• Title/Summary/Keyword: Characterization high school

Search Result 506, Processing Time 0.023 seconds

Purification and Characterization of Extracellular and Intracellular Glutamine Synthetases from Mycobacterium bovis BCG

  • SUH, CHANG-IL;JUN-MAN LIM;HA-CHIN SUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.946-950
    • /
    • 2001
  • Slow-growing pathogenic mycobacterium species, including Mycobacterium bovis BCG, secrete a large amount of glutamine synthetase into culture media. Extracellular and intracellular glutamine synthetases were purified from M. bovis BCG. While the native molecular weights of both glutamine synthetases were estimated to be 370.2 kDa, those of the subunits were 61.7 kDa, indicating that the native forms were composed of 6 subunits. The enzymes showed a hhigh thermal stability and high degree of sequence similarity with the glutamine synthetase from M. tuberculosis in the N-terminal amino acid sequence. Western blotting analysis indicated that the antibodies prepared against both the extracellular and intracellular enzymes exhibited common antigen determinants.

  • PDF

Characterization of Chemically Deposited CdS Buffer Layer for High Efficiency CIGS Solar Cells

  • Kim, Donguk;Lee, Sooho;Lee, Jaehyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.459.2-459.2
    • /
    • 2014
  • CdTe계와 CGIS계 태양전지의 광투과층으로 CdS 박막이 많이 사용된다. Cds 박막의 필요한 물성으로는 높은 광투과도와 얇은 두께이다. 광투과층으로 사용되는 CdS 막의 광투과도가 높아야 많은 양의 빛이 손실 없이 투과하여 광흡수층인 CIGS에 도달할 수 있다. 특히, CdS막의 두께가 얇으면 밴드 갭 이상의 에너지를 가지는 파장의 빛도 투과시킬 수 있어 태양전지의 효율의 증가을 얻을 수가 있다. 그러나 CdS 막의 두께가 얇을 경우, pinhole이 생성되는 등 막의 균질성이 문제가 된다. 본 연구에서는 높은 변환 효율을 갖는 CIGS 박막 태양전지 제작에 적합한 chemical bath depostion(츙)법을 이용하여 CdS 박막을 제조하였다. 또한 반응시간, Cd 및 S source 비와 같은 증착 조건에 따른 박막의 특성을 조사하였다.

  • PDF

Characterization of Thin Film Transistor using $Ta_2O_5$ Gate Dielectric

  • Um, Myung-Yoon;Lee, Seok-Kiu;Kim, Hyeong-Joon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.157-158
    • /
    • 2000
  • In this study, to get the larger drain current of the device under the same operation condition as the conventional gate dielectric SiNx thin film transistor devices, we introduced new gate dielectric $Ta_2O_5$ thin film which has high dielectric constant $({\sim}25)$ and good electrical reliabilities. For the application for the TFT device, we fabricated the $Ta_2O_5$ gate dielectric TFT on the low-temperature-transformed polycrystalline silicon thin film using the self-aligned implantation processing technology for source/drain and gate doping. The $Ta_2O_5$ gate dielectric TFT showed better electrical performance than SiNx gate dielectric TFT because of the higher dielectric constant.

  • PDF

Characterization of Ty3-gypsy-like Elements in Hibiscus syriacus

  • Jeung, Ji-Ung;Cho, Sung Ki;Lee, Seung Jae;Shin, Jeong Sheop
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.318-327
    • /
    • 2005
  • Southern blot analysis revealed a ubiquitous distribution and high copy number of Ty3-gypsy-like elements in the genome of Hibiscus syriacus. Comparative phylogenetic analysis of the large subunit of Rubisco and the integrase region of Ty3-gypsy elements in various plant species indicated that the retrotransposon-like sequences have different evolutionary histories and their own unique polymorphism in the H. syriacus population. Sequence-tagged site-restriction fragment length polymorphisms (STS-RFLP) analysis also indicated great variability in the numbers and sequences of Ty3-gypsy-like elements within H. syriacus varieties. Ty3-gypsy-like elements may still be active within H. syriacus, since Northern analysis of wounded leaves of H. syriacus variety Saehan with a probe for the integrase domain gave strong hybridization signals. The sequence heterogeneity and ubiquity of the Ty3-gypsy-like elements in H. syriacus genomes could provide reliable DNA markers for line identification as well for the analysis of genetic diversity in H. syriacus.

Purification and partial characterization of α-amylase from soybean (Glycine max)

  • Tripathi, Pallavi;Dwevedi, Alka;Kayastha, Arvind M.
    • Advances in Traditional Medicine
    • /
    • v.4 no.4
    • /
    • pp.227-234
    • /
    • 2004
  • An ${\alpha}-Amylase$ was purified to apparent homogeneity from germinating soybean seeds (Glycine max). Enzyme showed high specificity for starch. ${\alpha}-Amylase$ from soybean has optimum pH at 7.6 in the pH range 4.0-10.6. At this pH, the $K_m$ of starch was 2.63 mg/ml and the $V_{max}$ was equal to 52.6 mg/ml/min protein. Optimum temperature of the enzyme was found to be $55^{\circ}C,\;Q_{10}$ equal to 1.85 and energy of activation equal to 12 kcal/mol. Additives like, EDTA reduced the activity of ${\alpha}-amylase$ whereas PMSF enhanced the activity. ${\alpha}-Amylase$ was inhibited by several heavy metal ions.

Characterization of SWCNT Field Effect Transistor via Edison Simulation

  • Piao, Mingxing;Lee, Sang-Jin;Na, In-Yeob
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.260-263
    • /
    • 2013
  • A semiconducting single-walled carbon nanotube (SWCNT) field-effect transistor (FET) in a top-gate model was constructed. The effect of different high-${\kappa}$ dielectric materials ($Al_2O_3$, $HfO_2$ and HfSiON) and various temperatures with a wide range from 50K to 500K on the performance of such nominal device were investigated. Several key device parameters including the on/off ratio of the current, transconductance ($g_m$), subthreshold swing, and carrier mobility were used to evaluate the device performance. The simulated results fit well with the experiment results previously published.

  • PDF

Fabrication and Characterization of Immiscible Fe-Cu Alloys using Electrical Explosion of Wire in Liquid

  • Phuc, Chu Dac;Thuyet, Nguyen Minh;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.449-457
    • /
    • 2020
  • Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.

Preparation of High-Solid Microfibrillated Cellulose from Gelidium amansii and Characterization of Its Physiochemical and Biological Properties

  • Min Jeong Kim;Nur Istianah;Bo Ram So;Hye Jee Kang;Min Jeong Woo;Su Jin Park;Hyun Jeong Kim;Young Hoon Jung;Sung Keun Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1589-1598
    • /
    • 2022
  • Microfibrillated cellulose (MFC) is a valuable material with wide industrial applications, particularly for the food and cosmetics industries, owing to its excellent physiochemical properties. Here, we prepared high-solid microfibrillated cellulose (HMFC) from the centrifugation of Gelidium amansiiderived MFC right after fibrillation. Dispersion properties, morphology, and structural changes were monitored during processing. HMFC has a five-fold higher solid concentration than MFC without significant changes to dispersion properties. SEM images and FTIR spectra of HMFC revealed a stable surface and structure against centrifugal forces. HMFC exhibited 2,2'-azino-bis (3-ethylbenzothiazoline6-sulfonic acid) (ABTS) radical scavenging activity, although it could not scavenge 2,2-diphenyl-1- picrylhydrazyl (DPPH). Moreover, HMFC inhibited the generation of LPS-induced excessive nitrite and radial oxygen species in murine macrophage RAW264.7 cells. Additionally, HMFC suppressed LPS-induced Keap-1 expression in the cytosol but did not alter iNOS expression. HMFC also attenuated the UVB-induced phosphorylation of p38, c-Jun N-terminal kinase (JNK) 1/2, and extracellular-signal-regulated kinase (ERK) 1/2, as well as the phosphorylation of c-Jun in the immortalized human skin keratinocyte HaCaT cells. Therefore, the application of centrifugation is suitable for producing high-solid MFC as a candidate material for anti-inflammatory and antioxidative marine cosmeceuticals.

Characterization of Invading Glioma Cells Using Molecular Analysis of Leading-Edge Tissue

  • Kim, Cheol-Soo;Jung, Shin;Jung, Tae-Young;Jang, Woo-Youl;Sun, Heung-Suk;Ryu, Hyang-Hwa
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.3
    • /
    • pp.157-165
    • /
    • 2011
  • Objective : We have introduced a method of characterization of invading glioma cells by using molecular analysis of marginal invading tumor cells and molecular profiles of glioma tumor margin. Methods : Each of tumor core and marginal tissues was obtained in 22 glioma patients. Tumor core cells and marginal cells from each glial tumor were collected by laser capture microdissection or intraoperative microdissection under the operating microscope. Expression of MMP-2, MMP-9, CD44 and RHAMM mRNA by invading glioma cells compared with tumor core was confirmed by realtime-PCR of twenty-four glioma specimens. Clinical data also were reviewed for invasion and recurrence pattern of the gliomas radiologically and invasive rim pattern microscopically. Results : Overall results of the molecular analysis showed that relative overexpression of MMP-2, MMP-9 and RHAMM were noted at the invasive edge of human glioma specimens comparing to the tumor core but CD44 was highly expressed in the tumor core comparing to the margin. High marginal expression of MMP-2 and MMP-9 were noted in poorly ill-defined margin on the pathological finding. High marginal expression of CD44 and MMP-2 were demonstrated in the midline cross group on the radiological review, and that of RHAMM and MMP-2 were showed in the aggressive recurrence group. High expression of MMP-2 seems to be involved in the various invasion-related phenomenons. Conclusion : Up-regulation of MMP-2, MMP-9, CD44 and RHAMM was noted in invasive edge of gliomas according to the various clinical situations.

Characterization of Bovine NANOG5'-flanking Region during Differentiation of Mouse Embryonic Stem Cells

  • Jang, Hye-Jeong;Park, Hwan Hee;Tran, Thi Thuy Linh;Lee, Hak-Kyo;Song, Ki-Duk;Lee, Woon Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1721-1728
    • /
    • 2015
  • Embryonic stem cells (ESCs) have been used as a powerful tool for research including gene manipulated animal models and the study of developmental gene regulation. Among the critical regulatory factors that maintain the pluripotency and self-renewal of undifferentiated ESCs, NANOG plays a very important role. Nevertheless, because pluripotency maintaining factors and specific markers for livestock ESCs have not yet been probed, few studies of the NANOG gene from domestic animals including bovine have been reported. Therefore, we chose mouse ESCs in order to understand and compare NANOG expression between bovine, human, and mouse during ESCs differentiation. We cloned a 600 bp (-420/+181) bovine NANOG 5'-flanking region, and tagged it with humanized recombinant green fluorescent protein (hrGFP) as a tracing reporter. Very high GFP expression for bovine NANOG promoter was observed in the mouse ESC line. GFP expression was monitored upon ESC differentiation and was gradually reduced along with differentiation toward neurons and adipocyte cells. Activity of bovine NANOG (-420/+181) promoter was compared with already known mouse and human NANOG promoters in mouse ESC and they were likely to show a similar pattern of regulation. In conclusion, bovine NANOG 5-flanking region functions in mouse ES cells and has characteristics similar to those of mouse and human. These results suggest that bovine gene function studied in mouse ES cells should be evaluated and extrapolated for application to characterization of bovine ES cells.