DOI QR코드

DOI QR Code

Microcontroller based Chaotic Lorenz System for Secure Communication Applications

암호통신 응용을 위한 마이크로 컨트롤러 기반 로렌츠 카오스 시스템

  • Jayawickrama, Chamindra (Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University) ;
  • Song, Hanjung (Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University)
  • Received : 2018.08.27
  • Accepted : 2018.09.26
  • Published : 2018.12.31

Abstract

This paper presents a implementation of a chaotic Lorenz system for data secure communication applications. Here we have used PIC18F family-based microcontroller to generate the chaotic signal, and simulated waveform patterns confirm that the chaotic behavior of the microcontroller based discrete time chaotic Lorenz system. There are three R-2R ladder type A/D converters have been implemented for conversion of direct microcontroller digital output into analog waveform, utilizing this specific microcontroller relevant to this experiment work, microcontroller ports B, C and D have been utilized for its time waveform outputs X, Y and Z respectively. XC8 compiler used for the compilation of the program. MATLAB and PROTEUS software platforms are used for simulation. Finally, chaotic time wave forms, 2D chaotic attractors were obtained and secure communication analog waveforms were also verified by experimental measurement.

본 논문에서는 암호통신 응용을 위한 로렌츠 카오스 회로를 구현한다. 이산형 카오스 로렌츠 시스템을 구현하기 위하여, PIC18F 계열의 마이크로 콘트롤러가 사용되었으며, 제안하는 카오스 회로는, 연산증폭기 기반 아날로그 회로와는 다르게, 8 비트PIC 마이크로 콘트롤러 칩과 3개 R-2R 타입의 디지털-아날로그 변환기로 이루어진다. 마이크로 컨트롤러 포트 B, C 및 D에서 시간 파형 X, Y 및 Z가 출력되도록 하였다. 모의실험을 위하여 MATLAB 및 PROTEUS 소프트웨어 플랫폼이 사용되었다. 제안하는 회로에 대하여, MATLAB 및 프로테우스 프로그램에 의한 모의실험을 통하여 시간파형, 주파수 특성, 2차원 위상특성 해석을 실시하였다. 최종적으로, 카오스 시간파형, 2차원(2D) 어트랙터 가 얻어졌고, 카오스 신호에 기반한 아날로그 신호의 암호통신 검증을 실험을 통하여 확인 하였다.

Keywords

HOJBC0_2018_v22n12_1698_f0001.png 이미지

Fig. 1 Schematic diagram of analog Lorenz circuit.

HOJBC0_2018_v22n12_1698_f0002.png 이미지

Fig. 2 Flow diagram of the algorithm.

HOJBC0_2018_v22n12_1698_f0003.png 이미지

Fig. 3 Schematic diagram of the microcontroller based chaotic lorenz system.

HOJBC0_2018_v22n12_1698_f0004.png 이미지

Fig. 4 PIC18F microcontroller experimental board

HOJBC0_2018_v22n12_1698_f0005.png 이미지

Fig. 6 Two dimensional chaotic attractor Z(V) vs Y (V) axis.

HOJBC0_2018_v22n12_1698_f0006.png 이미지

Fig. 7 Chaotic communication system block diagram

HOJBC0_2018_v22n12_1698_f0007.png 이미지

Fig. 8 Secure data transmission through public channel (a) Message signal (b) Chaotic carrier signal. (c) Chaotic modulated signal. (d) Recovered signal.

HOJBC0_2018_v22n12_1698_f0008.png 이미지

Fig. 9 Experiential setup for chaos communication.

HOJBC0_2018_v22n12_1698_f0009.png 이미지

Fig. 10 Measured chaotic waveform and attractor

HOJBC0_2018_v22n12_1698_f0010.png 이미지

Fig. 11 Experimental verification of chaos communication

HOJBC0_2018_v22n12_1698_f0011.png 이미지

Fig. 5 Chaotic time waveform Y and Z axis vs time.

References

  1. C. Han, S. Yu, and G. Wang, "A Sinusoidally Driven Lorenz System and Circuit Implementation," Mathematical Problems in Engineering, vol. 2015, no. 706902, pp. 1-11, May 2015.
  2. Murali and Krishnamurthy, "Secure communication using a chaos based signal encryption scheme," IEEE Transactions on Consumer Electronics, vol. 47, no. 4, pp. 709-714, Nov. 2001. https://doi.org/10.1109/30.982780
  3. C. Liu, Z. Sun, and D. Ye, and K. Shi, "Robust Adaptive Variable Structure Tracking Control for Spacecraft Chaotic Attitude Motion," in IEEE Access, vol. 6, pp. 3851-3857, Jan. 2018. https://doi.org/10.1109/ACCESS.2017.2788860
  4. G. Huang, and Y. Zhou, "Circuit Simulation of the Modified Lorenz System," Journal of Information & Computational Science, pp. 4763-4772, Oct. 2013.
  5. Z. Lin, S. Yu, J. Lü, S. Cai, and G. Chen, "Design and ARM-Embedded Implementation of a Chaotic Map-Based Real-Time Secure Video Communication System," IEEE trans. On circuits and systems for video technology, vol. 27, no. 7, pp. 1203-1216, July 2015.
  6. S. Chen, S. Yu, J. Lü, G. Chen, and J. He, "Design and FPGA-Based Realization of a Chaotic Secure Video Communication System," IEEE Transactions on circuits and systems for video technology, vol. 28, no. 9, pp. 2359-2371, Sep. 2018. https://doi.org/10.1109/TCSVT.2017.2703946
  7. A. A. A. El-Latif, B. A. El-Attyi, and M. Talha, "Robust Encryption of Quantum Medical Images," in IEEE access special section on mobile multimedia for healthcare, vol. 6 pp. 1073-1081, Nov. 2018.
  8. Y. Zhou, Z. Hua, C. M. Pun, and C. L. P. Chen, "Cascade Chaotic System With Applications," IEEE Transactions on cybernetics, vol. 45, no. 9, pp. 2001-2012, Sep. 2015. https://doi.org/10.1109/TCYB.2014.2363168
  9. Z. Hua, and Y. Zhou, "One-Dimensional Nonlinear Model for Producing Chaos," IEEE Transactions on circuit and systems-I:regular papers, vol. 65, no. 1, pp. 235-245, Jan. 2018. https://doi.org/10.1109/TCSI.2017.2717943
  10. A.G. Radwan, A.M. Soliman, and A. E. Sedeek, "MOS realization of the modified Lorenz chaotic system," Chaos, Solitons and Fractals, vol. 21, pp. 553-5610, Feb. 2004. https://doi.org/10.1016/S0960-0779(03)00077-8
  11. T. Wang, D. Wang, and K. Wu, "Chaotic Adaptive Synchronization Control and Application in Chaotic Secure Communication for Industrial Internet of Things," in IEEE Access, vol. 6, pp. 8584-8590, Jan. 2018. https://doi.org/10.1109/ACCESS.2018.2797979
  12. Q.H. Alsafasfehl, and M. S. Al-Arni, "A New Chaotic Behavior from Lorenz and Rossler Systems and Its Electronic Circuit Implementation," Circuits and Systems, vol. 2, pp. 101-105, April 2011. https://doi.org/10.4236/cs.2011.22015
  13. M. Zapateiro De la Hoz, L. Acho, and Y. Vidal, "An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers," Scientific World, vol. 2015, pp. 1-10, Aug. 2015.
  14. C. Jayawickrama, S. Kumar, and H. Song, "Novel Wideband Chaotic Approach LNA with Microcontroller Compatibility for 5G Wireless Secure Communication," Microwave and Optical Letter (Wiley), vol. 60, no. 2, pp. 488-494, Jan. 2018. https://doi.org/10.1002/mop.30991
  15. A. Al-Shidaifat, C. Jayawickrama, S. Ji, V. Nguyen, Y. Kwon, H. Song, "Microcontroller-based Chaotic signal generator for securing power line communication: part I-A system view," KEPCO Journal on Electric Power and Energy, vol. 2, no. 4, pp. 563-567, Dec. 2016. https://doi.org/10.18770/KEPCO.2016.02.04.563
  16. A. Al-Shidaifat, S. Han, H. Song, "Analysis of the Lorenz Circuit using a 8-bit PIC Microcontroller," Journal of Korean Institute of Intelligent Systems, vol. 27, no. 4, pp. 296-301, Aug. 2017. https://doi.org/10.5391/JKIIS.2017.27.4.296
  17. Y. Lee, "Key Management Framework based on Double Hash Chain for Secure Smart Grid Environments," JKIICE, vol. 17, no. 9, pp. 2063-2071, Sep. 2013.
  18. B. Lee, "Hybrid Key Management Using Self-Extended Certification and Hardware Security Module," Journal of Security Engineering, vol. 11, no. 4, pp. 273-286, Aug. 2014. https://doi.org/10.14257/jse.2014.08.01
  19. P. Marwedel, Embedded System Design Embedded Systems Foundations of Cyber-Physical Systems, Switzerland, Springer, 2010.
  20. M. Wolf, High-Performance Embedded Computing: Applications in Cyber-Physical Systems and Mobile Computing, USA, Elsevier, 2014.
  21. D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, "Next Century Challenges: Scalable Coordination in Sensor Networks," In Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 263-270, 1999.
  22. R. Bastide, D. Navarre, P. Palanque, A. Schyn, and P. Dragicevic, "A Model-Based Approach for Real-Time Embedded Multimodal Systems in Military Aircrafts," In Proceedings of the 6th International Conference on Multimodal Interfaces, pp. 243-250, 2004.
  23. C. Jayawickrama, A. Al-Shidaifat, S. Kumar, Y. Kwon, W. Jung, H. Song, "Simulation Study of Secure Communication Using Microcontroller Based Lorenz Chaotic Oscillator," 2017 Summer conference of IEIE (The Institute of Electronics and Information Engineers of Korea), pp. 401-402, 2017.