Browse > Article

Characterization of Ty3-gypsy-like Elements in Hibiscus syriacus  

Jeung, Ji-Ung (IRRI-Korea Office, NICS, Rural Development Administration)
Cho, Sung Ki (School of Life Sciences and Biotechnology, Korea University)
Lee, Seung Jae (School of Life Sciences and Biotechnology, Korea University)
Shin, Jeong Sheop (School of Life Sciences and Biotechnology, Korea University)
Abstract
Southern blot analysis revealed a ubiquitous distribution and high copy number of Ty3-gypsy-like elements in the genome of Hibiscus syriacus. Comparative phylogenetic analysis of the large subunit of Rubisco and the integrase region of Ty3-gypsy elements in various plant species indicated that the retrotransposon-like sequences have different evolutionary histories and their own unique polymorphism in the H. syriacus population. Sequence-tagged site-restriction fragment length polymorphisms (STS-RFLP) analysis also indicated great variability in the numbers and sequences of Ty3-gypsy-like elements within H. syriacus varieties. Ty3-gypsy-like elements may still be active within H. syriacus, since Northern analysis of wounded leaves of H. syriacus variety Saehan with a probe for the integrase domain gave strong hybridization signals. The sequence heterogeneity and ubiquity of the Ty3-gypsy-like elements in H. syriacus genomes could provide reliable DNA markers for line identification as well for the analysis of genetic diversity in H. syriacus.
Keywords
Genetic Diversity; gypsy-like Retrotransposon; Hibiscus syriacus; Integrase; Phylogenetic Analysis;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bennetzen, J. L. (1996) The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 4, 347-353   DOI   ScienceOn
2 Birren, B., Green, E. D., Klapholz, S., Myers, R. M., and Roskams, J. (1997) Genome Analysis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
3 Casacuberta, J. M., Vernhettes, S., Audeon, C., and Grandbastien, M. A. (1997) Quasispecies in retrotransposons: a role for sequence variability in Tnt1 evolution. Genetica 100, 109-117   DOI
4 Cho, K. J., Song, W. S., Kim, Y. Y., Hong, Y. P., and Shin, E. M. (1997) Identification of Hibiscus syriacus L. varieties using inter-simple sequence repeats analysis. Res. Rep. For Gen. Inst. Korea 33, 64-73
5 Fu, H. and Dooner, H. K. (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc. Natl. Acad. Sci. USA 99, 9573-9578
6 Jordan, I. K. and McDonald, J. F. (1998) Evolution of the copia retrotransposon in the Drosophila melanogaster species subgroup. Mol. Biol. Evol. 15, 1160-1171   DOI   ScienceOn
7 Kumar, A. and Bennetzen, J. L. (1999) Plant retrotransposons. Annu. Rev. Genet. 33, 479-532   DOI   ScienceOn
8 Lee, S. H., Kim, C. H., Song, W. S., and Nou, I. S. (1996) Phylogenetic relationship and genetic variation among varieties of Hibiscus syriacus based on RAPD analysis. Korean J. Breed. 28, 445-456
9 McAllister, B. F. and Werren, J. H. (1997) Phylogenetic analysis of a retrotransposon with implications for strong evolutionary constraints on reverse transcriptase. Mol. Biol. Evol. 14, 69-80   DOI   ScienceOn
10 Panaud, O., Vitte, C., Hivert, J., Muzlak, S., Talag, J., et al. (2002) Characterization of transposable elements in the genome of rice (Oryza sativa L.) using representational difference analysis (RDA). Mol. Genet. Genomics 268, 113-121   DOI
11 SanMiguel, P., Tikhonov, A., Jin, Y. K., Motchoulskaia, N., Zakharov, D., et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765-768   DOI   ScienceOn
12 Suoniemi, A., Tanskanen, J., and Schulman, A. H. (1998b) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J. 13, 699-705   DOI   ScienceOn
13 Taylor, E. J., Konstantinova, P., Leigh, F., Bates, J. A., and Lee, D. (2004) Gypsy-like retrotransposons in Pyrennophora: an abundant and informative class of molecular markers. Genome 47, 519-525   DOI   ScienceOn
14 Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680   DOI
15 Vicient, C. M., Suoniemi, A., Anamthawat-Jonsson, K., and Tanskanen, J. (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11, 1769-1784   DOI   ScienceOn
16 Voytas, D. F., Cummings, M. P., Koniczny, A., Ausubel, F. M., and Rodermel, S. R. (1992) Copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sci. USA 89, 7124-7128
17 Lohe, A. R., Moriyama, E. N., Lidholm, D. A., and Hartl, D. L. (1995) Horizontal transmission, vertical inactivation, and stochastic loss of Mariner-like transposable elements. Mol. Biol. Evol. 12, 62-72   DOI   ScienceOn
18 Pouteau, S., Grandbstien, M. A., and Boccara, M. (1991) Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J. 10, 1911-1918
19 Suoniemi, A., Narvanto, A., and Schulman, A. H. (1996b) The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol. Biol. 31, 295- 306   DOI
20 Khan, E., Mack, J. P. G., Kulkosky, J., and Skalka, A. M. (1990) Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res. 19, 851-860   DOI   ScienceOn
21 Lee, S. J., Jeung, J. U., Cho, S. K., Um, B. Y., Chung, W. I., et al. (2002) Diversity and varietal classification of Hibiscus syriacus L. with the heterogeneity within retrotransposonlike elements. Mol. Cells 13, 362-368
22 Suoniemi, A., Anamthawat-Jonsson, K., Arna, T., and Schulman, A. H. (1996a) Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol. Biol. 30, 1321-1329   DOI
23 Flavell, A. J., Knox, M. R., Rearce, S. R., and Ellis, T. H. N. (1998) Retrotransposon-based insertion polymorphism (RBIP) for high throughput marker analysis. Plant J. 16, 643-650   DOI   ScienceOn
24 Gabriel, A., Willems, M., Mules, E. H., and Boeke, J. D. (1996) Replication infidelity during a single cycle of Ty1 retrotransposition. Proc. Natl. Acad. Sci. USA 93, 7767-7771
25 Matsuoka, Y. and Tsunewaki, K. (1999) Evolutionary dynamics of Ty1-copia group retrotransposons in grass shown by reverse transcriptase domain analysis. Mol. Biol. Evol. 16, 208-217   DOI   ScienceOn
26 Ma, J., Devos, K. M., and Bennetzen, J. L. (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res. 14, 860-869   DOI   ScienceOn
27 Gu, Y. Q., Coleman-Derr, D., Kong, X., and Anderson, O. D. (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four tirticeae genomes. Plant Physiol. 135, 459-470   DOI   ScienceOn
28 Palmer, L. E., Rabinowicz, P. D., O'Shaughnessy, A. L., Balija, V. S., Nascimento, L. U., et al. (2003) Maize genome sequencing by methylation filtration. Science 302, 2115-2117   DOI   ScienceOn
29 Queen, R. A., Gribbon, B. M., James, C., Jack, P., and Flavell, A. J. (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol. Gen. Genomics 271, 91-97   DOI
30 Turcich, M. P., Bokharririza, A., Hamilton, D. A., He, C. P., and Messier, W. (1996) PREM-2, a copia-type retroelement in maize is expressed preferentially in early microspores. Sexual Plant Reprod. 9, 65-74   DOI
31 Takeda, S., Sugimoto, K., Otsuki, H., and Hirochika, H. (1998) Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Mol. Biol. 36, 365-376   DOI   ScienceOn
32 Kalendar, R., Vicient, C. M., Peleg, O., Anamthawat-Jonsson, K., Bolshoy, A., et al. (2004) Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics 166, 1437-1450   DOI
33 Chandler, V. L. and Hardeman, K. J. (1992) The Mu elements of Zea mays. Adv. Genet. 30, 77-122   DOI
34 Langdon, T., Seago, C., Mende, M., Leggett, M., Thomas, H., et al. (2000) Retrotransposon evolution in diverse plant genomes. Genetics 156, 313-325
35 Purugganan, M. D. and Wessler, S. R. (1994) Molecular evolution of magellan, a maize Ty3/gypsy-like retrotransposon. Proc. Natl. Acad. Sci. USA 91, 11674-11678
36 Waugh, R., McLean, K., Flavell, A. J., Pearce, S. R., Kumar A., et al. (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequencespecific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253, 687-694   DOI
37 Kumekawa, N., Ohtsubo, E., and Ohtsubo, H. (1999) Identification and phylogenetic analysis of gypsy-type retrotransposons in the plant kingdom. Genes Genet. Syst. 74, 299-307   DOI   ScienceOn
38 Malik, H. S. and Eickbush, T. H. (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J. Virol. 73, 5186-5190
39 Hirochika, H., Sugimoto, K., Otsuki, Y., Tsugawa, H., and Kanda, M. (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 23, 7783-7788
40 Nicholas, K. B., Nicholas, H. B., and Deerfield, D. W. (1997) GeneDoc: analysis and visualization of genetic variation. Embnew News 4, 14
41 Kulkosky, J., Jones, K. S., Katz, R. A., Mack, J. P. G., and Skalka, A. M. (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12, 2331- 2338
42 Park, K. C., Jeong, C. S., Song, M. T., and Kim, N. S. (2003) A new MITE family, Pangrangja, in Gramineae species. Mol. Cells 15, 373-380
43 Flavell, A. J., Dunbar, E., Anderson, R., Pearce, S. R., Hartley, R., et al. (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res. 20, 3639-3644   DOI   ScienceOn
44 Grandbastien, M. A. (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci. 3, 181-187   DOI   ScienceOn
45 Suoniemi, A., Tanskanen, J., Pentikäinen, O., Johnson, M. S., and Schulman, A. H. (1998a) The core domain of retrotransposon integrase in Hordeum: Predicted structure and evolution. Mol. Biol. Evol. 15, 1135-1144   DOI   ScienceOn
46 Kossida, S., Harvey, P. H., Zanotto, P. M. A., and Charleston, M. A. (2000) Lack of evidence for cospeciation between retroelements and their hosts. J. Mol. Evol. 50, 194-201
47 Um, B. Y., Pak, C. H., Ok, S. H., Chung, Y. S., and Shin, J. S. (1998) Partial sequence analysis of Hibiscus syriacus cDNA clones. J. Korean Soc. Hort. Sci. 39, 350-354
48 Felsenstein, J. (1989) PHYLIP-Phylogeny Inference Package (Version 3.57c). Department of Genetics, University of Washington, Seattle
49 Fukuda, T., Sakai, M., Takano, H., Ono, K., and Takio, S. (2004) Hypermethylation of retroposons in the liverwort Marchantia paleacea var. diptera. Plant Cell Rep. 22, 594-598   DOI
50 Kim, C. S., Lee, C. H., Shin, J. S., Chung, Y. S., and Hyung, N. I. (1997) A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP. Nucleic Acids Res. 25, 1085-1086   DOI
51 SanMiguel, P. and Bennetzen, J. L. (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 81, 37-44