve and verify its uniqueness. Qur charac-
terization for the best geometric conic approximation can be ap-
plied to degree reduction, offset curve approximation or convolu-
tion curve approximation which are very frequently occurred in
CAGD(Computer Aided Geometric Design). We also present the
numerical results for these applications.

1. Introduction

To approximate a given plane curve by a polynomial or by a rational
curve is one of the most frequently occurring problems in CAGD. This
problem arises from any process converting the curves, such as the inter-
section curves of two surfaces, polynomials of high degree, offset curves
or convolution curves, etc., into an actual CAD system. Furthermore,
all conversion problems which cannot be solved exactly invoke such an
approximation problem.

Thus many efforts and proposals for dealing with these kinds of prob-
lems have been made in the recent twenty years or so. Most publications
focus on certain aspects, e.g., conversion problems [3, 18, 20|, comput-
ing offsets [2, 12, 14, 15] or high accurate geometric approximations
(1, 9, 16, 24]. Also, Eisele [11] characterized the locally best geomet-
ric approximation to a given regular plane curve c(s) by a polynomial
curve b(t) with arbitrary degree d and with all possible contact order &k
at both end points of two curves c(s) and b(t).
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The conic spline which is also called quadratic rational B-spline is one
of the most widely used curves in industry, e.g., to design the bodies of
aircraft, to design outlines of fonts [2, 21, 22] or to express circular arcs
[19] in CAD systems. In this paper we characterize the best geometric
conic spline approximation to regular plane curve, which means that the
(Loo—sense) 'best’ approximation to regular plane curve by the conic
curve with all possible contact order at both end points of two curves is
characterized. We also prove that the best approximate conic is ‘unique’.
Furthermore, We apply our characterization for the best geometric conic
approximation to the degree reduction of cubic rational Bézier curve into
quadratic one, to the conic offset curve approximation, and to the conic
convolution curve approximation.

In Section 2, we explain the geometric properties for conic spline
curves. In Section 3, we introduce a class of admissible curves, for which
an error function and a normal distance to the plane curve c(s) are de-
fined, and also characterize the best geometric conic approximation to
the regular plane curve. In Section 4, we present numerical examples of
three types for the geometric conic approximations: degree reduction,
offset curve approximation and convolution curve approximation. In
Section 5, to verify our characterization for the best geometric conic ap-
proximation, we modify the nonlinear Chebyshev approximation theory
and apply it to the family of error functions of conic approximations. In
Section 6, we summarize our works.

2. Geometric properties for conic curves

In this section we introduce the geometric properties of conic curves
whose composite is called by conic spline. Let b(t), 0 < ¢t < 1, be the
plane conic curve expressed by the standard quadratic rational Bézier
form
b(t) - Bg(t)bo + ’U)B%(t)bl + B%(t)b2

B3(t) +wBi(t) + B3(t)
with (not collinear) control points b; € R?, weights w > 0 associated
with B?(t), where B2(t), i = 0,1,2, are the Bernstein polynomials of
degree n = 2 defined by

0<t<1,

nl . ,
1 B*t) = ———=t'(1 )" "
1) PO = D)
Thus any conic curve has degree of freedom seven, by, b1, b and w.
It is well known [13] that the tangent lines of b(t) at £ = 0 and 1 have
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b
FIGURE 1. The control polygon [bgb;bsg] is plotted by
dash-lines and the associated conic curves b(t) having
the weights w = 1/3, 1 or 3, respectively, are plotted by
connected lines.

the same directions of the lines bgb; and b;bs, respectively, as shown
in Figure 1. Also, the weight w is called by fullness factor, because the
more w is large, the more the conic curve b(t) is close to the control
polygon [bobibs), as shown in Figure 1.

Let the conic curves b(t) and p(t) have the control polygons [bgb; by]
and [pop1p2] with weights w and w/, respectively. The following propo-
sitions are well known in projective geometry [13, 19].

PROPOSITION 2.1. If two conic curves b(t) and p(t) have five distinct
intersection points, then b(t) = p(t) for all t € I := [0, 1].

PROPOSITION 2.2. Assume that two conic curves b(t) and p(t) have
common end points and common tangent direction at both end points.
Then [bgb1bs] = [pop1p2]. Furthermore, b(t) and p(t) have another
intersection point if and only if b(t) = p(t), for all t € I, i.e., [bob1bs] =
[Pop1P2] and w = w'.

Supposed that the polygon [bgb;bs] is fixed, and let  be the interior
of the triangle Abgbibs. We dcfine a mapping A : (0,00) x (0,1) —
by

B(t)by + wB3(t)b; + B3(t)by
(2) h(w,t) :==b(t) = 0 2 12 22
Bg(t) + wB{(t) + B3(t)
where b(t) is the conic curve with the control points bg,b;, by, and
weight w > 0. Then the two variables function A(w, t) is continuous and
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bijective from (0, 00) % (0,1) onto §2. Thus the inverse map h~! is well
defined on 2. Since the Jacobian determinant of h(w,t) is nonzero at
any point (w,t) € (0,00) x (0,1), the map h~! is continuous at each
point in €2 by the open mapping theorem for the two variables function
h. Thus we have the following proposition which is needed to prove
Theorem 5.5.

PROPOSITION 2.3. Let h(w,t) be the function defined as in Equation
(2). Then h is a homeomorphism from (0,00) % (0,1) onto (.

3. Characterization for the best geometric conic approxima-
tion

In this section we present the characterization for the best geometric
conic approximation to the given regular plane curves. To high accurate
approximate plane curves by polynomial or rational curves [1, 4, 6, 9,
10, 11, 16, 24|, the parametrization-independent concept for contact of
two curves at a common end point, also known as geometric continuity,
is crucial in GHI (Geometric Herimte Interpolation).

DEFINITION 3.1. ([11, 17]). Let b(t) and c(t) be C* regular paramet-
ric plane curves form I into R?, & be a nonnegative integer and ¢y = 0
or 1. Two curves b(¢) and c(¢) have contact of order k at tg if there
are CF reparametrizations 7 and 7 such that 7;(tp) = to (i = 1,2),
T{(to)’l’é(to) > 0 and

d d

aﬁb(ﬁ(t)) e = C—ZFC(Tz(t)) e fori=0,---k.

If b(¢) has contact of order k to the curve c(s) at both end points,
then b(t) is called by a G*-approzimation (or G¥-interpolation) to the
curve c(s). In this paper the domains of curves are assumed to be I,
which is possible using translation and scaling of the given domains.
In this paper we characterize the best G* approximation to the given
plane curve c(s) from all conic curves b(¢) for k = 0 or 1. To find the
approximate curve b(¢), using the normal vector field, we define a certain
class of admissible curves with respect to the curve ¢(s) for which the
normal distance to c(s) can be defined as follows.

DEFINITION 3.2. (See [11] and Figure 2). A curve b(¢), 0 <t <1, is
said to be admissible with respect to the curve ¢(s), 0 < s < 1, if
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FIGURE 2. Admissible curve: the point b(¢(sg)), 0 <
sg < 1, lies on normal line M (sp) of the source curve c(s)
at s = sg, and p(sp) is the signed distance from b(¢(sg))
to C(SO).

(i) there exists a unique strictly increasing bijective map ¢p : [ — I
such that, for each s € I, the point b(¢p(s)) lies on the normal
line N (s) := {c(s) + u-nc(s) : u € R} of ¢ at ¢(s), where ne(s)
denotes the unit normal vector of the plane curve ¢ at c(s);

(ii) the tangent vector of b(t) at ¢ = ¢p(s) is not parallel to nc(s) for
any s € 1.

Let B be the class of admissible conic curves with respect to the given
plane curve c, and let By, := {b € B : b and ¢ have contact order & at
the points ¢(0) and ¢(1)}, for £ = 0,1. Note that By C By ¢ B. If
b € B, then there exists a unique continuous map py, : I — R satisfying:

b(¢b(s)) = c(s) + pu(s) - nc(s), s€I.

Since ¢p(s) is surjective,

lowlloe =z (rmin [b(2) - 9]

Hence we call ||pp||oo the normal distance (in Lo, sense) from conic b(t)
to the plane curve c(s). If pp(s) has the minimum norm among all
b € By, then b(t) is called the best approzimation in By to the plane
curve c(s).

DEFINITION 3.3. A continuous function g : I — R alternates (at
least) n times if and only if there are n values s; € I such that 0 < s; <
< sy <1and g(s;) = —g(sit1) = £|gllec, t = 1,--+ ,n — 1.

The following theorem is our main result, which is proved in Section
5.



336 Young Joon Ahn

THEOREM 3.4. For k = 0,1, b(t) is the best G* conic approximation
in By, to the regular plane curve c(s) if and only if its signed error
function py(s) alternates 4 — 2k times. Furthermore, the best G* conic
approximation to the curve c(s) is unique in B.

REMARK. If a conic b(t) is in B, then we have
dH(c’b) < ”Pb”om

where dg(c,b) is the Hausdorff distance between two curves ¢ and b
= in ||b(t) — i —
i b) = max (masemin [1(0) = (9] e () — (9] )

and the difference of two curves measured by the sense of human eyes is
equal to their Hausdorff distance [8].

4. Application and numerical examples

In this section we present some applications of our characterization
for the best geometric conic approximation. The applications consist of
three examples which are most typical curve approximation problems in
CAGD.

The first example is 'degree reduction’ of the cubic rational Bézier
curve into the quadratic one. Any plane cubic rational Bézier curve
c(s), 0 < s < 1, are defined by three cubic polynomials z(s), y(s) and
w(s) such that c(s) = (z(s)/w(s),y(s)/w(s)), 0 < s <1, and it can be
represented in Bézier form

Z?:o wib; B} (s)

Z?:O sz? (8) ’
where b; € R? and w; > 0, 0 < i < 3, are control points and weights of
the cubic rational Bézier curve ¢(s), and B3(s), 0 <t < 1, are the cubic
Bernstein polynomials defined in Equation (1). As shown in Figure 3,
the cubic rational Bézier curve c(s), 0 < s < 1, has the control points (0,
0), (1.7,0.2), (3.2,~0.1) and (2.4,-0.9), and weights 1, 1, 1.3 and 1 in
order. The degree reduction makes an error in general. Thus using our
characterization theorem, we obtain the best G! conic approximation
curve b(t) to the cubic rational curve c(s). Then the conic curve b(t)
has the control points (0,0), (3.74,0.44) and (2.4,~0.9) in order, and
the weight w = 0.7475. The Hausdorff distance between the two curves
b(t) and c(s) is 3.14 x 1072 which is the minimal distance from all
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FIGURE 3. The given cubic rational Bézier curve c(s),
0 < s < 1, and its control polygon are plotted by con-
nected lines. The best G! approximate conic b(t) and
its control polygon [bgb;bs] are plotted by dash-lines.
The sighed error function py(s) plotted in the left figure
alternates twice.

G' conic curves to c(s). The signed error function pu(s) alternates
twice as shown in Figure 3. As the same method, we present another
geometric conic spline approximation of the cubic rational spline which
is the piece-wise cubic rational Bézier curves. As shown in Figure 4(a),
the font “r" is constructed by cubic rational spline, and its height is
540 units. Ahn[4] presented the optimal G' conic approximation with
respect to the distance in a fixed direction and presented the maximum
error bound 3.89 units. In this paper we can obtain the 'real’ best G
conic spline approximation using our characterization theorem as shown
in Figure 4(b) and obtain the maximum error bound 1.70 units.

The second example is geometric 'conic offset approximation’. ([12]
or [15].) For the offset distance d € R, its offset curve &4 : I — R2 of
the conic curve c(s) is defined by

€a(s) = c(s) + d - n(s),

where n(s) is the normal vector of ¢ at c(s) with outward direction of
the conic curve. Using our characterization theorem, we find the best G*
conic approximation b(t), 0 < ¢ < 1, to the offset curve ¢4(s), 0 < s < 1.
As an example, we consider a quarter of ellipse with a 2 : 1 axes ratio in
the first quadrant as shown in Figure 5(a). This can be represented by a
conic curve ¢(s), 0 < s < 1, with control points (2,0),(2,1),(0,1), in order,
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(a) | T (b)

FIGURE 4. (a) The outline for the font "r” constructed
by cubic rational spline plotted by thick lines. The poly-
gon by dash-lines means the control-points of cubic ratio-
nal spline curve and the circles are the junction points of
two consecutive cubic segments. (b) The best G conic
spline approximation plotted by thick lines can be ob-
tained using our characterization theorem. The polygon
means the control-points of the conic spline curve in form
of quadratic rational spline, and the circles are the junc-
tion points of the conic segments.

and weight w = 1/v/2. ([13].) As shown in Figure 5(a), we obtain the
best G! conic approximations by(t) to €4(s), for d = 1,2, 3, respectively.
We also find the Hausdorff distances between the offset curve €4(s) and
its approximation by(t) for d = 1,2, 3, using their signed error functions
p(s) for d = 1,2,3, which alternates twice as shown in Figure 5(b).

The last example is geometric ‘conic approximation of convolution
curve’ of any two conic curves. The convolution curve ¢ * co of two
plane curves ¢;(t) and co(s) is defined [5] by

(€1 * c2)(t) = c1(t) + ca(s(t)),

where the vector-valued derivative ¢} (t) is parallel to c4(s(t)) and ¢/ (t) -
ch(s(t)) > O for a reparametrization s = s(t). When D; and Ds are
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FIGURE 5. (a) A quarter of ellipse c(s) is plotted by
thick lines, and the best G! conic approximation to the
offset curves ¢4(s), d = 1,2,3 are plotted by dash-lines.
(b) The signed error functions p(s), 0 < s < 1, for ¢4(s),
d =1,2,3, alternate twice.

simply connected domain and have the boundary curves ¢; and ca, re-
spectively, the boundary of the Minkowski sum D; @ Dy is a subset of
the convolution curve c; * ¢z [5], where

Dy ® Dy = {x3 + %9 : x3 € Dy and x3 € Dy}

Let c;(t) be the ellipse which is an example of a shape of cross section
of 'pen’ as shown in Figure 6(a). The font D" is produced by moving
the center of ellipse along the curve ca(s) in Figure 6(b), which consists
of two conic and three straight lines. The Minkowski sum obtained
by sweeping the curve c;(t) along the curve c3(s) is plotted roughly in
Figure 6(c). As shown in Figure 6(d). the boundary of the Minkowski
sum is the outlines for the font “D” and it consists of two parts: the
convolution curves c¢j xco and subsets of ellipse. Finally, we approximate
the convolution curves in Figure 6(d) by the best G conic approximation
as shown in Figure 6(e).

5. Proof of the main theorem

In this section we prove the main theorem (Theorem 3.4) using the
alternation theorem of Rice[23]. The following definitions modified by
Eisele [11] from the nonlinear approximation theory [7] are needed to
prove the main theorem. Let D be any nonempty subset of R" and F
be any continuous mapping from D x I into R.
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(d)

FIGURE 6. (a) An ellipse which is an example for a shape
of cross section of “pen”. (b) A skeleton curve for the
font "D” along which the center of the ellipse will be
moved. (c) The Minkowski sum of two curves in (a)
and (b). (d) The outline for the font "D” obtained from
the boundary of the Minkowski sum. (e) The best G*
conic spline approximation of the outline, which consists
of seven conic curves and four straight lines.

DEFINITION 5.1. F is locally solvent of degree m € N at a € D with
respect to the interval (0, 1) if and only if given m points s; with 0 < 51 <
c+v < 8y < 1 and € > 0 there is 6 := §(a,&,81, +* ,8m) > 0 such that
n; € Rand |n;—F(a,s;)| < 4,5 =1,---,m, imply the existence of b € D
satisfying F(b,s;) =n;, j =1,--+ ,m, and ||[F(b,-) — F(a,")|lec <.
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DEFINITION 5.2. F hasthe Property Z of degree m € N ata € D with
respect to the interval (0, 1) if and only if for any b € D, the difference
F(a,-) — F(b,-) either has at most m — 1 zeros in the interval (0,1) or
vanishes identically.

DEFINITION 5.3. F' is wvarisolvent with respect to the interval (0,1)
if and only if at each point @ € D, both the local solvency and the
Property Z with respect to (0,1) are defined and have the same degree
m(a).

THEOREM 5.4. Let f be a continuous function in I, and let F be
varisolvent with respect to (0,1) with F(a,0) = f(0) and F(a,1) = f(1)
for all a € D. Then F(a,-) is the best approximation to f if and only if
F(a,-)— f alternates at least m(a)+1 times. Furthermore, if F'(a,-)— f(-)
is not identically zero, there is at most one best approximation to f.

Proor. If F(a,-) — f is constant, then F(a,s) — f(s) = F(a,0) —
f(0) = 0 for every s € I and the statement is obvious. Thus we may
assume that F'(a,-) — f is not constant. Now the proofs of Theorem 3.9
and 3.10 in [7] carry over. Since |[F(a, )} — f]lo has not its maximum at
both 0 and 1, the assertion follows. 4

Now, we prove the main theorem. Let b(t) be the conic in By, k =
0,1. Since the source curve c(s), 0 < s < 1, and the approximate
curve b(t) have the contact order kK > 0 at both end points, we have
c(0) = b(0) and ¢(1) = b(1), ie, by = ¢(0) and by = c(1), where
bg, b1, by are the control points of the conic b(t). Thus any conic b(#)
in By is determined by three parameters w > 0, by = (x1,%1), and
any b(t) in By is determined by only one parameter w > 0, since the
vertex bj is the intersection of the two tangent lines of c(s) at s =0, 1.
For k = 0,1, let o := (w,z1,71) € R3 and let b, € By be the conic
determined by weight w and vertex by = (z1,y1). Let Ax C R3 be the
set of all « such that b, € B for k = 0,1. Note that A; C 4g C R3.
We define the mappings & : Ay x I - I and F: Ay x I — R by

(3) ®(a,s) == ¢p,(s) and FE(a,s) := pp,(s), (a,s) € A x 1.

Note that ¢ and E are continuous. ([9]) We prove the following theorem
using the inverse function theorem in Appendix.

THEOREM 5.5. For k = 0,1, and for D := A;, C R3, the restricted
mapping F := E|pyy is locally solvent of fixed degree 3 — 2k at each
o € D with respect to the interval (0,1).
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PROOF. See Appendix. O

THEOREM 5.6. For a € Ay, k = 0,1, the mapping F := E| 4, xj) has
Property Z at « of fixed degree 3 — 2k with respect to the interval (0, 1).

PrOOF. Let k = 0. If F(a,-) — F(¢/,-) has three zeros in the open
interval (0,1), then it has five zeros in I, and the two conic curves by,
and b, have five distinct common points. By Proposition 2.1, we have
a=d and F(a,') — F(d,-) = 0.

Let k = 1. If F(a,") — F(¢/,-) has a zero in (0,1), then b, and
b, have a common point which is not the end points. It follows from
Proposition 2.2 that a = o and F(a,-) — F(d/,-) = 0. d

COROLLARY 5.7. For k = 0,1, F' := E|axr) is varisolvent of fixed
degree 3 — 2k with respect to (0,1) in Ayg.

Using the result of Theorem 5.4 and Corollary 5.7, we prove Theorem
34.

PrROOF THEOREM 3.4. For any a € A, k > 0, we have b, € By
and E(a,0) = E(a,1) = 0. It follows from Theorem 5.4 and Corollary
5.7 that E(a,-) alternates 4 — 2k times if and only if E(a,-) is the best
approximation in Aj to the curve f = 0, which means that b, is the
best G* conic approximation in By, to the curve c. By Equation (3), the
assertion is obtained.

To show the uniqueness for the best approximation, we assume the
existence of another best approximation b,,. By Theorem 5.4, E(a, ) =
E(d/,) = 0. Thus the Hausdorff distance between two conics b, and
b, is zero. By Proposition 2.1, we get b,(t) = by (t) for all t € I and
a=d. O

6. Comments

In this paper we characterized the best G* conic approximation b(t),
0 <t <1, to the regular plane curve c(s), 0 < s < 1, where ¢ and b have
contact order £ = 0 or 1 at both end points, and proved that the best
approximate conic is unique. We applied our characterization to the
degree reduction of cubic rational Bézier curve into quadratic one, conic
offset curve approximation and conic convolution curve approximation,
and presented the numerical results.
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7. Appendix

PROOF OF THEOREM 5.5. Let there be given ag € A, € > 0,
and 3 — 2k values s; € (0,1) with 0 < 81 < -+ < s39x < 1. By
Definition 5.1 and Equation (3), we have to find § > 0 such that the
equations E(a,s;) = nj, j = 1,---,3 — 2k, have a solution a € A
with ||E(a,-) — E(ap, )|l < € if ; € R and |n; — E(ag, s5)] < § for
j=1,---,3 — 2k. By the definition of F, we have to solve the 3 — 2k
equations (note that £ and ® are not explicitly known):

(4) ba(t;) =c(s;) +nj - nls;) =: (uj,v5), j=1,---,3 -2k,

where a € A, and tj € (0,1), j =1,---,3 — 2k are unknown.

Since E is continuous, and the set {(ap,s) € R* : g is fixed in Ay
and s € I} is compact in R*, there exists §* > 0 (depending only on ¢
and o) such that

(5) |E(a, s) — E(agp,s)| <€ foral0<s<1

if ||a - ag|| < §*. For simplicity of calculation, without loss of generality,
we may assume that bg is origin, b; = (z1,¥1), y1 # 0, and by is the
point (1,0), using affine map in R?-plane. Then if k = 0, (z1,y1) and w
is undetermined, and if £ = 1, w is undetermined.

First, let k£ = 0. Using

_(2wmt(l—t) + £ 2wyit(l —t)
but) = (R, B0,

where N(t) := B3(t) + wB?(t) + B2(t) = (1 — )% + 2wt(1 — t) + 2, we
have the following system
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(Qwz1t (1 — t1) +t2)/N(t1)

(meltg(l —t2) + t%)/N(tz)

(2wa:1t3(1 — t3) + t%)/N(tg)
2wy1t1(1 - tl)/N(tl)
2w'y1t2(1 - tg)/N(tz)
2wy ts(1 — t3)/N(t3)

(6) G(w,z1,y1,t1,t2,t3) =

U1
U2
U3
V1
()
U3

where G : R® — RS, which is equivalent to Equation (4). If n; =
E(ap,s5),j =1,2,3, then (ag, (v, 51), <I>(a0,32),<1>(a0,33))solves Equa-
tion (7). This solutlon is denoted by xg € RS.

We show that the Jacobian determinant of G at xo = (w, 21,1, t1, t2, t3)
can be factorized as follows.

3
B2
(7) det(DG(xo))=8y 4(t1—t2)(t2—t3 t3—t1 H J\;
i=1
Using simple calculations, we have
3
(8) det (DG(xp)) = H ) .det T
=1 ¢
where I' is the 6x6 matrix
B%(tl)Ml(tl) L(tl) 0 Kl(tl) 0 0
Bi(ta)My(ta) L(t2) 0 0  Ki(t) 0
r— B%(ts)My(t3) L(ts) 0 0 0  Ki(ts)
Bi(t))Ma(t)) 0 L(t1) Kx(t)) O 0
B3(ty)Ma(t2) 0 Lita) 0  Ka(ta) 0
B%(tg)Mz(tg,) 0 L(t3) 0 0 Ko(t3)

and
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L(t) = Bi()N(),
Mi(t) = z(2t% —2t+1) —t%
My(t) = yy(2t> -2t 4 1),
Ki(t) = 2wz (1 —2t)+ 2wt® — 2% 4 2t,
Ko(t) = 2wy (1—2t).

By subtracting the (3 + ¢)th row times Kj(¢;)/K2(¢;) from ith row for
i=0,1,2 in I and by M;(t) — Ma(t)K1(t)/Ka(t) = y1L(t)/Ka(t), we

have oo
det I' = det (r; r3>
where _
yi1L(t1)/Ka(t1) Bi(0)N(t1) —L(t1)K1(t1)/Ka(t1)
Iy = | wil{t2)/Ka(ta) Bi(t2)N(t2) —L(t2)Ki(t2)/Ka(t2)
y1L(t3)/Ka(ts) Bi(ts)N(ts) —L(t3)K1(ts)/Ka(ts)
[ Bi(t1)Ma(t1) 0 L(tl))
Iy = B2(ta)Ma(t2) 0 L(ts)
Bi(t3)Ma(ts) 0 L(ts)
Kat) 0 0
ry = 0 K(ts) 0 .
0 0 Kz(t3)>

Note that det T' = det I'1 - det T3 and det I's = Ka(t1)Ka(t2)Ka(ts).
Thus

3
(9) det I' = —yydet T} [ ] L(t),
=1

B(t1) Ka(t1) Ki(t1)
Fll = B%(fg) Kg(tg) Kl(tg) .
Bi(ts) Ka(ts) Ki(ts)
By a simple calculation of determinant of 3x3 matrix, we obtain
(10) det Fll = —8w2y1 (t1 — to)(to —t3)(ts — t1).
Therefore, Equation (7) follows from Equations (8)-(10).

Since s; # s; for i # 7, and y1 # 0, the Jacobian determinant
det (DG(x0)) in Equation (7) is nonzero. By the implicit (or inverse)
function theorem there exist sufficiently small neighborhoods U of xg
and V of G(xg) such that G : U — V is one to one and onto, and

where
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such that if x € U, then ||x — x¢|| < 6*. Thus we can find a suffi-
ciently small § > 0 such that if [n; — E(ag, s;)| < é for j = 1,2,3, then
y := (u1,u2,u3,v1,v2,v3) € V, where u;, v; are obtained from Equation
(4), by using the estimate

3
Iy ~ Gl < { 3= Iy ~ Blaa, 52} < V3.
=0

Since G : U — V is an onto mapping, there exists x = (a, t1, to,t3) :=
G~Y(y) € U which solves Equation (7) and satisfies Equation (4)

ba(t;) = c(s;) + n; - n(s;),
and ||E(a, ) — E(ao, )|l < € because ||a — ap|| < ||x — %ol < 6*.
Now, let k = 1. Since o € A;, then by = (x1,y1) is fixed and so is

). There exists a sufficiently small 6 > 0 such that |7 — E(ag, s1)| < 6
implies the existence of o := (w, z1,y1) and t; satisfying
(i) {c(sj)+mn; -n(s;)} C Q for all j;

(i) ba(t1) = c(s1) +m - n(s1) (see [13]);
(iii) JJoo — o] < 6* by Proposition 2.3.

Since (ii) is equivalent to E(a,s1) = m and |lag — a|| < 6* implies
Equation (5), we get the assertion. |
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