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Synchronization of Chaotic Secure Communication Systems with Interval
Time—varying Delays
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Abstract - In this paper, a method of designing a controller which ensures the synchronization between the
transmission and the reception ends of chaotic secure communication systems with interval time-varying delays is
proposed. To increase communication security, the transmitted message is encrypted with the techniques of N-shift
cipher and public key. And to reduce the conservatism of the stabilization criterion for error dynamic system obtained
from the transmitter and receiver, a new Lyapunov-functional and bounding technique are proposed. Through a numerical
example, the effectiveness of the proposed method is shown in the chaotic secure communication system.
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1. Introduction

During the recent decades, to increase the
communication security, many efforts have been done to
investigate the problem of data encryption and decryption.
Since the dynamic behavior of chaotic system is highly
sensitive to the initial values and parameter of a system,
a considerable attention has been paid to the application
of chaotic system to secure communication. For
references, see [1]-[5] and references therein.

On the other hand, it is well recognized that many

communication contain

processes time-delays  in
transmission of information and time-delays often causes
poor performance or even unstability [6]-[7], many efforts
have been done to stability analysis of dynamic systems
with either constant time-delays or time-varying delays
[8]-[12]. Since delay-dependent stability and stabilization
criteria, which give an information of maximum delay
intervals for guaranteeing asymptotic stability, are
generally less conservative than delay-independent ones
when the size of time-delays are small, more attention
has been paid to the delay-dependent stability and
stabilization criteria than delay-independent ones. In D. Li

et al [b], the observer-based chaotic synchronization

o OmAAA A FEYSE AV Y 2us
E-mail | madwind@chungbuk.ac.kr

A dden Av)gsn Fas

SR =R A e

2z 27)F

ZF 120099 3¥ 6

020099 44 10¢

&2 AQ%A
f13
.

3 MR

%
*
%
Bomb HN o o

N A e o
rﬁmgﬂ“ﬂ‘ﬁ

F7h AW Relo] ERSIE QA Hot B4

problem was investigated for a class of time-delay secure
communication system. However, the proposed method is
delay-independent and not applicable to the secure
communication with fast time-varying delays, which
means the time-derivative of time-delay is unknown.

Recently, delay-dependent stability or stabilization of
system with interval time-varying delays has been a
focused topic of theoretical and practical importance
[13]-[14] in very recent years. The system with interval
time-varying delays means that the lower bounds of
time—delay which guarantees the stability of system is
not restricted to be zero. A typical example of dynamic
systems with interval time-varying delays is networked
control system. However, to the best of author's
knowledge, the problem of synchronization of the chaotic
secure communication system with interval time-varying
delays has not been investigated yet.

In this paper, we propose a new synchronization
method of the chaotic system with interval time-varying
delays. To reduce the conservatism of synchronization
criteria, a new Lyapunov functional which fractions delay
interval is proposed. Then, a sufficient condition of
ensures  the

designing a controller L,  which

synchronization between the transmission and the
reception ends of the chaotic secure communication
system with interval time-varying delays is established in
terms of Linear Matrix Inequalities(LMIs). To increase
communication security, we adopt the encryption and
decryption of the original to-be-transmitted message with
the techniques of n-shift cipher and public key[4].

Through numerical example, it will be shown that the
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proposed method is effective in synchronization of the
transmission and reception ends of the system with
interval time-varying delays of output state and
recovering the original message at the reception end.
Throughout this paper, * represents the elements below
the main diagonal of a symmetric matrix. The notation
X>Y, where X and Y are matrices of same dimensions,
means that the matrix X— Y is positive definite,/ denotes
the identity matrix whose dimensions can be determined
from the context. R" is the n-dimensional FEuclidean
space, R™"" denotes the set of M Xmn real matrx.

diag{ - } means the diagonal matrix.

2. Problem Statements

Consider the following chaotic secure communication
system with interval time-varying delays:
ﬂansmitter:i(t)=Aw(t)+3f(w(t))+L8(t) (D
v(t)= et —ht)) +s(t)

Receiver : y(t} = Ay(t) + Bf (y(t)) + Llv(t) —w(t))
w(t)= Gt —h(t))
Here, z(t)ER", y(t)ER" are the state vectors, v(t)ERP
and w{t)ER” are output states, ASR"™", BER**" and
CERan
controller gain which will be designed, h(t) represents
time-varying delays which satisfies 0<h;, <h(t) <hy,

are known system matrices, LER" is the

h(t) <hy. f(+) is a nonlinear function which satisfies a
sector condition with f]-( < ),(i=1,2,..,n) belonging to
sectors [k, ]. That is,

FO-EOFO-KO <0,vE, j=12m (2

Let us define encryption key as key, (t)= Y, a2,(t) |
i=1

decryption key as key,(t)= a4y (t) in which a,(i=1,...,n)
i=1

are constants, and s(t) as the signal for applying the N
—shift cipher in encryption and decryption [4] as follows:

s(t) = E(s, (), key, (1)) 3
= f10 £y ls, @) key, () key, (£)), ke, (£)),
N

where s,(t)ER is the known orignal message signal, and
fi(+,+) is the following nonlinear function:

(@+k)+2r, —2n< (z+k)+2n,<—7
f1($7k):{(x+k)7 -r<{z+k) <7 (4)
(x+k)—2r, 7<(z+k)<2r

where 7 is chosen such that s(t) and key signals lie
within (—7 7).
The recovered message s, (t) can be obtained by
decryption function in the receiver [4] :

8,0 (8) = Dlv(t) —w(t)) (5)

= G (s ()= ke, (8)),— ey, (), -— key, (£))

If the synchronization between transmitter and receiver is
achieved, then key, (t) = key,(t).
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Define the synchronization error as e{t)=xz(t)—y(t). Then,
from (1), the error dynamic system can be obtained as
follows:

e(t) =z(t) —y(t) = Ae(t) — L& —h(t)) + Byle(t),y(t))  (6)
where
nle(t).y@)) = fz(t)) — fy(t)) = fle(t) +y(t)) ~ fFy(t)). Suppose
that
n (e, (t),y;(¢))

e, (t)

Ve y,(G=1-n)
which implies
(n;(e;(£),y,(8)) = k; )n(e;(t),y;(t) — k) < 0Ve;y,(=1,...,n).(8)

J J

file; () +y,(8)) = £;(y,(t))
(e,(t)+y,(t) —y,(t)

k;S =

<k

The objective of this paper is to develope a designing
method of controller L such that the synchronization
between the transmitter and receiver (1) is achieved and
the original message signal s,{t) has been transmitted
from the transmitter to the receiver and can be recovered
at the receiver.

Before deriving the main result, we will utilize the
following fact and lemma.

Fact 1. (Schur Complement) Given constant symmetric
matrices £,%Z,,Z, where £, =%7 and 0<Z,=Z%7 then
D +X%, 5, <0 if and only if

T —
o (S5 o

Fact 2. For any real vectors « b and any matrix
Q>0 with appropriate dimension, the following inequality

+2a7b < a"Gu+bTQ b (10
is always satisfied.

To derive a less conservative stability criterion of the
error dynamic system (6), let us introduce a integral
inequality bounding lemma which will be used to take an
upper bound of time derivative of Lyapunov functional.

Lemma 1.[15] For any constant matrix M €R**",
M=M">0, scalar v>0, vector function z:[0, /]=R" such
that the integrations concerned are well defined, then

\/‘sz(s)ds)T/\/(‘/:x(s)ds < /OWxT(s)M(s)ds. an

Lemma 2. For any scalar h{t) >0, and positive matrix

@, the following inequality holds:
[ T Qis)ds < (12)

t—h(t)

FR(CT () XQ X7 +2¢7 () X (t) — ot = h(2)]
where
)= [eT(t) et (t=h(®)) e"(t—hy) eT(t—@)

eT(t—hy) ¢ () 77 (e()y(t) fle(®))] (13)

and X is free variable matrix with appropriate dimension.
Proof. From Fact 2,
holds:

the following inequality with Q>0
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- 20X7¢(e) "

t—h{t)

S, Q)+ (X @ el

z(s)ds < (14)

The inequality (14) can be written as

[ coxe xmw

£k (t)

+2§ X/, v ds+/f " s)ds
=h{t)T () XQ lXTC(

o Xz (1) — +f h Qi(s)ds
ZO t- (f

(15)
Therefore, from (15), the inequality (12) can be obtained.
This completes the proof of Lemma 1. |

3. Main Results

For simplicity, let us define the following notations.
E: [E(ZJj]a(lﬂj:LvS)
Zan= R; +R - Q+5(PA+ATP) 2K H K,
Xy = —OYCG Xy 5y =@ Xy 4y =0, Ty 5, =0,
Y= B —0P+ ATP!, 5,0 =6PBV(K + K)H,

—2K H K,

2 &) (A +K)Hw 222 (1“h/))Rz’ Y25 =0, Xipyy =0,
_ —_ TyT _ -
Z@_S)f 0, Doy =—C Y, Koy =0 oy =0
hy—
Zam = — R+ N, G, ( DTN :Mz+( )@

Zisy= 0 Ty =00 Ty =0 Ly =0,
hy—h;
(4.5) 7_‘]\712 + 9 Q4’

hy—h;,
N22 - (T)Qu

_‘/VM ( )Qp

5.8
hy—h, , ,
L= 9 (Q+Q+Q)+hQ—P —P,
Lign= BB Ygg =4 L, 2H,, X5 =0, Xigg) == 2H,
x=[ 0 x7 x7 000 0 0]
y=| Y o v 00 0 o |
X=[o0o X 0o X 000 0],
Y={o0o ¥ o0 ¥ 00 0],
=0 -X+ty X -Y 0 0 0 0 |,
I=[ 0 -X+Y 0 X -Y 0 0 0 },
H:[ 0 0 0 70000 }
! 0000 70007
H:{ 00 7000 0 0 }
2 0 00 7 0O0O0O0O]
- hp=h V' [-Q @
:1:2+F+I‘]+( 5 ) H{[ *)762_]171,
— = (hy=h N Q@
_ T [4 L T 1 1
5=X+I+T +( 5 ) HQ[ N _Q]]HZ

(16)
Then, we have the following theorem.
Theorem 1. For given h;,h; satisfying h, >h; >0, and
any constant h, and J, the chaotic  secure
communication system (1) is synchronized with controller

gain L=PF 'Y for 0<h, <h(t)<h, and h(t)<h, if

T2F Al xedo| ExjstE FIRA EOF EAA|AH ] 7|5

() El
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R(i=1,..,3),

]Vanz
)‘n,}, N_{* ]\[22 ;

Y, X, Y,6=12) such that the

there exist positive matrices

Qi=1,..4), HE=12), A=diag{} -

and any matrices X,
following LMlIs hold:

h,;;—h
5] ( & 5 L )Y
N (hU_hL) <0~, (17)
[ T2 9
— h,—h 1
‘:l ( U 5 L )X
. ( hy—h, ) <0, (18)
L 7 )@
h,—h, \_
:2 (A U 5 L )Y l
Wk <q, (19
* ( U L
h,—h; \_
= ( T )X
bk <0. (20)
148 L
* _( 2 )Q2
Proof.
Let us consider the following Lyapunov-Krasovskii's
functional
3
=V 1)
=1
where

Vi (t) = eT(t)iﬂe(t)Jrf e’ (s)Rye(s)ds

t—hi{t)

t- b, e(s) ! N, N,
+/ h,+h [e(s_(hz»';hj,)) [*1]\,;2}
e(s)
: es(hf-wﬂds
2
h2 +)zL
+ / o7 (w) Qelu)duds

+h / f u)duds
t—h,
t—h, t. T .
+/ / e (u)@e(u)duds
t=hpv s

The upper bounds of time-derivative Vi(t) can be

obtained as
T(t)Rye(t)
T(t—h(t) Relt—

V,(t) < 27 (t)Relt) +e
—(1—hye h(t))+2f T (e(t)) Aelt). (22)

By calculating the time-derivatives of V,(t) and V,(t),

we have
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Vy(t) =e () Re(t)—eT(t—h,)Relt—h,)

T

e(i-—hL} NN e(t—hL)
11 4%12 o
et | [ g |
T
_ e(t—(—*—hU;hL)) ]Vanz e(t—(hLA—hL))
6{1"]11/;) ("(t-h[/)
hy— . . -k, . .
V(t) = ( e )eT(i)Qle(t)—f (hhyﬁhL)eT(s)Qle(s)ds
T
+(@2ﬁ)éf(t)czzé(t)— " )éf(s)Q)é(s)ds
t—h,
+r2T (1) Qelt / $)Qels)
+{h ) {t)Qelt) - f 5)Qee(s)ds (24)

Here, by utilizing Lemma 1, the upper bound of integral
3 . . t—h

terms -hgf "(s)Qels)ds and —/ '’ (s)Qels)ds in
t—n, t—hy

V,(t) can be obtained as

—th:uh éT(s)Q,é(s)ds

= [5(5821)]7{_53 —%@ He(fgzl)} {(25)
S ANGIOCRER
- '/w ¢’ () Qels)ds— 0
tﬂ(f’_”)_"f_) 868 - e (s)Qels)ds
i1 elt—h,) T
s(hg2 hL) e(t—(hyth)) [ *Q4 _%24}

e(t—hL)
gt
elt—|—5—
2

h,~—h
+(-ﬂ._€)

hy+h;
« € t— 3 ‘
(t—hy)
Using Lemma 2, the upper bounds of other two integral

terms - f f:(}:n . hl)éT(s) Qels)ds and
AT

-/ - }é%s)@é(s)ds

t—hy

(26)

in V(t) can be estimated as

follows respectively.
hy+h,

(i) Case 1: When h, <h(t) < 5

t=h; .
_f s +hL e(s)ds

, we have
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t—h(t)

t=h, . .
= _/t-h(t)ef(s)Qle(s)ds—/t ( [y )e T(s)Qels)ds

< (R(t) =k, )T OXGTK¢(E)
2T ()X lelt—h, ) —e(t— ()]

*((Eii)—w}gf(wm; Y7c)

HCT({)Y[‘?&_M”) ~e(t_( hz[;hL m @D

hy +h1)

/i(“
t—hy

¢T(s) Q,els)ds

) r
<(‘hb’—~h’£)‘l 6(t—{m)) [_QQ QQ I
<|ZL -z 2
2 e(é—hy) *x —0,
hy+h,
x|t (‘“"2 “)) . (28)
e(t—hy)

Note that ¢(t), X, Y; are defined in (16).
To obtain a less conservative results, we add the
following zero equations with any matrix P, and scalar 6

0=2[eT(t)(6P,) +e" (t)P,]
x|—elt) + Ae(t) — ECe(t—h(£)) + Byle (), y(E))].  (29)
From (2) and (7), for any two positive matrices
H, =diag{h;,--sh.,}, and H, =diag{hy;.h,,}, the following

inequalities hold
0= "'ZXn] (hq,‘, ((L (eg (t)) - k»i €; (t))('ﬂ (ei (’«)) - k'j f’z(é)))
i=1

+hy; (e, (85, ) — Ky e, () le, (), (8)) — K e, ()]
= —2T(OK H Kelt)+2e7 (K, + EK)H flet))

= 2f T (e () H fle(t) — 2" K Hy Kyelt)

+2eT () K, + K, Hyple (),3(8))

—on” (e(t),y(£)) Hynle(t),y(t)) (30)
ok} and K, =diag{k’ ...k} }
(21)-(30),

where K, = diag{k;,

Let Y¥=PFPL  From and by applying

3 -
S-procedure{16], the =E V(t) has a new upper
]

bound as
V< T ()0((t) (3D

where

h ‘
Q= 5 +(h(t)=h,)XQ; ! X@( .’lﬂ/_“*_'..f_«)_ h(t)) Yg vt

and 5| is defined in (16). Since v
-1y hy+hy ~ 1y 7
(h(t) =) XQ X || ——5— |=h ) YR Y (32)

is a convex combination of the matrices X@ 'X7T and

YO 'Y on Alt) 2, <0 with the condition

’

Byt h
h, sh(t)f;-—"yz £

can be handled by two corresponding

boundary LMIs:

- by,
=+ )

L }YQ{ LYT<0,(h(t) =hy) (33)



h(t)=

Using Fact 1, (33) and (34) are equivalent to the LMIs

(17) and (18), respectively.

hl,'+hL
2

’/ :(h%fé;m)&)@é(s)ds

(34)

hy—h hy+h
91:51+( S L)XQ;lXT<0, - L).

(ii) Case 2: When < h(t) <k, we have

4 t=h,) 7
hy—hy ¢ £ -Q @
g( . ) e(t_(hUJth)) [ *1_@}
2
(t_hL)
X ( (hl/'+hL )) , (35)
elt—
2
[7(}1[4»}1[).]“ )
—/7} Pole (s)Qyels)ds
h +h, -
7/r i) Q2 s)ds /t hy (é)dé

(h(t ( )) )X Q, X ¢t)

o [(t (h Hhy ))—et—h(t))]

+2¢7 () le (t—h(t))—e(t—h . (36)

From (21 (26), (29)-(30), and (35)-(36) when
h,+h 3
12 L<hlt) < hy;, the Wt) = E {t) has a new upper
i=1
bound as
V= ¢ (0)0,00) 37)
where
_ sth, _
!22::2+(h(t)— ))XQ] X (hy - b)) YQTYT (38)
and =, is defined in (16). By using similar analysis of
. .. h[/+hL
case 1, £, <0 with the condition—— <h(t)<h, can
be handled by two corresponding boundary LMIs:
h,—h, \— — h,+h
0,= 52+( L L)YQI’] Y’ <o, h(t):u) (39)
(hp=hi\= =
0,= 5+ XQ, X <0,(h(t) =hy). (40)

Using Fact 1, (39) and (40) are equivalent to the LMis
(18) and (19), respectively. Therefore, if LMIs (17)-(20)
are hold, then the error system is asymptotically stable,
which means the chaotic secure communication system
(1) with the controller gain Z=P 'Y is synchronized

between the transmitter and receiver. ||

Remark 1. In Eq. (15), the new Lyapunov functional
hp+h;
2

and

which divided into two intervals {hy

h,,+h
[ : 3 [\h,,} are proposed. Therefore, by taking different

Trans. KIEE. Vol. 58, No. 6, JUN, 2009

hy+h,
2

and

functional in two sub-intervals [hL,

hyt+h,
2

utilizes more information on state variables. Also, by

h ,}, the synchronization criterion in Theorem 1

taking different free variables in sub-intervals, Theorem 1
may lead to provide larger delay bounds than the
previous ones.

t
Remark 2. If we do not consider / o
t—hi{t

27 (s)Rz(s)ds in

V, of Theorem 1 or set hp=1, then we can easily

obtained a delay—dependent synchronization criterion of
the error dynamic system (6) with no delay—derivative
information. In other words, the synchronization criterion

without f
t— h(f

not need the condition % (t) <
to Theorem 2 in [5].

T(s)Rz(s)ds or hp=1 in Theorem 1 do

h,, which is not applicable

4. Numerical Examples

In this section, a simulation example is shown to support
the validity and applicability of Theorem 1. Consider the
chaotic secure communication system (1) with

—6.3—6.3 0 —6.300
A=|-07-07-7|, B=| 0 00|, C=1[10 0],
0 1 0 0 00

s, (t) =0.15sin(0.17t), N=2,

and flz)=muz+05(m, —m,)(z+I|-lz—1L}), where
m, ==1.143, m, =—0.714, I, =3. From the considered f(z),
flz)

we can obtain the following condition —1.143 < Tg 0.

By applying Theorem 1 to the error dynamic system (6)
with h, =0.02, h,=1 and 6=3 and parameters mentioned
above, the maximum delay bounds h;, can be obtained as
0.15 and controller gain is

=[2.6228 —1.1662 —0.2267]7. This
transmitter and receiver with the obtained controller gain

obtained

means that the

is synchronized for any h(t) which belongs to the
interval [0.2,0.15]. Since |ls,(t)/ <015, we can choose
7=0.2. Therefore, the parameters a,, @, a; of key signal
should be chosen to satisfy lkey, (1) <02, Let us check
the state response of

2, =[0.15 —0.1 —0.14]"

transmitter with
as shown in Fig. 1. Then, by
choosing @, =0, a, =0.1, a, =0.1 and using the results of
Fig. 1, the response of key, (t) can be obtained and shown

in Fig. 2. From Fig. 2, we can confirm the obtained
key,(t) is less than 0.2.

To confirm that the synchronization between the transmitter
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Fig. 1 State responses of the transmitter
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Fig. 2 Responses of key signals in the transmitter
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Fig. 3 Responses of error
Oy 3 XS

and receiver is achieved with the obtained controller gain
L=[2.6228 —1.1662 —0.22671", the error signal e(t) is
shown in Fig. 3 by settingh{t) =0.02+0.13sin*(100t) and
the initial condition as, y,=[0.1 012 0.11]7 which is
different from the initial condition of the transmitter.
From Fig. 3, the error signal goes to zero as time
increases. Finally, let us check the recovery of the
transmitted signal. From (5) and
key,(t) = ayy, () +ayy, (E) +ay, (1), the recovered s, ()

1220
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Fig. 4 Responses of the transmitted signal
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Fig. 5 Error response between the transmitted signal and
the recovered signal
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Fig. 6 Responses of the recovered signal
g 6 AT SHE ME

signal can be obtained. In Fig. 4, Fig, 5 and Fig. 6, the
transmitted signal s,(t), the message error signal
s,(t)—s,, (¢), and the recovered signal s, (t) are shown,
respectively. From these figures, we can confirm that the
s,, {t) goes to s,(t) as time increases.



5. Conclusions

In this paper, a new controller design method of the
chaotic secure communication systems with interval
time-varying delays is proposed. By utilizing LMI
framework technique and based on Lyapunov method, a
designing method of controller gain L is established.
Furthermore, to  increase the security of the
comrmunication system, the transmitted message is
encrypted with the technigues of N-shift cipher and
public key. In order to obtain a less conservative result, a
new Lyapunov functional was proposed and an integral
inequality lemma, which includes free variables, was
utilized in obtaining an upper bound of the integral term.
Through numerical example, the validity of the proposed
method was confirmed. In the future, we will implement
the chaotic circuit to

examine the  proposed

synchronization  criterion for the chaotic  secure

communication system.
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