• Title/Summary/Keyword: Chaotic system

Search Result 388, Processing Time 0.034 seconds

Nonlinear Dynamic Analysis of a Cantilever Tube Conveying Fluid with System Identification (시스템 규명을 통한 외팔 송수관의 비선형 동적 거동 해석)

  • 임재훈;정구충;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.495-500
    • /
    • 2003
  • The vibration of a flexible cantilever tube with nonlinear constraints when it is subjected to flow internally with fluids is examined by experiment and theoretical analysis. These kind of studies have often been performed that finds the existence of chaotic motion. In this paper, the important parameters of the system leading to such a chaotic motion such as Young's modulus and coefficient of viscoelasticity in tube material are discussed. The parameters are investigated by means of a system identification so that comparisons are made between numerical analysis using the parameters of a handbook and the experimental results. The chaotic region led by several period-doubling bifurcations beyond the Hopf bifurcation is also re-established with phase portraits and bifurcation diagram so that one can define optimal parameters for system design.

  • PDF

Design of a Chaotic Spread Spectrum Communication System using Polar Quarternary Method (복극4레벨 데이타 방식을 이용한 혼돈 대역확산 통신계통 설계)

  • 유충현;정종은;박광현;박진수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.10
    • /
    • pp.12-21
    • /
    • 1998
  • A chaotic spread spectrum communication system using a polar quarternary method is designed and implemented. Four different chaotic signals in the relation of multiplication each other are generated through the use of a coupled synchronization method in the transmitter which is composed of four Chua's circuits. Information is retrieved at the receiver which is connected to the transmitter through the use of a drive synchronization method. Since spread spectrum of information signal is spread by chaotic signal, the configuration of the system is simpler than that of any other conventional system.

  • PDF

Microcontroller based Chaotic Lorenz System for Secure Communication Applications (암호통신 응용을 위한 마이크로 컨트롤러 기반 로렌츠 카오스 시스템)

  • Jayawickrama, Chamindra;Song, Hanjung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1698-1704
    • /
    • 2018
  • This paper presents a implementation of a chaotic Lorenz system for data secure communication applications. Here we have used PIC18F family-based microcontroller to generate the chaotic signal, and simulated waveform patterns confirm that the chaotic behavior of the microcontroller based discrete time chaotic Lorenz system. There are three R-2R ladder type A/D converters have been implemented for conversion of direct microcontroller digital output into analog waveform, utilizing this specific microcontroller relevant to this experiment work, microcontroller ports B, C and D have been utilized for its time waveform outputs X, Y and Z respectively. XC8 compiler used for the compilation of the program. MATLAB and PROTEUS software platforms are used for simulation. Finally, chaotic time wave forms, 2D chaotic attractors were obtained and secure communication analog waveforms were also verified by experimental measurement.

A study on the intelligent control of chaotic nonlinear systems using neural networks (신경 회로망을 이용한 혼돈 비선형 시스템의 지능 제어에 관한 연구)

  • 오기훈;주진만;박진배;최윤호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.453-456
    • /
    • 1996
  • In this paper, the direct adaptive control using neural networks is presented for the control of chaotic nonlinear systems. The direct adaptive control method has an advantage that the additional system identification procedure is not necessary. In order to evaluate the performance of our controller design method, two direct adaptive control methods are applied to a Duffing's equation and a Lorenz equation which are continuous-time chaotic systems. Our simulation results show the effectiveness of the controllers.

  • PDF

Robot Trajectory Control using Prefilter Type Chaotic Neural Networks Compensator (Prefilter 형태의 카오틱 신경망을 이용한 로봇 경로 제어)

  • 강원기;최운하김상희
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.263-266
    • /
    • 1998
  • This paper propose a prefilter type inverse control algorithm using chaotic neural networks. Since the chaotic neural networks show robust characteristics in approximation and adaptive learning for nonlinear dynamic system, the chaotic neural networks are suitable for controlling robotic manipulators. The structure of the proposed prefilter type controller compensate velocity of the PD controller. To estimate the proposed controller, we implemented to the Cartesian space control of three-axis PUMA robot and compared the final result with recurrent neural network(RNN) controller.

  • PDF

Synchronization of Chaotic Secure Communication Systems with Interval Time-varying Delays (구간 시변 지연이 존재하는 카오스 보안 통신시스템의 동기화)

  • Kwon, Oh-Min;Park, Ju-Hyun;Lee, Sang-Moon;Park, Myeong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1215-1222
    • /
    • 2009
  • In this paper, a method of designing a controller which ensures the synchronization between the transmission and the reception ends of chaotic secure communication systems with interval time-varying delays is proposed. To increase communication security, the transmitted message is encrypted with the techniques of N-shift cipher and public key. And to reduce the conservatism of the stabilization criterion for error dynamic system obtained from the transmitter and receiver, a new Lyapunov-functional and bounding technique are proposed. Through a numerical example, the effectiveness of the proposed method is shown in the chaotic secure communication system.

Design of Generalized Predictive Controller for Chaotic Nonlinear Systems Using Fuzzy Neural Networks

  • Park, Jong-tae;Park, Jin-bae;Park, Yoon-ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.172.4-172
    • /
    • 2001
  • In this paper, the Generalized Predictive Control(GPC) method based on Fuzzy Neural Networks(FNNs) is presented for the control of chaotic nonlinear systems without precise mathematical models. In our method, FNNs is used as the predictor whose parameters are tuned by the error between the actual output of nonlinear chaotic system and that of FNNs model. The parameters of GPC controller are adjusted via the gradient descent method where the difference between the actual output and the reference signal is used as a control error. Finally, computer simulation on the representative continuous-time chaotic system(Duffing system) is presented to demonstrate the effectiveness of our chaos control method.

  • PDF

Robust Adaptive Law in Adaptive Mechanism Showing Chaotic Phenomenon (혼돈 현상을 보이는 적응기구에서의 강인한 적응법칙)

  • 전상영;임화영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.7
    • /
    • pp.1414-1420
    • /
    • 1994
  • In this paper the existence of chaotic signal is probed in adaptive dead beat control law for nonlinear dynamic system. These chaotic signal makes the system unstable and difficult to control, but it broaden the range of application, confirms the robustness of system and gives a lot of information. Considering of low correlation between chaotic signals, robust adaptive control method which uses for parameter estimation is proposed. With this algorithm the parameters converges stable rapidly. Finally the superiority of it is proved by computer simulation.

  • PDF

DENSITY DEPENDENT MORTALITY OF INTERMEDIATE PREDATOR CONTROLS CHAOS-CONCLUSION DRAWN FROM A TRI-TROPHIC FOOD CHAIN

  • NATH, BINAYAK;DAS, KRISHNA PADA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.179-199
    • /
    • 2018
  • The paper explores a tri-trophic food chain model with density dependent mortality of intermediate predator. To analyze this aspect, we have worked out the local stability of different equilibrium points. We have also derived the conditions for global stability of interior equilibrium point and conditions for persistence of model system. To observe the global behaviour of the system, we performed extensive numerical simulations. Our simulation results reveal that chaotic dynamics is produced for increasing value of half-saturation constant. We have also observed trajectory motions around different equilibrium points. It is noticed that chaotic dynamics has been controlled by increasing value of density dependent mortality parameter. So, we conclude that the density dependent mortality parameter can be used to control chaotic dynamics. We also applied basic tools of nonlinear dynamics such as Poincare section and Lyapunov exponent to investigate chaotic behaviour of the system.

Hybrid State Space Self-Tuning Fuzzy Controller with Dual-Rate Sampling

  • Kwon, Oh-Kook;Joo, Young-Hoon;Park, Jin-Bae;L. S. Shieh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.244-249
    • /
    • 1998
  • In this paper, the hybrid state space self-tuning control technique Is studied within the framework of fuzzy systems and dual-rate sampling control theory. We show that fuzzy modeling techniques can be used to formulate chaotic dynamical systems. Then, we develop the hybrid state space self-tuning fuzzy control techniques with dual-rate sampling for digital control of chaotic systems. An equivalent fast-rate discrete-time state-space model of the continuous-time system is constructed by using fuzzy inference systems. To obtain the continuous-time optimal state feedback gains, the constructed discrete-time fuzzy system is converted into a continuous-time system. The developed optimal continuous-time control law is then convened into an equivalent slow-rate digital control law using the proposed digital redesign method. The proposed technique enables us to systematically and effective]y carry out framework for modeling and control of chaotic systems. The proposed method has been successfully applied for controlling the chaotic trajectories of Chua's circuit.

  • PDF