Browse > Article
http://dx.doi.org/10.5713/ajas.15.0497

Characterization of Bovine NANOG5'-flanking Region during Differentiation of Mouse Embryonic Stem Cells  

Jang, Hye-Jeong (Laboratory of Developmental Genetics, Department of Biomedical Sciences, Inha University School of Medicine)
Park, Hwan Hee (Laboratory of Developmental Genetics, Department of Biomedical Sciences, Inha University School of Medicine)
Tran, Thi Thuy Linh (Laboratory of Developmental Genetics, Department of Biomedical Sciences, Inha University School of Medicine)
Lee, Hak-Kyo (Department of Animal Biotechnology, Chonbuk National University)
Song, Ki-Duk (Department of Animal Biotechnology, Chonbuk National University)
Lee, Woon Kyu (Laboratory of Developmental Genetics, Department of Biomedical Sciences, Inha University School of Medicine)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.12, 2015 , pp. 1721-1728 More about this Journal
Abstract
Embryonic stem cells (ESCs) have been used as a powerful tool for research including gene manipulated animal models and the study of developmental gene regulation. Among the critical regulatory factors that maintain the pluripotency and self-renewal of undifferentiated ESCs, NANOG plays a very important role. Nevertheless, because pluripotency maintaining factors and specific markers for livestock ESCs have not yet been probed, few studies of the NANOG gene from domestic animals including bovine have been reported. Therefore, we chose mouse ESCs in order to understand and compare NANOG expression between bovine, human, and mouse during ESCs differentiation. We cloned a 600 bp (-420/+181) bovine NANOG 5'-flanking region, and tagged it with humanized recombinant green fluorescent protein (hrGFP) as a tracing reporter. Very high GFP expression for bovine NANOG promoter was observed in the mouse ESC line. GFP expression was monitored upon ESC differentiation and was gradually reduced along with differentiation toward neurons and adipocyte cells. Activity of bovine NANOG (-420/+181) promoter was compared with already known mouse and human NANOG promoters in mouse ESC and they were likely to show a similar pattern of regulation. In conclusion, bovine NANOG 5-flanking region functions in mouse ES cells and has characteristics similar to those of mouse and human. These results suggest that bovine gene function studied in mouse ES cells should be evaluated and extrapolated for application to characterization of bovine ES cells.
Keywords
Bovine; Embryonic Stem Cell; NANOG; Promoter; Neural Differentiation; Adipocyte Differentiation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hatano, S.Y., M. Tada, H. Kimura, S. Yamaguchi, T. Kono, T. Nakano, H. Suemori, N. Nakatsuji, and T. Tada. 2005. Pluripotential competence of cells associated with Nanog activity. Mech. Dev. 122:67-79.   DOI
2 Hatoya, S., R. Torii, Y. Kondo, T. Okuno, K. Kobayashi, V. Wijewardana, N. Kawate, H. Tamada, T. Sawada, D. Kumagai, K. Sugiura, and T. Inaba. 2006. Isolation and characterization of embryonic stemlike cells from canine blastocysts. Mol. Reprod. Dev. 73:298-305.   DOI
3 Hayes, B., S. R. Fagerlie, A. Ramakrishnan, S. Baran, M. Harkey, L. Graf, M. Bar, A. Bendoraite, M. Tewari, and B. Torok-Storb. 2008. Derivation, characterization, and in vitro differentiation of canine embryonic stem cells. Stem Cells 26:465-473.   DOI
4 Huang, B., T. Li, L. Alonso-Gonzalez, R. Gorre, S. Keatley, A. Green, P. Tumer, P. K. Kallingappa, V. Verma, and B. Oback. 2011. A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS ONE 6:e24501.   DOI
5 Hamazaki, T., M. Oka, S. Yamanaka, and N. Terada. 2004. Aggregation of embryonic stem cells induces Nanog repression and primitive endoderm differentiation. J. Cell. Sci. 117:5681-5686.   DOI
6 Kim, M. J., A. Habiba, J. M. Doherty, J. C. Mills, R. W. Mercer, and J. E. Huettner. 2009. Regulation of mouse embryonic stem cell neural differentiation by retinoic acid. Dev. Biol. 328:456-471.   DOI
7 Keefer, C. L., H. Baldassarre, R. Keyston, B. Wang, B. Bhatia, A. S. Bilodeau, J. F. Zhou, M. Leduc, B. R. Downey, A. Lazaris, and C. N. Karatzas. 2001. Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes. Biol. Reprod. 64:849-856.   DOI
8 Kuroda, T., M. Tada, H. Kubota, H. Kimura, S. Y. Hantano, H. Suemori, N. Nakatsuji, and T. Tada. 2005. Octamer and sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol. Cell. Biol. 25:2475-2485.   DOI
9 Li, P., C. Tong, R. Mehrian-Shai, L. Jia, N. Wu, Y. Yan, R. E. Maxson, E. N. Schulze, H. Song, C. L. Hsieh, M. F. Pera, and Q. L. Ying. 2008. Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299-1310.   DOI
10 Liu, N., M. Lu, X. Tian, and Z. Han. 2007. Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells. J. Cell Physiol. 211:279-286.   DOI
11 Mitsui, K., Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami, K. Takahashi, M. Maruyama, M. Maeda, and S. Yamanaka. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631-642.   DOI
12 Pain, B., M.E. Clark, M. Shen, H. Nakazawa, M. Sakurai, J. Samarut, and R. J. Etches. 1996. Long-term in vitro culture and characterization of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122:2339-2348.
13 Okada, Y., T. Shimazaki, G. Sobue, and H. Okano. 2004. Retinoicacid- concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev. Biol. 275:124-142.   DOI
14 Okita, K. and S. Yamanaka. 2006. Intracellular signaling pathways regulating pluripotency of embryonic stem cells. Curr. Stem Cell Res. Ther. 1:103-111.   DOI
15 Rohweddel, J., K. Guan, and A. M. Wobus. 1999. Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs 165:190-202.   DOI
16 Sumer, H., J. Liu, L. F. Malaver-Ortega, M. L. Lim, K. Khodadadi, and P. J. Verma. 2011. Nanog is a key factor for induction of pluripotency in bovine adult fibroblasts. J. Anim. Sci. 89:2708-2716.   DOI
17 Rodda, D. J., J. L. Chew, L. H. Lim, Y. H. Loh, B. Wang, H. H. Ng, and P. Robson. 2005. Transcriptional Regulation of Nanog by $OCT_4$ and $SOX_2$. J. Biol. Chem. 280:24731-24737.   DOI
18 Suda, Y., M. Suzuki, Y. Ikawa, and S. Aizawa. 1987. Mouse embryonic stem cells exhibit indefinite proliferative potential. J. Cell. Physiol. 133:197-201.   DOI
19 Sukoyan, M. A., S. Y. Vatolin, A. N. Golubitsa, A. I. Zhelezova, L. A. Semenova, and O. L. Serov. 1993. Embryonic stem cells derived from morulae, inner cell mass, and blastocysts of mink: Comparisons of their pluripotencies. Mol. Reprod. Dev. 36:148-158.   DOI
20 Thomson, J. A., J. Kalishman, T. G. Golos, M. Durning, C. P. Harris, R. A. Becker, and J. P. Heam. 1995. Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA 92:7844-7848.   DOI
21 Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A.Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:1145-1147.   DOI
22 Vallier, L., S. Mendjan, S. Brown, Z. Chng, A. Teo, L. E. Smithers, M. W. Trotter, C. H. Cho, A. Martinez, P. Rugg-Gunn, G. Brons, and R. A. Pedersen. 2009. Activin/Nodal signaling maintains pluripotency by controlling Nanog expression. Development 136:1339-1349.   DOI
23 Wobus, A. M. and K. R. Boheler. 2005. Embryonic stem cells: Prospects for developmental biology and cell therapy. Physiol. Rev. 85:635-678.   DOI
24 Chickarmane, V., C. Troein, U. A. Nuber, H. M. Sauro, and C. Peterson. 2006. Transcriptional dynamics of the embryonic stem cell switch. PLoS Comput. Biol. 2:e123.   DOI
25 Boyer, L. A., T. I. Lee, M. F. Cole, S. E. Johnstone, S. S. Levine, J. P. Zucker, M. G. Guenther, R. M. Kumar, H. L. Murray, R. G. Jenner, D. K. Gifford, D. A. Melton, R. Jaenisch, and R. A. Young. 2005. Core transcriptional regulatory circuitry in human embryonic stem. Cell 122:947-956.   DOI
26 Buehr, M., S. Meek, K. Blair, J. Yang, J. Ure, J. Silva, R. McLay, J. Hall, Q. L. Ying, and A. Smith. 2008. Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287-1298.   DOI
27 Chambers, I., D. Colby, M. Robertson, J. Nichols, S. Lee, S. Tweedie, and A. Smith. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643-655.   DOI
28 Doetschman, T., P. Williams, and N. Maeda. 1988. Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev. Biol. 127:224-227.   DOI
29 Gerrard, L., D. Zhao, A. J. Clark, and W. Cui. 2005. Stably transfected human embryonic stem cell clones express OCT4-specific green fluorescent protein and maintain self-renewal and pluripotency. Stem Cells 23:124-133.   DOI
30 Gu, P., D. LeMenuet, A. C. K. Chung, M. Mancini, D. A. Wheeler, and A. J. Cooney. 2005. Orphan nuclear receptor GCNF is required for the repression of pluripotency genes during retinoic acid-induced embryonic stem cell differentiation. Mol. Cell. Biol. 25:8507-8019.   DOI