Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.6.449

Fabrication and Characterization of Immiscible Fe-Cu Alloys using Electrical Explosion of Wire in Liquid  

Phuc, Chu Dac (School of Materials Science and Engineering, University of Ulsan)
Thuyet, Nguyen Minh (School of Materials Science and Engineering, Hanoi University of Science and Technology)
Kim, Jin-Chun (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Journal of Powder Materials / v.27, no.6, 2020 , pp. 449-457 More about this Journal
Abstract
Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.
Keywords
Electrical explosion of wire; Nanoparticles; Bimetallic particles; Iron-Copper; XRD;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Hasebe and T. Nishizawa: Calphad, 5 (1981) 105.   DOI
2 X. Huang and T. Mashimo: J. Alloys Compd., 288 (1999) 299.   DOI
3 A. W. Weeber: J. Phys. F. Met. Phys., 17 (1987) 809.   DOI
4 J. He, J. Z. Zhao and L. Ratke: Acta Mater., 54 (2006) 1749.   DOI
5 G. Mazzone and M. V. Antisari: Phys. Rev. B, 54 (1996) 441.   DOI
6 O. V. Bakina, E. A. Glazkova, N. V. Svarovskaya, N. G. Rodkevich and M. I. Lerner: Mater. Lett., 242 (2019) 187.   DOI
7 A. R. Yavari, P. J. Desre and T. Benameur: Phys. Rev. Lett., 68 (1992) 2235.   DOI
8 W. Klement: Trans. Metall. Soc. AIME, 233 (1965) 1180.
9 E. F. Kneller: J. Appl. Phys., 35 (1964) 2210.   DOI
10 C. L. Chien, S. H. Liou, D. Kofalt, W. Yu, T. Egami, T. J. Watson and T. R. McGuire: Phys. Rev. B, 33 (1986) 3247.   DOI
11 K. Sumiyama and Y. Nakamura: Rapidly Quenched Metals, S. Steeb and H. Warlimont (Ed.), Elsveier, (1985) 859.
12 L. J. Huang and B. X. Liu: Appl. Phys. Lett., 57 (1990) 1401.   DOI
13 K. Uenishi, K. F. Kobayashi, S. Nasu, H. Hatano, K. N. Ishihara and P. H. Shingu: Z. Metallked., 83 (1992) 132.
14 A. R. Yavari and P. J. Desre: Ordering and Disordering in Alloys, A. R. Yavari (Ed.), Elsevier, (1992) 414.
15 A. Bachmaier, M. Kerber, D. Setman and R. Pippan: Acta Mater., 60 (2012) 860.   DOI
16 V. A. Burtshev, N. V. Kalinin and A. V. Luchinskii: Electrical Explosion of Wires and Its Use in Electro-Physical Equipment, Energoatomizdat, Moscow, 1980.
17 O. Nazarenko: Proceedings of European Congress of Chemical Engineering (ECCE-6), (2007).
18 Y.-S. Kwon, J.-C. Kim, A. P. Ilyin, O. B. Nazarenko and D. V. Tikhonov: J. Korean Powder Metall. Inst., 19 (2012) 40.   DOI
19 M. Rengasamy, K. Anbalagan, S. Kodhaiyolii and V. Pugalenthi: RSC Adv., 6 (2016) 9261.   DOI
20 K. -P. Jeong, S. -W. Yang and J. -G. Kim: Arch. Metall. Mater., 63 (2018),1449.
21 Z. G. Dan, H. Ni, B. F. Xu, J. Xiong and P. Y. Xiong: Thin Solid Films, 492 (2005) 93.   DOI
22 E. Celik, S. Islak and C. Ilkilic: Mater. Tehnol., 48 (2014) 881.
23 N. M. Thuyet and J. C. Kim: Arch. Metall. Mater., 64 (2019) 893.