Characterization of Ty3-gypsy-like Elements in Hibiscus syriacus

  • Jeung, Ji-Ung (IRRI-Korea Office, NICS, Rural Development Administration) ;
  • Cho, Sung Ki (School of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Seung Jae (School of Life Sciences and Biotechnology, Korea University) ;
  • Shin, Jeong Sheop (School of Life Sciences and Biotechnology, Korea University)
  • Received : 2004.10.18
  • Accepted : 2005.03.02
  • Published : 2005.06.30

Abstract

Southern blot analysis revealed a ubiquitous distribution and high copy number of Ty3-gypsy-like elements in the genome of Hibiscus syriacus. Comparative phylogenetic analysis of the large subunit of Rubisco and the integrase region of Ty3-gypsy elements in various plant species indicated that the retrotransposon-like sequences have different evolutionary histories and their own unique polymorphism in the H. syriacus population. Sequence-tagged site-restriction fragment length polymorphisms (STS-RFLP) analysis also indicated great variability in the numbers and sequences of Ty3-gypsy-like elements within H. syriacus varieties. Ty3-gypsy-like elements may still be active within H. syriacus, since Northern analysis of wounded leaves of H. syriacus variety Saehan with a probe for the integrase domain gave strong hybridization signals. The sequence heterogeneity and ubiquity of the Ty3-gypsy-like elements in H. syriacus genomes could provide reliable DNA markers for line identification as well for the analysis of genetic diversity in H. syriacus.

Keywords

References

  1. Bennetzen, J. L. (1996) The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 4, 347-353 https://doi.org/10.1016/0966-842X(96)10042-1
  2. Birren, B., Green, E. D., Klapholz, S., Myers, R. M., and Roskams, J. (1997) Genome Analysis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  3. Casacuberta, J. M., Vernhettes, S., Audeon, C., and Grandbastien, M. A. (1997) Quasispecies in retrotransposons: a role for sequence variability in Tnt1 evolution. Genetica 100, 109-117 https://doi.org/10.1023/A:1018309007841
  4. Chandler, V. L. and Hardeman, K. J. (1992) The Mu elements of Zea mays. Adv. Genet. 30, 77-122 https://doi.org/10.1016/S0065-2660(08)60319-3
  5. Cho, K. J., Song, W. S., Kim, Y. Y., Hong, Y. P., and Shin, E. M. (1997) Identification of Hibiscus syriacus L. varieties using inter-simple sequence repeats analysis. Res. Rep. For Gen. Inst. Korea 33, 64-73
  6. Felsenstein, J. (1989) PHYLIP-Phylogeny Inference Package (Version 3.57c). Department of Genetics, University of Washington, Seattle
  7. Flavell, A. J., Dunbar, E., Anderson, R., Pearce, S. R., Hartley, R., et al. (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res. 20, 3639-3644 https://doi.org/10.1093/nar/20.14.3639
  8. Flavell, A. J., Knox, M. R., Rearce, S. R., and Ellis, T. H. N. (1998) Retrotransposon-based insertion polymorphism (RBIP) for high throughput marker analysis. Plant J. 16, 643-650 https://doi.org/10.1046/j.1365-313x.1998.00334.x
  9. Fu, H. and Dooner, H. K. (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc. Natl. Acad. Sci. USA 99, 9573-9578
  10. Fukuda, T., Sakai, M., Takano, H., Ono, K., and Takio, S. (2004) Hypermethylation of retroposons in the liverwort Marchantia paleacea var. diptera. Plant Cell Rep. 22, 594-598 https://doi.org/10.1007/s00299-003-0739-x
  11. Gabriel, A., Willems, M., Mules, E. H., and Boeke, J. D. (1996) Replication infidelity during a single cycle of Ty1 retrotransposition. Proc. Natl. Acad. Sci. USA 93, 7767-7771
  12. Grandbastien, M. A. (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci. 3, 181-187 https://doi.org/10.1016/S1360-1385(98)01232-1
  13. Gu, Y. Q., Coleman-Derr, D., Kong, X., and Anderson, O. D. (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four tirticeae genomes. Plant Physiol. 135, 459-470 https://doi.org/10.1104/pp.103.038083
  14. Hirochika, H., Sugimoto, K., Otsuki, Y., Tsugawa, H., and Kanda, M. (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 23, 7783-7788
  15. Jordan, I. K. and McDonald, J. F. (1998) Evolution of the copia retrotransposon in the Drosophila melanogaster species subgroup. Mol. Biol. Evol. 15, 1160-1171 https://doi.org/10.1093/oxfordjournals.molbev.a026023
  16. Kalendar, R., Vicient, C. M., Peleg, O., Anamthawat-Jonsson, K., Bolshoy, A., et al. (2004) Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics 166, 1437-1450 https://doi.org/10.1534/genetics.166.3.1437
  17. Khan, E., Mack, J. P. G., Kulkosky, J., and Skalka, A. M. (1990) Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res. 19, 851-860 https://doi.org/10.1093/nar/19.4.851
  18. Kim, C. S., Lee, C. H., Shin, J. S., Chung, Y. S., and Hyung, N. I. (1997) A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP. Nucleic Acids Res. 25, 1085-1086 https://doi.org/10.1093/nar/25.5.1085
  19. Kossida, S., Harvey, P. H., Zanotto, P. M. A., and Charleston, M. A. (2000) Lack of evidence for cospeciation between retroelements and their hosts. J. Mol. Evol. 50, 194-201
  20. Kulkosky, J., Jones, K. S., Katz, R. A., Mack, J. P. G., and Skalka, A. M. (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12, 2331- 2338
  21. Kumar, A. and Bennetzen, J. L. (1999) Plant retrotransposons. Annu. Rev. Genet. 33, 479-532 https://doi.org/10.1146/annurev.genet.33.1.479
  22. Kumekawa, N., Ohtsubo, E., and Ohtsubo, H. (1999) Identification and phylogenetic analysis of gypsy-type retrotransposons in the plant kingdom. Genes Genet. Syst. 74, 299-307 https://doi.org/10.1266/ggs.74.299
  23. Langdon, T., Seago, C., Mende, M., Leggett, M., Thomas, H., et al. (2000) Retrotransposon evolution in diverse plant genomes. Genetics 156, 313-325
  24. Lee, S. H., Kim, C. H., Song, W. S., and Nou, I. S. (1996) Phylogenetic relationship and genetic variation among varieties of Hibiscus syriacus based on RAPD analysis. Korean J. Breed. 28, 445-456
  25. Lee, S. J., Jeung, J. U., Cho, S. K., Um, B. Y., Chung, W. I., et al. (2002) Diversity and varietal classification of Hibiscus syriacus L. with the heterogeneity within retrotransposonlike elements. Mol. Cells 13, 362-368
  26. Lohe, A. R., Moriyama, E. N., Lidholm, D. A., and Hartl, D. L. (1995) Horizontal transmission, vertical inactivation, and stochastic loss of Mariner-like transposable elements. Mol. Biol. Evol. 12, 62-72 https://doi.org/10.1093/oxfordjournals.molbev.a040191
  27. Ma, J., Devos, K. M., and Bennetzen, J. L. (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res. 14, 860-869 https://doi.org/10.1101/gr.1466204
  28. Malik, H. S. and Eickbush, T. H. (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J. Virol. 73, 5186-5190
  29. Matsuoka, Y. and Tsunewaki, K. (1999) Evolutionary dynamics of Ty1-copia group retrotransposons in grass shown by reverse transcriptase domain analysis. Mol. Biol. Evol. 16, 208-217 https://doi.org/10.1093/oxfordjournals.molbev.a026103
  30. McAllister, B. F. and Werren, J. H. (1997) Phylogenetic analysis of a retrotransposon with implications for strong evolutionary constraints on reverse transcriptase. Mol. Biol. Evol. 14, 69-80 https://doi.org/10.1093/oxfordjournals.molbev.a025704
  31. Nicholas, K. B., Nicholas, H. B., and Deerfield, D. W. (1997) GeneDoc: analysis and visualization of genetic variation. Embnew News 4, 14
  32. Palmer, L. E., Rabinowicz, P. D., O'Shaughnessy, A. L., Balija, V. S., Nascimento, L. U., et al. (2003) Maize genome sequencing by methylation filtration. Science 302, 2115-2117 https://doi.org/10.1126/science.1091265
  33. Panaud, O., Vitte, C., Hivert, J., Muzlak, S., Talag, J., et al. (2002) Characterization of transposable elements in the genome of rice (Oryza sativa L.) using representational difference analysis (RDA). Mol. Genet. Genomics 268, 113-121 https://doi.org/10.1007/s00438-002-0734-x
  34. Park, K. C., Jeong, C. S., Song, M. T., and Kim, N. S. (2003) A new MITE family, Pangrangja, in Gramineae species. Mol. Cells 15, 373-380
  35. Pouteau, S., Grandbstien, M. A., and Boccara, M. (1991) Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J. 10, 1911-1918
  36. Purugganan, M. D. and Wessler, S. R. (1994) Molecular evolution of magellan, a maize Ty3/gypsy-like retrotransposon. Proc. Natl. Acad. Sci. USA 91, 11674-11678
  37. Queen, R. A., Gribbon, B. M., James, C., Jack, P., and Flavell, A. J. (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol. Gen. Genomics 271, 91-97 https://doi.org/10.1007/s00438-003-0960-x
  38. SanMiguel, P. and Bennetzen, J. L. (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 81, 37-44
  39. SanMiguel, P., Tikhonov, A., Jin, Y. K., Motchoulskaia, N., Zakharov, D., et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765-768 https://doi.org/10.1126/science.274.5288.765
  40. Suoniemi, A., Anamthawat-Jonsson, K., Arna, T., and Schulman, A. H. (1996a) Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol. Biol. 30, 1321-1329 https://doi.org/10.1007/BF00019563
  41. Suoniemi, A., Narvanto, A., and Schulman, A. H. (1996b) The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol. Biol. 31, 295- 306 https://doi.org/10.1007/BF00021791
  42. Suoniemi, A., Tanskanen, J., Pentikäinen, O., Johnson, M. S., and Schulman, A. H. (1998a) The core domain of retrotransposon integrase in Hordeum: Predicted structure and evolution. Mol. Biol. Evol. 15, 1135-1144 https://doi.org/10.1093/oxfordjournals.molbev.a026021
  43. Suoniemi, A., Tanskanen, J., and Schulman, A. H. (1998b) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J. 13, 699-705 https://doi.org/10.1046/j.1365-313X.1998.00071.x
  44. Takeda, S., Sugimoto, K., Otsuki, H., and Hirochika, H. (1998) Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Mol. Biol. 36, 365-376 https://doi.org/10.1023/A:1005911413528
  45. Taylor, E. J., Konstantinova, P., Leigh, F., Bates, J. A., and Lee, D. (2004) Gypsy-like retrotransposons in Pyrennophora: an abundant and informative class of molecular markers. Genome 47, 519-525 https://doi.org/10.1139/g04-008
  46. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  47. Turcich, M. P., Bokharririza, A., Hamilton, D. A., He, C. P., and Messier, W. (1996) PREM-2, a copia-type retroelement in maize is expressed preferentially in early microspores. Sexual Plant Reprod. 9, 65-74 https://doi.org/10.1007/BF02153053
  48. Um, B. Y., Pak, C. H., Ok, S. H., Chung, Y. S., and Shin, J. S. (1998) Partial sequence analysis of Hibiscus syriacus cDNA clones. J. Korean Soc. Hort. Sci. 39, 350-354
  49. Vicient, C. M., Suoniemi, A., Anamthawat-Jonsson, K., and Tanskanen, J. (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11, 1769-1784 https://doi.org/10.1105/tpc.11.9.1769
  50. Voytas, D. F., Cummings, M. P., Koniczny, A., Ausubel, F. M., and Rodermel, S. R. (1992) Copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sci. USA 89, 7124-7128
  51. Waugh, R., McLean, K., Flavell, A. J., Pearce, S. R., Kumar A., et al. (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequencespecific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253, 687-694 https://doi.org/10.1007/s004380050372